

A Peer Reviewed Open Access International Journal

Low Power – Linear Feedback Shift Register Based Low Power Test Pattern Generator

Syed.Mujeeb Raheman M.Tech. (VLSI-SD), Anurag Engineering College, Kodad, India.

M.Basha, M.Tech

Assoc.Prof, Dept of ECE, Anurag Engineering College, Kodad, India.

Abstract:

BIST name itself reveal that the testing VLSI circuits is within the circuit. When the system is ON this circuit tests once the whole circuit connected to it. Basically we had LFSR to generate test vectors. The main aim of BIST to reduce the power consumption. This paper mainly focuses on how test vectors were generated in the BIST and how to reduce the power. This proposed system having gray code generator which generates the test vectors which are 1-bit distance. So number of transitions will be less. In this the single input change patterns generated by a counter and a gray code generator are Exclusive–ORed with the seed generated by the low power linear feedback shift register [LP-LFSR]. The proposed scheme is examined on synchronous pipelined 4x4 and 8x8 Braun array multipliers. for implementation on Altera Field Programmable Gate Arrays (FPGAs) based SOC kits with Nios II soft-core processorThe System-On-Chip (SOC) approach is adopted. From the results obtained the power consumption is less compared to previous methods.

Keywords:

BIST, DFT, TPG, LP-LFSR etc.

I.INTRODUCTION:

The main challenging areas in VLSI are performance, cost, testing, area, reliability and power. The demand for portable computing devices and communication system are increasing rapidly. These applications require low power dissipation for VLSI circuits [1]. The ability to design, fabricate and test Application Specific Integrated Circuits (ASICs) as well as FPGAs with gate count of the order of a few tens of millions has led to the development of complex embedded SOC. Hardware components in a SOC may include one or more

processors, memories and dedicated components for accelerating critical tasks and interfaces to various peripherals. One of the approaches for SOC design is the platform based approach. For example, the platform FPGAs such as Xilinx Virtex II Pro and Altera Excalibur include custom designed fixed programmable processor cores together with millions of gates of reconfigurable logic devices. In addition to this, the development of Intellectual Property (IP) cores for the FPGAs for a variety of standard functions including processors, enables a multimillion gate FPGA to be configured to contain all the components of a platform based FPGA. Development tools such as the Altera System-On-Programmable Chip (SOPC) builder enable the integration of IP cores and the user designed custom blocks with the Nios II soft-core processor. Soft-core processors are far more flexible than the hard-core processors and they can be enhanced with customhardware to optimize them for specific application. Power dissipation is a challenging problem for today's System-on-Chips (SOCs) design and test. In general, the power dissipation of a system in test mode is more than in normal mode [2]. Four reasons are blamed for power increase during test [3].

- High switching activity due to nature of test patterns
- Parallel activation of internal cores during test
- Power consumed by extra design-for-test(DFT) circuitry
- Low correlation among test vectors

This extra average and peak power consumption can create problems such as instantaneous power surge that cause circuit damage, formation of hot spots, difficulty in performance verification, and reduction of the product field and life time[4]. Thus special care must be taken to ensure that the power rating of circuits is not exceeded during test application. Different types of techniques are presented in the literature to control the power consumption.

A Peer Reviewed Open Access International Journal

These mainly includes algorithms for test scheduling with minimum power, techniques to reduce average and peak power, techniques for reducing power during scan testing and BIST(built-in-self-test)technique. Since off-chip communication between the FPGA and a processor is bound to be slower than on-chip communication, in order to minimize the time required for adjustment of the parameters, the built in self test approach using design for testability technique is proposed for this case.The rest of the paper is organized as follows.

In section II, previous works relevant to power reduction are discussed, which mainly concentrated to reduce the average and peak power. In section III, an overview of power analysis for testing is presented. In section IV, Braun array multiplier is discussed briefly, which is taken here as a circuit under test (CUT) to verify the effectiveness of the proposed technique. In Section V, the proposed technique in the test pattern generator is discussed. Section VI describes the algorithm for the proposed LP-LFSR. In section VII, the implementation details and the results are presented. Section VIII summarizes the conclusion.

II. REVIEW OF PREVIOUS WORK:

Different techniques are available to reduce the switching activities of test pattern, which reduce the power in test mode. For linear feedback shift register (LFSR), Giard proposed a modified clock scheme in which only half of the D flip-flops works, thus only half of the test pattern can be switched [7]. Original LFSR is rearranged to reduce the switch frequency. LT-TPG is proposed to reduce the average and peak power of a circuit during test [4]. The above said techniques can reduce the average power compared to traditional linear feedback shift register (LFSR).A better low power can be achieved by using single input change pattern generators. It is proposed that the combination of LFSR and scan shift register is used to generate random single input charge sequences [9 & 10]. In [10 &11], it is proposed that (2m-1) single input change test vectors can be inserted between two adjustment vectors generated by LFSR, m is length of LFSR. In [5], it is proposed that 2m single input changing data is inserted between two neighboring seeds. The average and peak power are reduced by using the above techniques. Still, the switching activities will be large when clock frequency is high.

III. ANALYSIS OF POWER FOR TESTING:

In CMOS technology, the power dissipation can be classified into static and dynamic. Static power dissipation is mainly due to the leakage current. Dynamic power dissipation is due to switching transient current and charging and discharging of load capacitances. Some significant parameters for evaluating the power consumption of CMOS circuits are discussed below.

$$E_i = \frac{1}{2} V_{dd}^2 C_0 F_i S_i \qquad (1)$$

Where Vdd is the supply voltage, Co is the load capacitance. The product of Fi and Si is called weighted switching activity of internal circuit node i.

$$P_i = \frac{1}{2} V_{dd}^2 C_0 F_i S_i f$$
 (2)

The average power consumption of internal circuit node i can be given by,

f is the clock frequency .The summary of Pi of all the nodes is named as average power consumption. It can be observed from(1) and (2) that the energy and power consumption mainly depends on the switching activities, clock frequency and supply voltage. This paper reduces the switching activity at the inputs of the circuit under test (CUT) as low as possible.

A. BIST approach:

Figure 1. BIST Basic block diagram.

BIST is a design for testability (DFT) technique in which testing is carried out using built –in hardware features. Since testing is built into the hardware, it is faster and efficient. TheBIST architecture shown in fig.1 needs three additional hardware blocks such as a pattern generator, a response analyzer and a test controller to a digital circuit. For pattern generators, we can use either a ROM with stored patterns, or a counter or a linear feedback shift register (LFSR).A response analyzer is a compactor with stored responses or an LFSR used as a signature analyzer. A controller provides a control signal to activate all the blocks.

A Peer Reviewed Open Access International Journal

BIST has some major drawbacks where architecture is based on the linear feedback shift register[LFSR].The circuit introduces more switching activities in the circuit under test (CUT)during test than that during normal operation[5].It causes excessive power dissipation and results in delay penalty into the design[6].

B.Classification of test strategies:

1.Weighted Pseudorandom:

Testing: In weightedpseudorandom testing, pseudorandom patterns are applied with certain os and 1s distribution in order to handle the random pattern resistant fault undetectable by the pseudorandom testing. Thus, the test length can be effectively shortened.

2.Pseudo exhaustive Testing:

Pseudo exhaustive testingdivides the CUT into several smaller sub circuits and tests each of them exhaustively. All detectable flaws within the sub circuits can be detected. However, such a method involves extra design effort to partition the circuits and deliver the test patterns and test responses. BIST is a set of structuredtest techniques for combinational and sequential logic, memories, multipliers, and other embedded logic blocks. BIST is the commonly used design technique for self testing of circuits.

3.Pseudorandom Testing:

Pseudorandom testing involves the application of certain length of test patterns that have certain randomness property. The test patterns are sequenced in a deterministic order. The test length and the contents of the patterns are used to impart fault coverage.

4.Exhaustive Testing:

Exhaustive testing involves theapplication of all possible input combinations to the circuit under test (CUT). It guarantees that all detectable faults that divert from the sequential behavior will be detected. The strategies are often applied to complex and well isolated small modules such as PLAs.

5.Stored Patterns:

Stored-pattern approach tracks the pre-generated test patterns to achieve certain test goals. It is used to enhance system level testing such as the power-on self test of a computer and microprocessor functional testing using micro programs.

IV. DESIGN OF MULTIPLIER:

Multipliers are widely used in DSP operations such as convolution for filtering, correlation and filter banks for multi rate signal processing. Without multipliers, no computations can be done in DSP applications. For that reason, multipliers are chosen for testing in our proposed design. Braun array multiplier is selected among various multipliers as it followssimple conventional method. Also, pipelined Braun array multiplier is selected as it is faster in speed than non-pipelined multiplier. To avoid carry propagation delay at every stage, the carry bits are propagated to the next stage. Finally at the last stage, ripple carry adder is used to get the product term of p4 to p7.

V. PROPOSED METHOD:

Because of simplicity of the circuit and less area occupation, linear feedback shift register [LFSR] is used at the maximum for generating test patterns. In this paper, we proposed a novel architecture which generates the test patterns with reduced switching activities. LP-TPG structure consists of modified low power linear feedback shift register (LP-LFSR), m-bit counter, gray counter, NOR-gate structure and XOR-array. The m-bit counter is initialized with Zeros and which generates 2m test patterns in sequence. The m-bit counter and gray code generator are controlled by common clock signal [CLK]. The output of m-bit counter is applied as input to gray code generator and NOR-gate structure. When all the bits of counter output are Zero, the NORgate output is one. Only when the NOR-gate output is one, the clock signal is applied to activate the LP-LFSR which generates the next seed. The seed generated from LP-LFSR is Exclusive-ORed with the data generated from gray code generator. The patterns generated from the Exclusive-OR array are the final output patterns.

A Peer Reviewed Open Access International Journal

Figure 3. Low Power Test Pattern Generator

VI. ALGORITHM FOR LP-LFSR:

The algorithm for LP-LFSR is given below:

Consider a N-bit external (or) internal linear feedbackshift register [n>2]. For example n-bit, external LFSR is taken, which consists of n-flip flops in series. A common clocksignal is applied as control signal for all flip flop. For exchanging the output of adjacent flip flops, multiplexers are used.

The output of the last stage flip

flop is taken as a select line. If the last stage flip flop output is one, any one of the flip flop output is swapped with its adjacent flip flop output value. If the last stage flip flop output is Zero, no swapping will be carried out. The output from other flip flops will be taken as such. If the LFSR is moved through a complete cycle of 2n states then the transitions expected are 2n-1. When the output of the adjacent flip flops are swapped, the expected transitions are 2n-2.

Thus the transitions produced are reduced by 50% compared with original LFSR. The transition reduction is concentrated mainly on any one of the multiplexer output. Gray converter modifies the counter output such that two successive values of its output are differing in only one bit. Gray converters can be implemented as shown below.

g[n-1]= k [n-1] g[n-2]= k [n-1] XOR k[n-2]

g[2]= k [2] XOR k[3]

g[1]= k[1] XOR k[2] g[0]= k[0] XOR k[1]

In [12] it is stated that that the conventional LFSR's outputs cannot be taken as the seed directly, because some seeds may share the same vectors. Thus the LP-LFSR should ensure that any two of the signal input changing sequences do not share the same vectors or share as few vectors as possible. Test patterns generated from the proposed structure are implemented as following equations.

x[0] = f[0] XOR g[0] x[1] = f[1] XOR g[1] x[2] = f[2] XOR g[2] x[3] = f[3] XOR g[3] x[4] = f[4] XOR g[4] x[5] = f[5] XOR g[5]

X [n-1] = f[n-1] XOR g[n-1]

Thus the XOR result of the sequences is single input changing sequence. In turn reduces the switching activity and so power dissipation is very less compared with conventional LFSR. Fig. 3 is an example of counter and its respective gray value. It is shown that all values of g[2:0] are single input changing patterns. Patterns:

K [2:0] g [2:0] K0= 000 g0= 000 K1= 001 g1= 001 K2= 010g2= 011 K3= 011 g3= 010 K4= 100 g4= 110 K5= 101 g5= 111 K6= 110 g6= 101 K7= 111 g7= 100

VII. IMPLEMENTATION DETAILS:

To validate the effectiveness of the proposed method, we select Test pattern generator (TPG) using conventional linear feedback shift register [LFSR] for comparison with proposed system. Table 1 shows the power consumption comparison between TPG using conventional LFSR and the proposed LP-LFSR after applying the generated patterns to the 4x4 and 8x8 Braun array multipliers respectively. The generated test patterns from above two techniques are used to test the synchronous pipelined 4x4 and 8x8 Braun array multipliers.

A Peer Reviewed Open Access International Journal

TABLE –1 COMPARISON OF POWER CON-SUMPTION:

Size	LFSR with 4x4	LP- LFSR with 4x4	LFSR with 8x8	LP- LFSR with 8x8
Logic Elements	86	90	176	178
Registers	81	81	173	173
Frequency (MHz)	132.33	132.87	393.55	401.28
Total power dissipation (mw)	147.72	140.42	328.81	320.32
Dynamic power dissipation (mw)	18.45	11.34	50.68	38.32
Static power dissipation (mw)	80.03	80.01	80.65	80.63

Simulation and analysis were carried out with QUAR-TUS-II 9.1 version. Power play power analyzer tool was used for the Power analysis. The average test power consumption was compared with the test pattern generator (TPG) using conventional LFSR.

In table I, the average test power consumption for the TPG using conventional LFSR and the average test power consumption for the proposed LP-LFSR are presented. The test patterns generated from this LP-LFSR is tested with 4x4 and 8x8 Braun array synchronous pipelined multipliers.

The total number of switching transitions in the design is shown in table 2. Switching activities for multiple input changing sequence will be more than the single input changing sequence, thus the proposed method provides better test power reduction than any other low power methods.

TABLE - 2 TOTAL NUMBER OF SWITCHINGTRANSITIONS:

Types of Multiplier	Total no. of switching transitions	
TPG using LFSR with 4x4 Braun array multiplier	41956	
TPG using LP-LFSR with 4x4 Braun array multiplier (proposed)	41798	
TPG using LFSR with 8x8 Braun array multiplier	126496	
TPG using LP-LFSR with 8x8 Braun array Multiplier(proposed)	121077	

From the implementation results, it is verified that the proposed method gives better power reduction compared to the exiting method. The above LP-LFSR is also tested with In-System memory content editor using Mega wizard plug-in manager available with QUARTUS-II. The same was also verified with NIOS II processor.

VIII. CONCLUSION:

The seed generated from (LP-LFSR) is Ex-ORed with the single input changing sequences generated from gray code generator, which effectively reduces the switching activities among the test patterns. A low power test pattern generator has been proposed which consists of a modified low power linear feedback shift register (LP-LFSR). Thus the proposed method significantly reduces the power consumption during testing mode with minimum number of switching activities using LP-LFSR in place of conventional LFSR in the circuit used for test pattern generator. From the implementation results, it is verified that the proposed method gives better power reduction compared to the exiting method.

REFERENCES:

[1] BalwinderSingh, Arunkhosla and SukhleenBindra "Power Optimization of linear feedback shift register(LFSR) for low power BIST", 2009 IEEE international Advance computing conference(IACC 2009) Patiala,India 6-7 March 2009.

[2] Y.Zorian, "A Distributed BIST control scheme for complex VLSI devices," Proc. VLSI Test Symp., P.4-9,1993.

A Peer Reviewed Open Access International Journal

[3] P.Girard," survey of low-power testing of VLSI circuits," IEEE design and test of computers, Vol. 19,no.3,PP 80-90,May-June 2002.

[4] MechrdadNourani,"Low-transition test pattern generation for BIST- Based Applications", IEEE TRANS-ACTIONS ON COMPUTERS, Vol 57,No.3 ,March 2008.

[5] BOYE and Tian-Wang Li," A novel BIST scheme for low power testing," 2010 IEEE.

[6] R.S.Katti,X.Y.Ruan , and H.Khattri," Multiple-Output Low-Power Linear feedback shift register design," IEEETrans.circuitsSyst.I,Vol.53,No.7,pp-1487-1495,July 2006.

[7]P.Girard, L.Guiller, C.Landrault, S.Pravossoudovitc h,andH.J.Wunderlich," A modified clock scheme for a low power BIST test pattern generator," 19th IEEE proc. VLSI test Symp.,CA,pp-306-311,Apr-May 2001.

[8] S.Wang and S.K.Gupta," DS-LFSR: a BIST TPG for low switching activity," IEEE Trans.computer-aided design of Integrated circuits and systems, Vol. 21,No.7,pp.842-851,July 2002. [9] I.Voyiatzis, A.paschalis, D.Nikolos and C.Halatsis, "An efficient built-in self test method for robust path delay fault testing," Journal of electronic testing: Theory and applications Vol.8, No.2, pp-219-222, Apr-1996.

[10]S.C.Lei,J.Guo,L.Cao,Z.Ye.Liu,and X.M.Wang,"SACS R: A low power BIST method for sequential circuits,: Academic Journal of XI'AN aotong university(EnglishE dition),Vol.20,no.3,pp.155-159,2008.

[11] R.H.He,X.W.Li and Y.Z.Gong," A scheme for low power BIST test pattern generator," micro electronics & computer,no.2,pp.36-39 Feb.2003.

[12] S.C. Lei, X.Y.Hou ,Z.B.Shao and F.Liang," A class of SIC circuits: theory and application in BIST design," IEEE trans. circuits syst. II, vol.55, no.2, pp.161-165, Feb.2008.