

 Page 346

Design & Implementation of Efficient Adders

Ch Sravan Kumar

Pg Scholar(Vlsi&Es)

Dept Of Ece

Vidya Bharathi Institute Of

Technology

Janagaon, Warangal, Telangana

B Pragathi(M Tech,(Ph.D))

Associate Professor

Dept Of Ece

Vidya Bharathi Institute Of

Technology

Janagaon, Warangal, Telangana

B Kranthi Kumar

Associate Professor

Dept Of Ece

Vidya Bharathi Institute Of

Technology

Janagaon, Warangal, Telangana

Abstract

In Very Large Scale Integration (VLSI) designs,

Parallel prefix adders (PPA) have the better delay

performance. This paper investigates four types of

PPA’s (Kogge Stone Adder (KSA), Spanning Tree

Adder (STA), Brent Kung Adder (BKA) and

Sparse Kogge Stone Adder (SKA)). Additionally

Ripple Carry Adder (RCA), Carry Lookahead

Adder (CLA) and Carry Skip Adder (CSA) are also

investigated. These adders are implemented in

verilog Hardware Description Language (HDL)

using Xilinx Integrated Software Environment

(ISE) 14.2 Design Suite. These designs are

implemented in Xilinx Spartan 3 Field

Programmable Gate Arrays (FPGA) and delays are

measured,all these adder’s delay, power and area

are investigated and compared finally.

Key words —parallel prefix adders; carry tree

adders; FPGA; logic analyzer; delay; power.

I. INTRODUCTION

The binary addition is the basic arithmetic operation in

digital circuits and it became essential in most of the

digital systems including Arithmetic and Logic Unit

(ALU), microprocessors and Digital Signal Processing

(DSP). At present, the research continues on increasing

the adder’s delay performance. In many practical

applications like mobile and telecommunications, the

Speed and power performance improved in FPGAs is

better than microprocessor and DSP’s based solutions.

Additionally, power is also an important aspect in

growing trend of mobile electronics, which makes

large-scale use of DSP functions. Because of the

Programmability, structure of configurable logic

blocks (CLB) and programming interconnects in

FPGAs, Parallel prefix adders have better

performance.

The delays of the adders are discussed [1]. In this

paper, above mentioned PPA’s and RCA and CSA are

implemented and characterized on a Xilinx vertex 5

FPGA. Finally, delay, power and area for the designed

adders are presented and compared.

II. DRAWBACKS OF RIPPLE CARRY AND

CARRY LOOKAHEAD ADDER

In figure1, the first sum bit should wait until input

carry is given, the second sum bit should wait until

previous carry is propagated and so on. Finally the

output sum should wait until all previous carries are

generated. So it results in delay.

Fig. 1-4 bit ripple carry adder

In order to reduce the delay in RCA (or) to propagate

the carry in advance, we go for carry look ahead adder

.Basically this adder works on two operations called

propagate and generate The propagate and generate

equations are given by.

 Page 347

For 4 bit CLA, the propagated carry equations are

given as

Equations (3),(4),(5) and (6) are observed that, the

carry complexity increases by increasing the adder bit

width. So designing higher bit CLA becomes

complexity. In this way, for the higher bit of CLA’s,

the carry complexity increases by increasing the width

of the adder. So results in bounded fan-in rather than

unbounded fan-in, when designing wide width adders.

In order to compute the carries in advance without

delay and complexity, there is a concept called Parallel

prefix approach.

III. DIFFERENCE BETWEEN PARALLEL-PRE

FIX ADDERS AND OTHERS

The PPA’s pre-computes generate and propagate

signals are presented in [2]. Using the fundamental

carry operator (fco), these computed signals are

combined in [3].The fundamental carry operator is

denoted by the symbol “ο ”,

For example, 4 bit CLA carry equation is given by

For example, 4 bit PPA carry equation is given by

Equations (8) and (9) are observed that, the carry look

ahead adder takes 3 steps to generate the carry, but the

bit PPA takes 2 steps to generate the carry.

IV. PARALLEL-PREFIX ADDER STRUCTURE

Parallel-prefix structures are found to be common in

high performance adders because of the delay is

logarithmically proportional to the adder width [2].

PPA’s basically consists of 3 stages

• Pre computation

• Prefix stage

• Final computation

The Parallel-Prefix Structure is shown in figure 2.

A. Pre computation

In pre computation stage, propagates and generates are

computed for the given inputs using the given

equations (1) and (2).

B. Prefix stage

In the prefix stage, group generate/propagate signals

are computed at each bit using the given equations.

The black cell (BC) generates the ordered pair in

equation (7), the gray cell (GC) generates only left

signal, following [2].

(BC) generates the ordered pair in equation (7), the

gray cell (GC) generates only left signal, following [2].

More practically, the equations (10) and (11) can be

expressed using a symbol “o “denoted by Brent and

 Page 348

Kung. Its function is exactly the same as that of a

black cell i.e.

The "o" operation will help make the rules of building

prefix structures.

C. Final computation

In the final computation, the sum and carryout are the

final output.

Where “-1” is the position of carry-input. The

generate/propagate signals can be grouped in different

fashion to get the same correct carries. Based on

different ways of grouping the generate/propagate

signals, different prefix architectures can be created.

Figure 3 shows the definitions of cells that are used in

prefix structures, including BC and GC. For analysis

of various parallel prefix structures, see [2], [3] &[4].

The 16 bit SKA uses black cells and gray cells as well

as full adder blocks too. This adder computes the

carries using the BC’s and GC’s and terminates with 4

bit RCA’s. Totally it uses 16 full adders. The 16 bit

SKA is shown in figure 4. In this adder, first the input

bits (a, b) are converted as propagate and generate (p,

g). Then propagate and generate terms are given to

BC’s and GC’s. The carries are propagated in advance

using these cells. Later these are given to full adder

blocks. Another PPA is known as STA is also tested

[6]. Like the SKA, this adder also terminates with a

RCA. It also uses the BC’s and GC’s and full adder

blocks like SKA’s but the difference is the

interconnection between them [7].The 16 bit STA is

shown in the below figure 5.

Fig. 4.16- bit sparse kogge-Stone adder

Fig. 5.16-bit spanning tree adder

KSA is another of prefix trees that use the fewest logic

levels. A 16-bit KSA is shown in Figure 6. The 16 bit

kogge stone adder uses BC’s and GC’s and it won’t

use full adders. The 16 bit KSA uses 36 BC’s and 15

GC’s. And this adder totally operates on generate and

propagate blocks. So the delay is less when compared

to the previous SKA and STA. The 16 bit KSA is

shown in figure 6.In this KSA, there are no full adder

blocks like SKA and STA [5] & [6]. Another carry tree

known as BKA which also uses BC’s and GC’s but

less than the KSA. So it takes less area to implement

 Page 349

than KSA. The 16 bit BKA uses 14 BC’s and 11 GC’s

but kogge stone uses 36 BC’s and 15 GC’s. So BKA

has less architecture and occupies less area than KSA.

The 16 bit BKA is shown in the below figure 7.

Fig. 6. 16-bit kogge stone adder

BKA occupies less area than the other 3 adders called

SKA, KSA, STA. This adder uses limited number of

propagate and generate cells than the other 3 adders. It

takes less area to implement than the KSA and has less

wiring congestion. The

operation of the 16 bit brent kung adder is given below

[3]. This adder uses less BC’s and GC’s than kogge

stone adder and has the better delay performance

which is observed in agilent 1692A logic analyzer.

These adders are implemented in verilog HDL in

Xilinx 13.2 ISE design suite and then verified using

Xilinx virtex 5 FPGA through chip scope analyzer [7],

[8] and [9]. And these were tested using Agilent

1692A logic analyzer. This allows to measure the

adder delays directly. The Agilent 1692A logic

analyzer is integrated to PC(Personal Computer)

through Xilinx virtex 5 FPGA [10]. The test setup is

depicted in the figure 10.

V. DISCUSSION OF RESULTS

The delays observed for adder designs from synthesis

reports in Xilinx ISE 14.2 synthesis reports are shown

in Figure11.

Fig.8. Sparse Tree Adder wave form ,area & delay

Fig.9. Brent Kung Adder wave form,area & delay.

 Page 350

Fig.10.Spanning Tree Adder wave form, area & delay.

 Fig.11.Kogge Stone Adder wave form, area & delay

 Fig.12.Sparse-Kogge Stone Adder wave form, area &

delay.

VI. CONCLUSION

From the study of analysis done on area and power, we

have concluded that the efficiency is improved by 5.77

% in ours delay for RCA, The area of the adder

designs is measured in terms of look up tables (LUT)

and input output blocks (IOB) taken for Xilinx Spartan

6 FPGA is plotted in the figure. As per reference [1],

ISE software doesn’t give exact delay of the adders

because it is not able to analyze the critical path over

the adder [1]. From the figure 11, the CSA has more

delay when compared to other adders. Out of all

adders, RCA has less delay. SKA adder and BKA has

about the same delay, where as KSA and STA has

same delay. According to the synthesis reports, out of

four parallel prefix adders, Sparse - KOGGE STONE

adder has better delay.

REFERENCES

[1] David H.K.Hoe, Chris Martinez and Sri Jyothsna

Vundavalli”, Design and Characterization of Parallel

Prefix Adders using FPGAs”, 2011 IEEE 43rd

Southeastern Symposium in pp. 168-172, 2011.

 Page 351

[2] N. H. E. Weste and D. Harris, CMOS VLSI

Design, 4th edition, Pearson–Addison-Wesley, 2011.

[3] R. P. Brent and H. T. Kung, “A regular layout for

parallel adders,” IEEE Trans. Comput., vol. C-31, pp.

260-264, 1982.

 [4] D. Harris, “A Taxonomy of Parallel Prefix

Networks,” in Proc. 37th Asilomar Conf. Signals

Systems and Computers, pp. 2213–7, 2003.

[5] P. M. Kogge and H. S. Stone, “A Parallel

Algorithm for the Efficient Solution of a General Class

of Recurrence Equations,” IEEE Trans. on Computers,

Vol. C-22, No 8, August 1973.

[6] D. Gizopoulos, M. Psarakis, A. Paschalis, and Y.

Zorian, “Easily Testable Cellular Carry Lookahead

Adders,” Journal of Electronic Testing: Theory and

Applications 19, 285-298, 2003.

[7] T. Lynch and E. E. Swartzlander, “A Spanning

Tree Carry Lookahead Adder,” IEEE Trans. on

Computers, vol. 41, no. 8, pp. 931-939, Aug. 1992.

[8] Beaumont-Smith, A, Cheng-Chew Lim ,”Parallel

prefix adder design”, Computer Arithmetic, 2001.

Proceedings. 15th IEEE Symposium,pp. 218 –

225,2001.M. Young, The Technical Writer's

Handbook. Mill Valley, CA: University Science, 1989

[9] K. Vitoroulis and A. J. Al-Khalili, “Performance of

Parallel Prefix Adders Implemented with FPGA

technology,” IEEE Northeast Workshop on Circuits

and Systems, pp. 498-501, Aug. 2007. 172.

[10] S. Xing and W. W. H. Yu, “FPGA Adders:

Performance Evaluation and Optimal Design,” IEEE

Design & Test of Computers, vol. 15, no. 1, pp.24-29,

Jan. 1998

