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Abstract 

In Very Large Scale Integration (VLSI) designs, 

Parallel prefix adders (PPA) have the better delay 

performance. This paper investigates four types of 

PPA’s (Kogge Stone Adder (KSA), Spanning Tree 

Adder (STA), Brent Kung Adder (BKA) and 

Sparse Kogge Stone Adder (SKA)). Additionally 

Ripple Carry Adder (RCA), Carry Lookahead 

Adder (CLA) and Carry Skip Adder (CSA) are also 

investigated. These adders are implemented in 

verilog Hardware Description Language (HDL) 

using Xilinx Integrated Software Environment 

(ISE) 14.2 Design Suite. These designs are 

implemented in Xilinx Spartan 3 Field 

Programmable Gate Arrays (FPGA) and delays are 

measured,all these adder’s delay, power and area 

are investigated and compared finally. 

 

Key words —parallel prefix adders; carry tree 

adders; FPGA; logic analyzer; delay; power. 

 

I. INTRODUCTION 

The binary addition is the basic arithmetic operation in 

digital circuits and it became essential in most of the 

digital systems including Arithmetic and Logic Unit 

(ALU), microprocessors and Digital Signal Processing 

(DSP). At present, the research continues on increasing 

the adder’s delay performance. In many practical 

applications like mobile and telecommunications, the 

Speed and power performance improved in FPGAs is 

better than microprocessor and DSP’s based solutions. 

Additionally, power is also an important aspect in 

growing trend of mobile electronics, which makes 

large-scale use of DSP functions. Because of the 

Programmability, structure of configurable logic 

blocks (CLB) and programming interconnects in 

FPGAs, Parallel prefix adders have better 

performance. 

 

The delays of the adders are discussed [1]. In this 

paper, above mentioned PPA’s and RCA and CSA are 

implemented and characterized on a Xilinx vertex 5 

FPGA. Finally, delay, power and area for the designed 

adders are presented and compared. 

  

II. DRAWBACKS OF RIPPLE CARRY AND 

CARRY LOOKAHEAD ADDER 

In figure1, the first sum bit should wait until input 

carry is given, the second sum bit should wait until 

previous carry is propagated and so on. Finally the  

 

 

output sum should wait until all previous carries are 

generated. So it results in delay. 

 

 
Fig. 1-4 bit ripple carry adder 

 

In order to reduce the delay in RCA (or) to propagate 

the carry in advance, we go for carry look ahead adder 

.Basically this adder works on two operations called 

propagate and generate The propagate and generate 

equations are given by. 
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For 4 bit CLA, the propagated carry equations are 

given as 

 

 
 

Equations (3),(4),(5) and (6) are observed that, the 

carry complexity increases by increasing the adder bit 

width. So designing higher bit CLA becomes 

complexity. In this way, for the higher bit of CLA’s, 

the carry complexity increases by increasing the width 

of the adder. So results in bounded fan-in rather than 

unbounded fan-in, when designing wide width adders. 

In order to compute the carries in advance without 

delay and complexity, there is a concept called Parallel 

prefix approach. 

 

III. DIFFERENCE BETWEEN PARALLEL-PRE 

FIX ADDERS AND OTHERS 

The PPA’s pre-computes generate and propagate 

signals are presented in [2]. Using the fundamental 

carry operator (fco), these computed signals are 

combined in [3].The fundamental carry operator is 

denoted by the symbol “ο ”, 

 

 
 

For example, 4 bit CLA carry equation is given by 

 

 
 

For example, 4 bit PPA carry equation is given by 

 

                  

 
 

Equations (8) and (9) are observed that, the carry look 

ahead adder takes 3 steps to generate the carry, but the 

bit PPA takes 2 steps to generate the carry. 

 

IV. PARALLEL-PREFIX ADDER STRUCTURE 

Parallel-prefix structures are found to be common in 

high performance adders because of the delay is 

logarithmically proportional to the adder width [2]. 

PPA’s basically consists of 3 stages 

 

• Pre computation 

• Prefix stage 

• Final computation 

The Parallel-Prefix Structure is shown in figure 2. 

 

 
 

A. Pre computation 

In pre computation stage, propagates and generates are 

computed for the given inputs using the given 

equations (1) and (2). 

 

B. Prefix stage 

In the prefix stage, group generate/propagate signals 

are computed at each bit using the given equations. 

The black cell (BC) generates the ordered pair in 

equation (7), the gray cell (GC) generates only left 

signal, following [2]. 

 

(BC) generates the ordered pair in equation (7), the 

gray cell (GC) generates only left signal, following [2]. 

 

 
 

More practically, the equations (10) and (11) can be 

expressed using a symbol “o “denoted by Brent and 
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Kung. Its function is exactly the same as that of a 

black cell i.e. 

 

 
 

 
 

The "o" operation will help make the rules of building 

prefix structures. 

 

C. Final computation 

In the final computation, the sum and carryout are the 

final output. 

 

 
 

Where “-1” is the position of carry-input. The 

generate/propagate signals can be grouped in different 

fashion to get the same correct carries. Based on 

different ways of grouping the generate/propagate 

signals, different prefix architectures can be created. 

Figure 3 shows the definitions of cells that are used in 

prefix structures, including BC and GC. For analysis 

of various parallel prefix structures, see [2], [3] &[4]. 

The 16 bit SKA uses black cells and gray cells as well 

as full adder blocks too. This adder computes the 

carries using the BC’s and GC’s and terminates with 4 

bit RCA’s. Totally it uses 16 full adders. The 16 bit 

SKA is shown in figure 4. In this adder, first the input 

bits (a, b) are converted as propagate and generate (p, 

g). Then propagate and generate terms are given to 

BC’s and GC’s. The carries are propagated in advance 

using these cells. Later these are given to full adder 

blocks. Another PPA is known as STA is also tested 

[6]. Like the SKA, this adder also terminates with a 

RCA. It also uses the BC’s and GC’s and full adder 

blocks like SKA’s but the difference is the 

interconnection between them [7].The 16 bit STA is 

shown in the below figure 5. 

 

 
Fig. 4.16- bit sparse kogge-Stone adder 

 

 
Fig. 5.16-bit spanning tree adder 

 

KSA is another of prefix trees that use the fewest logic 

levels. A 16-bit KSA is shown in Figure 6. The 16 bit 

kogge stone adder uses BC’s and GC’s and it won’t 

use full adders. The 16 bit KSA uses 36 BC’s and 15 

GC’s. And this adder totally operates on generate and 

propagate blocks. So the delay is less when compared 

to the previous SKA and STA. The 16 bit KSA is 

shown in figure 6.In this KSA, there are no full adder 

blocks like SKA and STA [5] & [6]. Another carry tree 

known as BKA which also uses BC’s and GC’s but 

less than the KSA. So it takes less area to implement 
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than KSA. The 16 bit BKA uses 14 BC’s and 11 GC’s 

but kogge stone uses 36 BC’s and 15 GC’s. So BKA 

has less architecture and occupies less area than KSA. 

The 16 bit BKA is shown in the below figure 7. 

 

 
Fig. 6. 16-bit kogge stone adder 

 
 

BKA occupies less area than the other 3 adders called 

SKA, KSA, STA. This adder uses limited number of 

propagate and generate cells than the other 3 adders. It 

takes less area to implement than the KSA and has less 

wiring congestion. The 

 

operation of the 16 bit brent kung adder is given below 

[3]. This adder uses less BC’s and GC’s than kogge 

stone adder and has the better delay performance 

which is observed in agilent 1692A logic analyzer. 

These adders are implemented in verilog HDL in 

Xilinx 13.2 ISE design suite and then verified using 

Xilinx virtex 5 FPGA through chip scope analyzer [7], 

[8] and [9]. And these were tested using Agilent 

1692A logic analyzer. This allows to measure the 

adder delays directly. The Agilent 1692A logic 

analyzer is integrated to PC(Personal Computer) 

through Xilinx virtex 5 FPGA [10]. The test setup is 

depicted in the figure 10. 

 

V. DISCUSSION OF RESULTS 

The delays observed for adder designs from synthesis 

reports in Xilinx ISE 14.2 synthesis reports are shown 

in Figure11. 

 

 

 
 

 

 
 

 
 

Fig.8. Sparse Tree Adder wave form ,area & delay 

 

 
 

 
 

 
 

Fig.9.  Brent Kung Adder wave form,area & delay. 
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Fig.10.Spanning Tree Adder wave form, area & delay. 

 

 

 
 

 

 
 

 
 

   Fig.11.Kogge Stone Adder wave form, area & delay 

 

 

 
 

 

 

 
 Fig.12.Sparse-Kogge Stone Adder wave form, area & 

delay. 

VI. CONCLUSION 

From the study of analysis done on area and power, we 

have concluded that the efficiency is improved by 5.77 

% in ours delay for RCA, The area of the adder 

designs is measured in terms of look up tables (LUT) 

and input output blocks (IOB) taken for Xilinx Spartan 

6 FPGA is plotted in the figure. As per reference [1], 

ISE software doesn’t give exact delay of the adders 

because it is not able to analyze the critical path over 

the adder [1]. From the figure 11, the CSA has more 

delay when compared to other adders. Out of all 

adders, RCA has less delay. SKA adder and BKA has 

about the same delay, where as KSA and STA has 

same delay. According to the synthesis reports, out of 

four parallel prefix adders, Sparse - KOGGE STONE 

adder  has better delay. 
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