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ABSTRACT: 

This paper proposes a multi modes AHB on-chip bus 

tracer named AHB multi resolution bus tracer for 

versatile system-on-chip (SoC) debugging and 

monitoring. The bus tracer is capable of capturing the 

bus trace with different resolutions, all with efficient 

built-in compression mechanisms, to meet a diverse 

range of needs. In addition, it allows users to switch 

the trace resolution dynamically so that appropriate 

resolution levels can be applied to different segments 

of the trace. In this work we adopt the well-defined 

interface standard, the Open Core Protocol (OCP), and 

focus on the design of the internal bus architecture. We 

develop an efficient bus architecture to support most 

advanced bus functionalities defined in OCP, including 

different types of transactions using modes. So,here we 

are going to compare the proposed method with the 

existing method in order to prove the proposed method 

is efficient. 

KEYWORDS: 

OCP,SOC,TRACING,RESOLUTI-ON,MODES 

 

INTRODUCTION: 

The On-chip Bus is an important system-on-chip 

(SoC) infrastructure that connects major hardware 

components. Monitoring the on-chip bus signals is 

crucial to the SoC debugging and performance 

analysis/optimization. Unfortunately, such signals are 

difficult to observe since they are deeply embedded in 

a SoC and there are often no sufficient I/O pins to 

access these signals. Therefore, a straightforward 

approach is to embed a bus tracer in SoC to capture the 

bus signal trace and store the trace in an on-chip 

storage such as the trace memory which could then be 

off loaded to outside world (the trace analyzer 

software) for analysis. SOC chip usually contains a 

large number of IP cores that communicate with each 

other through on-chip buses.  

 

As the VLSI process technology continuously 

advances, the frequency and the amount of the data 

communication between IP cores increase 

substantially. As a result, the ability of on-chip buses 

to deal with the large amount of data traffic becomes a 

dominant factor for the overall performance. The 

design of on-chip buses can be divided into two parts: 

bus interface and bus architecture. The bus interface 

involves a set of interface signals and their 

corresponding timing relationship, while the bus 

architecture refers to the internal components of buses 

and the interconnections among the IP cores. The 

widely accepted on-chip bus, AMBA AHB [1], defines 

a set of bus interface to facilitate basic (single) and 

burst read/write transactions. AHB also defines the 

internal bus architecture, which is mainly a shared bus 

composed of multiplexors. The multiplexer-based bus 

architecture works well for a design with a small 

number of  IP cores. When the number of integrated IP 

cores increases, the communication between IP cores 

also increase and it becomes quite frequent that two or 

more master IPs would request data from different 

slaves at the same time. The shared bus architecture 

often cannot provide efficient communication since 

only one bus transaction can be supported at a time.  In 

addition, the bus tracer is capable of tracing signals 

before/after the event triggering, named pre-T/post-T 

tracing, respectively. This feature provides a more 

flexible tracing to focus on the interesting points. 

II. OCP INTERFACE: 

Most of the bus functionalities defined in AXI and 

OCP are quite similar. The most obvious difference 

between them is that divides the AXI address channel 

independent channel write address and read address 

channel such that read and write transactions can be 

processed simultaneously. However, the additional 

area of the channels separately address the 

punishment. Some previous work has examined onchip 

buses of various aspects. The work in [3] and [4] 

develops high-level AMBA bus models with fast 
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simulation speed and high accuracy of the timing.The 

authors in [7] propose an automatic approach to 

generate high-level bus models from a formal channel 

model of OCP. In both of the above work, the authors 

focus on fast and accurate simulation high level, but 

gave no real hardware implementation details. In [9], 

the authors implement the AXI interface on the shared 

bus architecture. Even though it costs less in area, the 

advantage of AXI in communication efficiency are 

limited by the shared bus architecture.In this article we 

present a powerful on-chip bus design with OCP as 

bus interface. We choose OCP because it is open to the 

public and the OCP-IP has some free tools to check 

this Protocol. Our proposed bus architecture is 

characterized lat / partial crossbarbased interconnect 

and realizes most transactions within the meaning of 

OCP, including  

1) some transactions, 

2) burst transactions,  

3) lock transactions,  

4) pipelined transactions, and  

5) out-of - order transactions. 

Moreover, the proposed bus is so flexible that the bus 

architecture can adapt to the system requirements. 

 

III. ON CHIP BUS FUNCTIONALITIES 

 

The various bus functionalities includes Burst,  lock,  

pipelined, and out-of-order transactions.  

 

A. Burst transactions:  
 

The burst transactions allow the grouping of 

multiple transactions that have a certain address 

relationship, and can be classified into multi-

request burst and single-request burst according to 

how many times the addresses are issued. Fig.1 

shows the two types of burst read transactions. The 

multi-request burst as defined in AHB is illustrated 

in Fig.1(a) where the address information must be 

issued for each command of a burst transaction 

(e.g., A11, A12, A13 and A14).This may cause 

some unnecessary overhead. In the more advanced 

bus architecture, the single-request burst 

transaction is supported. As shown in Fig.1(b), 

which is the burst type defined in AXI, the address 

information is issued only once for each burst 

transaction. In the proposed bus design both burst 

transactions are supported such that IP cores with 

various burst types can use the proposed on-chip 

bus without changing their original burst behavior. 

 
Fig.1 Burst transactions 

 

B. Lock transactions Lock is a protection 

mechanism for masters that have low bus 

priorities. Without this mechanism the 

read/write transactions of masters with lower 

priority would be interrupted whenever a 

higher-priority master issues a request. Lock 

transactions prevent an arbiter from 

performing arbitration and assure that the low 

priority masters can complete its granted 

transaction without being interrupted. 

 

C. Pipelined transactions (outstanding 

transactions) Fig. 2(a) and 2(b) show the 

difference between nonpipelined and pipelined 

(also called outstanding in AXI) read 

transactions. In Fig. 2(a), for a non-pipelined 

transaction a read data must be returned after 

its corresponding address is issued plus a 

period of latency. For example, D21 is sent 

right after A21 is issued plus t. For a pipelined 

transaction as shown in Fig. 2(b), this hard 

link is not required. Thus A21 can be issued 

right after A11 is issued without waiting for 

the return of data requested by A11 (i.e., D11-

D14). 
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Fig. 2 Pipelined transactions. 

 

D. Out-of-order transactions :  The out-of-order 

transactions allow the return order of 

responses to be different from the order of 

their requests. These transactions can 

significantly improve the communication 

efficiency of an SOC system containing IP 

cores with various access latencies as 

illustrated in Fig. 3. In Fig. 3(a) which does 

not allow out-of-order transactions, the 

corresponding responses of A21 and A31 must 

be returned after the response of A11. With the 

support of outof-order transactions as shown 

in Fig. 3(b), the response with shorter access 

latency (D21, D22 and D31) can be returned 

before those with longer latency (D11-D14) 

and thus the transactions can be completed in 

much less cycles. 

 
Fig.3. Out-of-order transactions 

 

IV. ON-CHIP BUS DESIGN 

The architecture of the proposed on-chip bus is 

illustrated in Fig. 4, where an example with two 

masters and two slaves is shown. A crossbar 

architecture is employed such that more than one 

master can communicate with more than one slave 

simultaneously. If not all masters require the accessing 

paths to all slaves, partial crossbar architecture is also 

allowed. 

 

Fig.4 Block diagram of OCP bus architecture 

A. Arbiter: In traditional shared bus architecture, 

resource contention happens whenever more than one 

master requests the bus at the same time. For a 

crossbar or partial crossbar architecture, resource 

contention occurs when more than one master is to 

access the same slave simultaneously. In the proposed 

design each slave IP is associated with an arbiter that 

determines which master can access the slave. 

 

B. Decoder : Since more than one slave exists in the 

system, the decoder decodes the address and decides 

which slave return response to the target master. In 

addition, the proposed decoder also checks whether the 

transaction address is illegal or nonexistent and 

responses with an error message if necessary. 

 

C. Multiplexer: A multiplexer is used to solve the 

problem of resource contention when more than one 

slave returns the responses to the same master. It 

selects the response from the slave that has the highest 

priority. 

 

D.FSM-M & FSM-S:Depending on whether a 

transaction is a read or a write operation, the request 

and response processes are different. For a write 

transaction, the data to be written is sent out together 

with the address of the target slave, and the transaction 

is complete when the target slave accepts the data and 

acknowledges the reception of the data. For a read 

operation, the address of the target slave is first sent 

out and the target slave will issue an accept signal 

when it receives the message. The slave then generates 

the required data and sends it to the bus where the data 

will be properly directed to the master requesting the 

data.  

 

The read transaction finally completes when the master 

accepts the response and issues an acknowledge signal. 

In the proposed bus architecture, we employ two types 

of finite state machines, namely FSM-M and FSM-S to 

control the flow of each transaction. FSM-M acts as a 

master and generates the OCP signals of a master, 

while FSM-S acts as a slave and generates those of a 

slave. These finite state machines are designed in a 

way that burst, pipelined, and out-or-order read/write 

transactions can all be properly controlled. 

 

E. Scheduler 

Out-of-order transactions in either OCP [2] or AXI [1] 

allow the order of the returned responses to be 
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different from the order of the requests. In the OCP 

protocol, each out-oforder transaction is tagged with a 

TagID by a master. For those transactions with the 

same TagID, they must be returned in the same order 

as requested, but for those with different TagID, they 

can be returned in any order. In general, both in order 

and out-of-order transactions are supported in an out-

of-order SOC system. A multiplexer, MUX1, is used 

to solve the problem of resource contention when more 

than one slave returns the responses to the same 

master. It selects the response from the slave that has 

the highest priority. The function of MUX2 will be 

described shortly. The recorder shown in the figure is 

used to keep track of the ID of the target slave and the 

TagID of every out-of-order transaction. Whenever a 

response arrives,the comparator determines whether 

the ordering restriction is violated or not by comparing 

the ID of the target slave and TagID. If no ordering 

restriction is violated, the response is sent forward to 

the priority setter. If the restriction is violated, the 

response is sent backward to one of the inputs of 

MUX2, which is always a preferred input over the 

input from MUX1.  

 

The responses sent forward are given a priority, which 

is different from the slave priority, according to the 

TagID and are stored in the priority queue. For the 

transactions without TagID, which are regarded as in-

order transactions, the priority setter sets the priority to 

0 or the largest value to reflect whether in-order first or 

out-of-order first policy is used. Finally, the responses 

stored in the priority queue are returned to the masters 

from the first priority to the last priority such that the 

objective of “transactions with the same TagID are 

returned in-order, and transactions with different 

TagID can be returned out-of-order” can be achieved. 

To further improve the efficiency of the scheduler, the 

response can be forwarded to the master directly 

without going throughthe priority queue when the 

priority queue is empty. 

 

 
 

FIGURE 5. Block diagram of the scheduler 

 

 

 

V. EXISTING METHOD: 

 

Here, the existing method was about the Resolution 

concept. In this method we are interfacing OCP with 

the Multi- Resolution based AHB Bus. Resolution 

architecture mainly contains Master, arbiters, slave and 

their corresponding responses. This method is a 

continuos process i.e, here  there exists a response 

signal between   master to arbiter, arbiter to slave and 

from slave to arbiter which is a bi-directional response. 

But there is no such a response exists between  slave to 

master.  

 

Operation: Whenever we transmit the data to the 

master it will sends that data to the arbiter based on 

acknowledgement and then arbiter send response first 

to the slave in order to know whether slave is ready to 

take data or not. Slave receives the signal from the 

arbiter and it again resends the response to the arbiter 

whether empty or not.so based on slave’s response  

arbiter will sends the data to slave. But because of lack 

of response signal between the master and slave there 

is no such a response reply’s exist between slave and 

master so that master doesn’t know whether the data 

received or not so master waits for some amount of 

time and it again sends the new data like this it 

continuosly repeats its process without any Break in 

the signal so, because of this type of continuous 

process   whenever we need a particular data from that 

address there will be data loss occurs and delay will 

gets increases and efficiency get decreases.  

 

 
Figure: Block Diagram for Multi-Resolution OCP 
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So, in order to overcome all the above constraints we 

implemented  a new method which is a Modes based 

OCP. 

 

VI. PROPOSED METHOD: 

 

In order to overcome the constraints in existing 

method we implemented Modes AHB Bus using OCP. 

Here, we are interfacing OCP with the Mode based  

architecture.  

 

 

 
Figure: Block Diagram for Multi-Mode OCP 

 

Combining the abstraction levels in the timing 

dimension and the signal dimension, we provide five 

modes in different granularities, as Fig shows. They 

are Mode FC (full signal, cycle level), Mode FT (full 

signal, transaction level), Mode BC (bus state, cycle 

level), Mode BT (bus state, transaction level), and 

Mode MT (master state, transaction level). We will 

discuss the usage of each mode in the following. At 

Mode FC, the tracer traces all bus signals cycle-by-

cycle so that designers can observe the most detailed 

bus activities. This mode is very useful to diagnose the 

cause of error by looking at the detail signals. 

However, since the traced data size of this mode is 

huge, the trace depth is the shortest among the five 

modes. At Mode FT, the tracer traces all signals only 

when their values are changed. In other words, this 

mode traces the untimed data transaction on the bus. 

Comparing to Mode FC, the timing granularity is 

abstracted.  

Another benefit of this mode is that the space can be 

saved without losing meaningful information. Thus, 

the trace depth increases. At Mode BC, the tracer uses 

the BSM, such as NORMAL, IDLE, ERROR, and so 

on, to represent bus transfer activities in cycle accurate 

level. Comparing to Mode FC, although this mode still 

captures the signals cycle-by-cycle, the signal 

granularity is abstracted. Thus, designers can observe 

the bus handshaking states without analyzing the detail 

signals. At Mode BT, the tracer uses bus state to 

represent bus transfer activities in transaction level. 

The traced data is abstracted in both timing level and 

signal level; it is a combination of Mode BC and Mode 

BT. In this mode, designers can easily understand the 

bus transactions without analyzing the signals at cycle 

level.  

 

At Mode MT, the tracer only records the master 

behaviors, such as read, write, or burst transfer. It is 

the highest abstraction level. This feature is very 

suitable for analyzing the master’s transactions. The 

major difference compared with Mode BT is that this 

mode does not record the transfer handshaking 

activities and does not capture signals when the bus 

state is IDLE, WAIT, and BUSY. Thus, designers can 

focus on only the master’s transactions.  

 

VII. RESULTS & DISCUSSION 

 

The proposed design is coded in VERILOG  language 

and simulated using Xilinx ISE tool. The simulated 

waveforms for BC, BT,FC,FT, MT are shown in 

following figures. 

 

 
Fig: rtl schematic 
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Fig: FC_Mode 

 

 
Fig: FT_Mode 

 

 
Fig: BC_Mode 

 

 
Fig: BT_Mode 

 

 
Fig: MT_Mode 

 

 
a) 

 
b) 

Fig: a) & b) Waveforms for MODE-OCP 

 

VIII. AREA & DELAY REPORTS 

The following figures shows the area and delay reports 

for existed and proposed methods 

 

 
 

Fig: exis area 

 

 
Fig delay _exis 
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Fig: proposed area 

 

 
Fig: delay _propose 

 

XI. CONCLUSION: 

In proposed method we implemented OCP Bus using 

Multi resolution modes, so that based on modes the 

system will transfer the data properly from Master to 

Slave. The Real-time Compression and Dynamic 

Multi-Resolution AHB bus tracer in SoC was designed 

successfully and the coding was done in VERILOG.. 

The synthesis was done using Xilinx ISE. The 

Designed Tracer works properly for all the Modes 

such as Mode FC, Mode FT, Mode BC, Mode BT, 

Mode MT . Tracer design is verified for all test cases.  

So based on experimental results the proposed method 

was proved to be very efficient way in data 

communication when compared to that of the existing 

method. 
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