

 Page 21

Design & Implementation of OCP on a On-Chip Bus
K.Mounika

Student,

Department of ECE,

Vidya Bharathi Institute of

Technology.

B.Ajay Kumar Yadidya, M.E

Assistant Professor & Internal

Guide, Department of ECE,

Vidya Bharathi Institue of

Technology.

B.Pragathi, Ph.D

Assistant Professor & HOD,

Department of ECE,

Vidya Bharathi Institue of

Technology.

ABSTRACT:

This paper proposes a multi modes AHB on-chip bus

tracer named AHB multi resolution bus tracer for

versatile system-on-chip (SoC) debugging and

monitoring. The bus tracer is capable of capturing the

bus trace with different resolutions, all with efficient

built-in compression mechanisms, to meet a diverse

range of needs. In addition, it allows users to switch

the trace resolution dynamically so that appropriate

resolution levels can be applied to different segments

of the trace. In this work we adopt the well-defined

interface standard, the Open Core Protocol (OCP), and

focus on the design of the internal bus architecture. We

develop an efficient bus architecture to support most

advanced bus functionalities defined in OCP, including

different types of transactions using modes. So,here we

are going to compare the proposed method with the

existing method in order to prove the proposed method

is efficient.

KEYWORDS:

OCP,SOC,TRACING,RESOLUTI-ON,MODES

INTRODUCTION:

The On-chip Bus is an important system-on-chip

(SoC) infrastructure that connects major hardware

components. Monitoring the on-chip bus signals is

crucial to the SoC debugging and performance

analysis/optimization. Unfortunately, such signals are

difficult to observe since they are deeply embedded in

a SoC and there are often no sufficient I/O pins to

access these signals. Therefore, a straightforward

approach is to embed a bus tracer in SoC to capture the

bus signal trace and store the trace in an on-chip

storage such as the trace memory which could then be

off loaded to outside world (the trace analyzer

software) for analysis. SOC chip usually contains a

large number of IP cores that communicate with each

other through on-chip buses.

As the VLSI process technology continuously

advances, the frequency and the amount of the data

communication between IP cores increase

substantially. As a result, the ability of on-chip buses

to deal with the large amount of data traffic becomes a

dominant factor for the overall performance. The

design of on-chip buses can be divided into two parts:

bus interface and bus architecture. The bus interface

involves a set of interface signals and their

corresponding timing relationship, while the bus

architecture refers to the internal components of buses

and the interconnections among the IP cores. The

widely accepted on-chip bus, AMBA AHB [1], defines

a set of bus interface to facilitate basic (single) and

burst read/write transactions. AHB also defines the

internal bus architecture, which is mainly a shared bus

composed of multiplexors. The multiplexer-based bus

architecture works well for a design with a small

number of IP cores. When the number of integrated IP

cores increases, the communication between IP cores

also increase and it becomes quite frequent that two or

more master IPs would request data from different

slaves at the same time. The shared bus architecture

often cannot provide efficient communication since

only one bus transaction can be supported at a time. In

addition, the bus tracer is capable of tracing signals

before/after the event triggering, named pre-T/post-T

tracing, respectively. This feature provides a more

flexible tracing to focus on the interesting points.

II. OCP INTERFACE:

Most of the bus functionalities defined in AXI and

OCP are quite similar. The most obvious difference

between them is that divides the AXI address channel

independent channel write address and read address

channel such that read and write transactions can be

processed simultaneously. However, the additional

area of the channels separately address the

punishment. Some previous work has examined onchip

buses of various aspects. The work in [3] and [4]

develops high-level AMBA bus models with fast

 Page 22

simulation speed and high accuracy of the timing.The

authors in [7] propose an automatic approach to

generate high-level bus models from a formal channel

model of OCP. In both of the above work, the authors

focus on fast and accurate simulation high level, but

gave no real hardware implementation details. In [9],

the authors implement the AXI interface on the shared

bus architecture. Even though it costs less in area, the

advantage of AXI in communication efficiency are

limited by the shared bus architecture.In this article we

present a powerful on-chip bus design with OCP as

bus interface. We choose OCP because it is open to the

public and the OCP-IP has some free tools to check

this Protocol. Our proposed bus architecture is

characterized lat / partial crossbarbased interconnect

and realizes most transactions within the meaning of

OCP, including

1) some transactions,

2) burst transactions,

3) lock transactions,

4) pipelined transactions, and

5) out-of - order transactions.

Moreover, the proposed bus is so flexible that the bus

architecture can adapt to the system requirements.

III. ON CHIP BUS FUNCTIONALITIES

The various bus functionalities includes Burst, lock,

pipelined, and out-of-order transactions.

A. Burst transactions:

The burst transactions allow the grouping of

multiple transactions that have a certain address

relationship, and can be classified into multi-

request burst and single-request burst according to

how many times the addresses are issued. Fig.1

shows the two types of burst read transactions. The

multi-request burst as defined in AHB is illustrated

in Fig.1(a) where the address information must be

issued for each command of a burst transaction

(e.g., A11, A12, A13 and A14).This may cause

some unnecessary overhead. In the more advanced

bus architecture, the single-request burst

transaction is supported. As shown in Fig.1(b),

which is the burst type defined in AXI, the address

information is issued only once for each burst

transaction. In the proposed bus design both burst

transactions are supported such that IP cores with

various burst types can use the proposed on-chip

bus without changing their original burst behavior.

Fig.1 Burst transactions

B. Lock transactions Lock is a protection

mechanism for masters that have low bus

priorities. Without this mechanism the

read/write transactions of masters with lower

priority would be interrupted whenever a

higher-priority master issues a request. Lock

transactions prevent an arbiter from

performing arbitration and assure that the low

priority masters can complete its granted

transaction without being interrupted.

C. Pipelined transactions (outstanding

transactions) Fig. 2(a) and 2(b) show the

difference between nonpipelined and pipelined

(also called outstanding in AXI) read

transactions. In Fig. 2(a), for a non-pipelined

transaction a read data must be returned after

its corresponding address is issued plus a

period of latency. For example, D21 is sent

right after A21 is issued plus t. For a pipelined

transaction as shown in Fig. 2(b), this hard

link is not required. Thus A21 can be issued

right after A11 is issued without waiting for

the return of data requested by A11 (i.e., D11-

D14).

 Page 23

Fig. 2 Pipelined transactions.

D. Out-of-order transactions : The out-of-order

transactions allow the return order of

responses to be different from the order of

their requests. These transactions can

significantly improve the communication

efficiency of an SOC system containing IP

cores with various access latencies as

illustrated in Fig. 3. In Fig. 3(a) which does

not allow out-of-order transactions, the

corresponding responses of A21 and A31 must

be returned after the response of A11. With the

support of outof-order transactions as shown

in Fig. 3(b), the response with shorter access

latency (D21, D22 and D31) can be returned

before those with longer latency (D11-D14)

and thus the transactions can be completed in

much less cycles.

Fig.3. Out-of-order transactions

IV. ON-CHIP BUS DESIGN

The architecture of the proposed on-chip bus is

illustrated in Fig. 4, where an example with two

masters and two slaves is shown. A crossbar

architecture is employed such that more than one

master can communicate with more than one slave

simultaneously. If not all masters require the accessing

paths to all slaves, partial crossbar architecture is also

allowed.

Fig.4 Block diagram of OCP bus architecture

A. Arbiter: In traditional shared bus architecture,

resource contention happens whenever more than one

master requests the bus at the same time. For a

crossbar or partial crossbar architecture, resource

contention occurs when more than one master is to

access the same slave simultaneously. In the proposed

design each slave IP is associated with an arbiter that

determines which master can access the slave.

B. Decoder : Since more than one slave exists in the

system, the decoder decodes the address and decides

which slave return response to the target master. In

addition, the proposed decoder also checks whether the

transaction address is illegal or nonexistent and

responses with an error message if necessary.

C. Multiplexer: A multiplexer is used to solve the

problem of resource contention when more than one

slave returns the responses to the same master. It

selects the response from the slave that has the highest

priority.

D.FSM-M & FSM-S:Depending on whether a

transaction is a read or a write operation, the request

and response processes are different. For a write

transaction, the data to be written is sent out together

with the address of the target slave, and the transaction

is complete when the target slave accepts the data and

acknowledges the reception of the data. For a read

operation, the address of the target slave is first sent

out and the target slave will issue an accept signal

when it receives the message. The slave then generates

the required data and sends it to the bus where the data

will be properly directed to the master requesting the

data.

The read transaction finally completes when the master

accepts the response and issues an acknowledge signal.

In the proposed bus architecture, we employ two types

of finite state machines, namely FSM-M and FSM-S to

control the flow of each transaction. FSM-M acts as a

master and generates the OCP signals of a master,

while FSM-S acts as a slave and generates those of a

slave. These finite state machines are designed in a

way that burst, pipelined, and out-or-order read/write

transactions can all be properly controlled.

E. Scheduler

Out-of-order transactions in either OCP [2] or AXI [1]

allow the order of the returned responses to be

 Page 24

different from the order of the requests. In the OCP

protocol, each out-oforder transaction is tagged with a

TagID by a master. For those transactions with the

same TagID, they must be returned in the same order

as requested, but for those with different TagID, they

can be returned in any order. In general, both in order

and out-of-order transactions are supported in an out-

of-order SOC system. A multiplexer, MUX1, is used

to solve the problem of resource contention when more

than one slave returns the responses to the same

master. It selects the response from the slave that has

the highest priority. The function of MUX2 will be

described shortly. The recorder shown in the figure is

used to keep track of the ID of the target slave and the

TagID of every out-of-order transaction. Whenever a

response arrives,the comparator determines whether

the ordering restriction is violated or not by comparing

the ID of the target slave and TagID. If no ordering

restriction is violated, the response is sent forward to

the priority setter. If the restriction is violated, the

response is sent backward to one of the inputs of

MUX2, which is always a preferred input over the

input from MUX1.

The responses sent forward are given a priority, which

is different from the slave priority, according to the

TagID and are stored in the priority queue. For the

transactions without TagID, which are regarded as in-

order transactions, the priority setter sets the priority to

0 or the largest value to reflect whether in-order first or

out-of-order first policy is used. Finally, the responses

stored in the priority queue are returned to the masters

from the first priority to the last priority such that the

objective of “transactions with the same TagID are

returned in-order, and transactions with different

TagID can be returned out-of-order” can be achieved.

To further improve the efficiency of the scheduler, the

response can be forwarded to the master directly

without going throughthe priority queue when the

priority queue is empty.

FIGURE 5. Block diagram of the scheduler

V. EXISTING METHOD:

Here, the existing method was about the Resolution

concept. In this method we are interfacing OCP with

the Multi- Resolution based AHB Bus. Resolution

architecture mainly contains Master, arbiters, slave and

their corresponding responses. This method is a

continuos process i.e, here there exists a response

signal between master to arbiter, arbiter to slave and

from slave to arbiter which is a bi-directional response.

But there is no such a response exists between slave to

master.

Operation: Whenever we transmit the data to the

master it will sends that data to the arbiter based on

acknowledgement and then arbiter send response first

to the slave in order to know whether slave is ready to

take data or not. Slave receives the signal from the

arbiter and it again resends the response to the arbiter

whether empty or not.so based on slave’s response

arbiter will sends the data to slave. But because of lack

of response signal between the master and slave there

is no such a response reply’s exist between slave and

master so that master doesn’t know whether the data

received or not so master waits for some amount of

time and it again sends the new data like this it

continuosly repeats its process without any Break in

the signal so, because of this type of continuous

process whenever we need a particular data from that

address there will be data loss occurs and delay will

gets increases and efficiency get decreases.

Figure: Block Diagram for Multi-Resolution OCP

 Page 25

So, in order to overcome all the above constraints we

implemented a new method which is a Modes based

OCP.

VI. PROPOSED METHOD:

In order to overcome the constraints in existing

method we implemented Modes AHB Bus using OCP.

Here, we are interfacing OCP with the Mode based

architecture.

Figure: Block Diagram for Multi-Mode OCP

Combining the abstraction levels in the timing

dimension and the signal dimension, we provide five

modes in different granularities, as Fig shows. They

are Mode FC (full signal, cycle level), Mode FT (full

signal, transaction level), Mode BC (bus state, cycle

level), Mode BT (bus state, transaction level), and

Mode MT (master state, transaction level). We will

discuss the usage of each mode in the following. At

Mode FC, the tracer traces all bus signals cycle-by-

cycle so that designers can observe the most detailed

bus activities. This mode is very useful to diagnose the

cause of error by looking at the detail signals.

However, since the traced data size of this mode is

huge, the trace depth is the shortest among the five

modes. At Mode FT, the tracer traces all signals only

when their values are changed. In other words, this

mode traces the untimed data transaction on the bus.

Comparing to Mode FC, the timing granularity is

abstracted.

Another benefit of this mode is that the space can be

saved without losing meaningful information. Thus,

the trace depth increases. At Mode BC, the tracer uses

the BSM, such as NORMAL, IDLE, ERROR, and so

on, to represent bus transfer activities in cycle accurate

level. Comparing to Mode FC, although this mode still

captures the signals cycle-by-cycle, the signal

granularity is abstracted. Thus, designers can observe

the bus handshaking states without analyzing the detail

signals. At Mode BT, the tracer uses bus state to

represent bus transfer activities in transaction level.

The traced data is abstracted in both timing level and

signal level; it is a combination of Mode BC and Mode

BT. In this mode, designers can easily understand the

bus transactions without analyzing the signals at cycle

level.

At Mode MT, the tracer only records the master

behaviors, such as read, write, or burst transfer. It is

the highest abstraction level. This feature is very

suitable for analyzing the master’s transactions. The

major difference compared with Mode BT is that this

mode does not record the transfer handshaking

activities and does not capture signals when the bus

state is IDLE, WAIT, and BUSY. Thus, designers can

focus on only the master’s transactions.

VII. RESULTS & DISCUSSION

The proposed design is coded in VERILOG language

and simulated using Xilinx ISE tool. The simulated

waveforms for BC, BT,FC,FT, MT are shown in

following figures.

Fig: rtl schematic

 Page 26

Fig: FC_Mode

Fig: FT_Mode

Fig: BC_Mode

Fig: BT_Mode

Fig: MT_Mode

a)

b)

Fig: a) & b) Waveforms for MODE-OCP

VIII. AREA & DELAY REPORTS

The following figures shows the area and delay reports

for existed and proposed methods

Fig: exis area

Fig delay _exis

 Page 27

Fig: proposed area

Fig: delay _propose

XI. CONCLUSION:

In proposed method we implemented OCP Bus using

Multi resolution modes, so that based on modes the

system will transfer the data properly from Master to

Slave. The Real-time Compression and Dynamic

Multi-Resolution AHB bus tracer in SoC was designed

successfully and the coding was done in VERILOG..

The synthesis was done using Xilinx ISE. The

Designed Tracer works properly for all the Modes

such as Mode FC, Mode FT, Mode BC, Mode BT,

Mode MT . Tracer design is verified for all test cases.

So based on experimental results the proposed method

was proved to be very efficient way in data

communication when compared to that of the existing

method.

REFERENCES:

[1] Advanced Microcontroller Bus Architecture

(AMBA) Specification Rev 2.0 & 3.0,

http://www.arm.com.

[2] Open Core Protocol (OCP) Specification,

http://www.ocpip.org/home.

[3] Y.-T. Kim, T. Kim, Y. Kim, C. Shin, E.-Y. Chung,

K.-M. Choi, J.-T. Kong, S.-K. Eo, “Fast and Accurate

Transaction Level Modeling of an Extended

AMBA2.0 Bus Architecture,” Design, Automation,

and Test in Europe, pages 138-139, 2005.

[4] G. Schirner and R. Domer, “Quantitative Analysis

of Transaction Level Models for the AMBA Bus,”

Design, Automation, and Test in Europe, 6 pages,

2006.

[5] C.-K. Lo and R.-S. Tsay, “Automatic Generation of

Cycle Accurate and Cycle Count Accurate Transaction

Level Bus Models from a Formal Model,” Asia and

South Pacific Design

Automation Conference, pages 558-563, 2009.

[6] N.Y.-C. Chang, Y.-Z. Liao and T.-S. Chang,

“Analysis of Shared-link AXI,” IET Computers &

Digital Techniques, Volume 3, Issue 4, pages 373-383,

2009.

[7] IBM Corporation, “Prioritization of Out-of-Order

Data Transfers on Shared Data Bus,” US Patent No.

7,392,353 2008.

[8] David C.-W. Chang, I.-T. Liao, J.-K. Lee, W.-F.

Chen, S.-Y. Tseng and C.-W. Jen, “PAC DSP Core

and Application Processors,” International Conference

on Multimedia and Expo, pages 289-292, 2006.

[9] CoWare website, http://www.coware.com

[10] ARM Ltd., San Jose, CA, “AMBA Specification

(REV 2.0) ARM IHI0011A,” 1999.

[11] E. Anis and N. Nicolici, “Low cost debug

architecture using lossy compression for silicon

debug,” in Proc. IEEE Des., Autom. Test Eur. Conf.,

Apr. 16–20, 2007, pp. 1–6.

[12] ARM Ltd., San Jose, CA, “ARM. AMBA AHB

Trace Macrocell (HTM) technical reference manual

ARM DDI 0328D,” 2007.

[13] First Silicon Solutions (FS2) Inc., Sunnyvale, CA,

“AMBA navigator spec sheet,” 2005.

[14] J. Gaisler, E. Catovic, M. Isomaki, K. Glembo,

and S. Habinc, “GRLIB IP core user’s manual, gaisler

research,” 2009.

[15] Infineon Technologies, Milipitas, CA, “TC1775

TriCore users manual system units,” 2001.

[16] ARM Ltd., San Jose, CA, “Embedded trace

macrocell architecture specification,” 2006.

[17] E. Rotenberg, S. Bennett, and J. E. Smith, “A

trace cache microarchitecture and evaluation,” IEEE

Trans. Comput., vol. 48, no. 1, pp. 111–120, Feb.

1999.

[18] A. B. T. Hopkins and K. D. Mcdonald-Maier,

“Debug support strategy for systems-on-chips with

multiple processor cores,” IEEE Trans. Comput., vol.

55, no. 1, pp. 174–184, Feb. 2006.

[19] B. Tabara and K. Hashmi, “Transaction-level

modeling and debug of SoCs,” presented at the IP SoC

Conf., France, 2004.

[20] B. Vermeulen, K. Goosen, R. van Steeden, and

M. Bennebroek, “Communication- centric SoC debug

using transactions,” in Proc. 12th IEEE Eur. Test

Symp., May 20–24, 2007, pp. 69–76.

http://www.coware.com/

 Page 28

[21] Y.-T. Lin, C.-C. Wang, and I.-J. Huang, “AMBA

AHB bus protocol checker with efficient debugging

mechanism,” in Proc. IEEE Int. Symp. Circuits Syst.,

Seattle, WA, May 18–21, 2008, pp. 928–931.

[22] Y.-T. Lin, W.-C. Shiue, and I.-J. Huang, “A

multi-resolution AHB bus tracer for read-time

compression of forward/backward traces in a curcular

buffer,” in Proc. Des. Autom. Conf. (DAC), Jul. 2008,

pp. 862–865.

[23] ARM Ltd., San Jose, CA, “Example AMBA

system user guide ARM DUI0092C,” 1999.

[24] R. -T Gu, T.-C Yeh, W.-S Hunag, T.-Y. Huang,

C.-H Tsai, C.-N Lee, M.-C Chiang, S.-F Hsiao, and I.-

J.H Yun-Nan Chang, “A low cost tilebased 3D

graphics full pipeline with real-time performance

monitoring support for opengl es in consumer

electronics,” in Proc. ISCE, Jun.20–23, 2007, pp. 1–6.

