

 Page 400

Efficient Search Based on Nearest Keywords

Mr. Kotapati Nagarjuna

MCA 3
rd

 Year, II Sem,

CMR College of Engineering & Technology,

Hyderabad.

Ch.Dayakar Reddy

MCA, M-Tech, MPhil, Ph.D,

Professor and HOD,

CMR College of Engineering & Technology,

Hyderabad.
ABSTRACT:

It is common that the objects in a spatial database (e.g.,

restaurants/hotels) are associated with keyword(s) to

indicate their businesses/services/features. An

interesting problem known as Closest Keywords

search is to query objects, called keyword cover,

which together cover a set of query keywords and have

the minimum inter-objects distance. In recent years,

we observe the increasing availability and importance

of keyword rating in object evaluation for the better

decision making.

This motivates us to investigate a generic version of

Closest Keywords search called Best Keyword Cover

which considers inter-objects distance as well as the

keyword rating of objects. The baseline algorithm is

inspired by the methods of Closest Keywords search

which is based on exhaustively combining objects

from different query keywords to generate candidate

keyword covers.

When the number of query keywords increases, the

performance of the baseline algorithm drops

dramatically as a result of massive candidate keyword

covers generated. To attack this drawback, this work

proposes a much more scalable algorithm called

keyword nearest neighbor expansion (keyword-NNE).

Compared to the baseline algorithm, keyword-NNE

algorithm significantly reduces the number of

candidate keyword covers generated. The in-depth

analysis and extensive experiments on real data sets

have justified the superiority of our keyword-NNE

algorithm

INTRODUCTION

What is Data Mining?

Structure of Data Mining:

Generally, data mining (sometimes called data or

knowledge discovery) is the process of analyzing data

from different perspectives and summarizing it into

useful information - information that can be used to

increase revenue, cuts costs, or both. Data mining

software is one of a number of analytical tools for

analyzing data. It allows users to analyze data from

many different dimensions or angles, categorize it, and

summarize the relationships identified. Technically,

data mining is the process of finding correlations or

patterns among dozens of fields in large relational

databases.

How Data Mining Works?

While large-scale information technology has been

evolving separate transaction and analytical systems,

data mining provides the link between the two. Data

mining software analyzes relationships and patterns in

stored transaction data based on open-ended user

 Page 401

queries. Several types of analytical software are

available: statistical, machine learning, and neural

networks.

Generally, any of four types of relationships are

sought:

Classes: Stored data is used to locate data in

predetermined groups. For example, a restaurant chain

could mine customer purchase data to determine when

customers visit and what they typically order. This

information could be used to increase traffic by having

daily specials.

Clusters: Data items are grouped according to logical

relationships or consumer preferences. For example,

data can be mined to identify market segments or

consumer affinities.

Associations: Data can be mined to identify

associations. The beer-diaper example is an example

of associative mining.

Sequential patterns: Data is mined to anticipate

behavior patterns and trends. For example, an outdoor

equipment retailer could predict the likelihood of a

backpack being purchased based on a consumer's

purchase of sleeping bags and hiking shoes.

SYSTEM ANALYSIS

EXISTING SYSTEM:

Some existing works focus on retrieving individual

objects by specifying a query consisting of a query

location and a set of query keywords (or known as

document in some context). Each retrieved object is

associated with keywords relevant to the query

keywords and is close to the query location. The

approaches proposed by Cong et al. and Li et al.

employ a hybrid index that augments nodes in non-leaf

nodes of an R/R*-tree with inverted indexes. in virtual

br*-tree based method, an r*-tree is used to index

locations of objects and an inverted index is used to

label the leaf nodes in the R*-tree associated with each

keyword. Since only leaf nodes have keyword

information the mCK query is processed by browsing

index bottom-up.

Disadvantages of Existing System:

When the number of query keywords increases, the

performance drops dramatically as a result of massive

candidate keyword covers generated. The inverted

index at each node refers to a pseudo-document that

represents the keywords under the node. Therefore, in

order to verify if a node is relevant to a set of query

keywords, the inverted index is accessed at each node

to evaluate the matching between the query keywords

and the pseudo-document associated with the node.

PROPOSED SYSTEM:

This paper investigates a generic version of mCK

query, called Best Keyword Cover (BKC) query,

which considers inter-objects distance as well as

keyword rating. It is motivated by the observation of

increasing availability and importance of keyword

rating in decision making. Millions of

businesses/services/features around the world have

been rated by customers through online business

review sites such as Yelp, Citysearch, ZAGAT and

Dianping, etc. This work develops two BKC query

processing algorithms, baseline and keyword-NNE.

The baseline algorithm is inspired by the mCK query

processing methods. Both the baseline algorithm and

keyword-NNE algorithm are supported by indexing

the objects with an R*-tree like index, called KRR*-

tree.

We developed much scalable keyword nearest

neighbor expansion (keyword-NNE) algorithm which

applies a different strategy. Keyword-NNE selects one

query keyword as principal query keyword. The

objects associated with the principal query keyword

are principal objects. For each principal object, the

local best solution (known as local best keyword cover

lbkc) is computed. Among them, the lbkc with the

highest evaluation is the solution of BKC query.

 Page 402

Given a principal object, its lbkc can be identified by

simply retrieving a few nearby and highly rated objects

in each non-principal query keyword (two-four objects

in average as illustrated in experiments).

Advantages of Proposed System:

Compared to the baseline algorithm, the number of

candidate keyword covers generated in keyword-NNE

algorithm is significantly reduced. The in-depth

analysis reveals that the number of candidate keyword

covers further processed in keyword-NNE algorithm is

optimal, and each keyword candidate cover processing

generates much less new candidate keyword covers

than that in the baseline algorithm. The proposed

keyword-NNE algorithm applies a different processing

strategy, i.e., searching local best solution for each

object in a certain query keyword. As a consequence,

the number of candidate keyword covers generated is

significantly reduced. The analysis reveals that the

number of candidate keyword covers which need to be

further processed inkeyword-NNE algorithm is

optimal and processing each keyword candidate cover

typically generates much less new candidate keyword

covers in keyword-NNE algorithm than in the baseline

algorithm.

SYSTEM ARCHITECTURE:

IMPLEMENTATION

MODULES:

 Indexing Keyword Ratings

 Keyword nearest Neighbor Expansion

 LBKC Computation

 Weighted Average of Keyword Ratings

MODULES DESCSRIPTION:

Indexing Keyword Ratings

A single tree structure is used to index objects of

different keywords. The single tree can be extended

with an additional dimension to index keyword rating.

A single tree structure suits the situation that most

keywords are query keywords. For the above

mentioned example, all keywords, i.e., “hotel”,

“restaurant” and “bar”, are query keywords. However,

it is more frequent that only a small fraction of

keywords are query keywords. For example in the

experiments, only less than 5 percent keywords are

query keywords. In this situation, a single tree is poor

to approximate the spatial relationship between objects

of few specific keywords. Therefore, multiple KRR*-

trees are used in this work, each for one keyword.1

The KRR*-tree for keyword ki is denoted as KRR*ki-

tree. Given an object, the rating of an associated

keyword is typically the mean of ratings given by a

number of customers for a period of time. The change

does happen but slowly. Even though dramatic change

occurs, the KRR*-tree is updated in the standard way

of R*-tree update.

Keyword nearest Neighbor Expansion

Using the baseline algorithm, BKC query can be

effectively resolved. However, it is based on

exhaustively combining objects (or their MBRs). Even

though pruning techniques have been explored, it has

been observed that the performance drops

dramatically, when the number of query keywords

increases, because of the fast increase of candidate

keyword covers generated. This motivates us to

develop a different algorithm called keyword nearest

neighbor expansion. We focus on a particular query

keyword, called principal query keyword. The objects

associated with the principal query keyword are called

principal objects.

 Page 403

The goal of the interface is to provide point of interest

information (static and dynamic ones) with, at least, a

location, some mandatory’s attributes and optional

details (description,…). In order to provide that

information, the component that implements the

interface uses the map database information to locate

and display point of interest (POI) or to select POI as

route waypoint and favorite. This component not only

provides search functionalities for the local database

but also a way to connect external search engine to this

component and enhance the search criteria and the list

of results It also proposes a solution to get custom

POIs (not part of the local map database) or to

dynamically update content and description of local

POI.

This is achieved by specifying and providing interfaces

to:

 Select POIs from one of their attributes (e.g.,

Category, Name,…)

 Retrieve POI attributes (e.g., Location and

Description)

 Get dynamic content for a given POI.

 Add custom POI to the map display

 Import new POIs and POIs categories from

local file.

LBKC Computation

Given a spatial database, each object may be

associated with one or multiple keywords. Without

loss of generality, the object with multiple keywords

are transformed to multiple objects located at the same

location, each with a distinct single keyword.When

further processing a candidate keyword cover,

keyword-NNE algorithm typically generates much less

new candidate keyword covers compared to BF-

baseline algorithm. Since the number of candidate

keyword covers further processed in keyword-NNE

algorithm is optimal the number of keyword covers

generated in BF-baseline algorithm is much more than

that in keyword- NNE algorithm. In turn, we conclude

that the number of keyword covers generated in

baseline algorithm is much more than that in keyword-

NNE algorithm. This conclusion is independent of the

principal query keyword since the analysis does not

apply any constraint on the selection strategy of

principal query keyword.

Weighted Average of Keyword Ratings

In keyword-NNE algorithm, the best-first browsing

strategy is applied like BF-baseline but large memory

requirement is avoided. For the better explanation, we

can imagine all candidate keyword covers generated in

BF-baseline algorithm are grouped into independent

groups. Each group is associated with one principal

node (or object). That is, the candidate keyword covers

fall in the same group if they have the same principal

node (or object). When further processing a candidate

keyword cover, keyword-NNE algorithm typically

generates much less new candidate keyword covers

compared to BF-baseline algorithm. Since the number

of candidate keyword covers further processed in

keyword-NNE algorithm is optimal, the number of

keyword covers generated in BF-baseline algorithm is

much more than that in keyword-NNE algorithm. In

turn, we conclude that the number of keyword covers

generated in baseline algorithm is much more than that

in keyword-NNE algorithm. This conclusion is

independent of the principal query keyword since the

analysis does not apply any constraint on the selection

strategy of principal query keyword.

SCREEN SHOTS

Welcome form:

 Page 404

Admin login:

User Details:

Upload Image:

CONCLUSION:

Compared to the most relevant mCK query, BKC

query provides an additional dimension to support

more sensible decision making. The introduced

baseline algorithm is inspired by the methods for

processing mCK query. The baseline algorithm

generates a large number of candidate keyword covers

which leads to dramatic performance drop when more

query keywords are given. The proposed keyword-

NNE algorithm applies a different processing strategy,

i.e., searching local best solution for each object in a

certain query keyword. As a consequence, the number

of candidate keyword covers generated is significantly

reduced. The analysis reveals that the number of

candidate keyword covers which need to be further

processed in keyword-NNE algorithm is optimal and

processing each keyword candidate cover typically

generates much less new candidate keyword covers in

keyword-NNE algorithm than in the baseline

algorithm.

REFERENCES:

R. Agrawal and R. Srikant, “Fast algorithms for

mining association rules in large databases,” in Proc.

20th Int. Conf. Very Large Data Bases, 1994, pp. 487–

499.

T. Brinkhoff, H. Kriegel, and B. Seeger, “Efficient

processing of spatial joins using r-trees,” in Proc.

ACM SIGMOD Int. Conf. Manage. Data, 1993, pp.

237–246.

X. Cao, G. Cong, and C. Jensen, “Retrieving top-k

prestige-based relevant spatial web objects,” Proc.

VLDB Endowment, vol. 3, nos. 1/2, pp. 373–384, Sep.

2010.

X. Cao, G. Cong, C. Jensen, and B. Ooi, “Collective

spatial keyword querying,” in Proc. ACM SIGMOD

Int. Conf. Manage. Data, 2011, pp. 373–384.

G. Cong, C. Jensen, and D. Wu, “Efficient retrieval of

the top-k most relevant spatial web objects,” Proc.

VLDB Endowment, vol. 2, no. 1, pp. 337–348, Aug.

2009.

R. Fagin, A. Lotem, and M. Naor, “Optimal

aggregation algorithms for middleware,” J. Comput.

Syst. Sci., vol. 66, pp. 614–656, 2003.

I. D. Felipe, V. Hristidis, and N. Rishe, “Keyword

search on spatial databases,” in Proc. IEEE 24th Int.

Conf. Data Eng., 2008, pp. 656–665.

R. Hariharan, B. Hore, C. Li, and S. Mehrotra,

“Processing spatial keyword (SK) queries in

geographic information retrieval (GIR) systems,” in

 Page 405

Proc. 19th Int. Conf. Sci. Statist. Database Manage.,

2007, pp. 16–23.

G. R. Hjaltason and H. Samet, “Distance browsing in

spatial databases,” ACM Trans. Database Syst., vol.

24, no. 2, pp. 256–318, 1999.

Z. Li, K. C. Lee, B. Zheng, W.-C. Lee, D. Lee, and X.

Wang, “IRTree: An efficient index for geographic

document search,” IEEE Trans. Knowl. Data Eng., vol.

99, no. 4, pp. 585–599, Apr. 2010.

N. Mamoulis and D. Papadias, “Multiway spatial

joins,” ACM Trans. Database Syst., vol. 26, no. 4, pp.

424–475, 2001.

D. Papadias, N. Mamoulis, and B. Delis, “Algorithms

for querying by spatial structure,” in Proc. Int. Conf.

Very Large Data Bases, 1998, pp. 546–557.

D. Papadias, N. Mamoulis, and Y. Theodoridis,

“Processing and optimization of multiway spatial joins

using r-trees,” in Proc. 18
th
 ACM SIGMOD-SIGACT-

SIGART Symp. Principles Database Syst., 1999, pp.

44–55.

J. M. Ponte and W. B. Croft, “A language modeling

approach to information retrieval,” in Proc. 21st Annu.

Int. ACM SIGIR Conf.

J. Rocha-Junior, O. Gkorgkas, S. Jonassen, and K.

Nørva g, “Efficient processing of top-k spatial

keyword queries,” in Proc. 12th Int. Conf. Adv. Spatial

Temporal Databases, 2011, pp. 205–222.

S. B. Roy and K. Chakrabarti, “Location-aware type

ahead search on spatial databases: Semantics and

efficiency,” in Proc. ACM SIGMOD Int. Conf.

Manage. Data, 2011, pp. 361–372.

