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Abstract: 

Several techniques for learning statistical models have 

been developed recently byresearchers in machine 

learning and data mining. All of these techniques must 

address a similar set of representational and 

algorithmic choices and must face a set of statistical 

challenges unique to learning from relational data. 

 

Introduction: 

Recent research projects in two closely related areas of 

computer science — machine learning and data mining 

— have developed methods for constructing statistical 

models of network data. Examples of such data include 

social networks, networks of web pages, complex 

relational databases, and data on interrelated people, 

places, things, and events extracted from text 

documents. Such data sets are often called "relational" 

because the relations among entities are central (e.g., 

acquaintanceship ties between people, links between 

web pages, or organizational affiliations between 

people and organizations). 

 
1
These algorithms differ from a substantially older and 

more established set of data mining algorithms 

developed to analyze propositional data. Propositional 

data are individual records, each of which can be 

represented as an attribute vector and each of which 

are assumed to be statistically independent of any 

other. For example, a propositional data set for 

learning medical diagnostic rules might represent each 

patient as a vector of diagnostic test results, and 

analysis would assume that knowing the disease of one 

patient tells you nothing about another patient. In 

contrast, analysis of a relational representation of the 

same data would retract this latter assumption and add 

information about familial relationships, workplace 

contacts, and other relationships among patients that 

might influence their medical status. The handful of 

data mining techniques that have been developed 

recently for relational data include probabilistic 

relational models (PRMs) (Friedman, Getoor, Koller, 

and Pfeffer 1999), Bayesian logic programs (BLPs) 

(Kersting and de Raedt 2000), first-order Bayesian 

classifiers (Flach and Lachiche 1999), and relational 

probability trees (RPTs) (Jensen and Neville 2002).  

 

In each of these cases, both the structure and the 

parameters of a statistical model can be learned 

directly from data, easing the job of data analysts, and 

greatly improving the fidelity of the resulting model. 

Older techniques include inductive logic programming 

(ILP) (Muggleton 1992; Dzeroski and Lavrac 2001) 

and social network analysis (Wasserman and Faust 

1994). For example, we have employed relational 

probability trees (RPTs) to learn models that predict 

the box office success of a movie based on attributes 

of the movie and related records, This meaning of 

"relational" should be distinguished from the more 

restrictive meaning of "data stored in relational 

databases." While relational databases can represent 

relational data, relational data can also be represented 

and accessed in other ways. 
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the movie's actors, directors, producers, and the studios 

that made the movie. We have also analyzed relational 

data in other ways to predict fraudulent cell phone use 

based on the calling patterns of individual phone 

numbers. Finally, we have produced models that 

predict the function and location of proteins in a cell 

based on network of interactions with other proteins. 

 

Many of these techniques for relational learning share 

a common set of statistical challenges and design 

issues. In this paper, we survey these issues, using 

examples from our work on PROXIMITY, an 

integrated system for relational learning, and an 

algorithm for learning RPTs that we have incorporated 

into PROXIMITY. For each issue, we briefly discuss 

our design choices in PROXIMITY, and point to 

alternative approaches used by other systems. 

 

We begin by describing a specific data set and an 

example analysis task — predicting the box-office 

receipts of movies — that we use throughout the 

remainder of the paper. Next, we describe some of the 

basic features of PROXIMITY and our approach to 

querying data and learning RPTs. The next two 

sections discuss a set of representational and 

algorithmic choices made by the different techniques 

and a set of statistical issues unique to relational data. 

We finish with some brief conclusions. 

 

Example Data and Analysis Task: 

Consider the relational data shown schematically in 

Figure 1. The data consist of movies and associated 

objects including people (who act in, produce, or direct 

the movies), organizations (studios), events (releases 

of the movie), and other objects (awards). These 

objects are connected in the ways that you would 

expect (e.g., actors are linked to movies they act in) 

and in some occasionally unexpected ways (e.g., 

movies are linked directly to other movies that are 

remakes). In addition to the high-level structure of the 

database shown in Figure 1, the database contains 

attributes associated with each object, including the 

titles and genres of movies, the names and ages of 

persons, and the countries and box-office receipts of 

movie releases. The data are drawn primarily from a 

large online resource, the Internet Movie Database 

(www.imdb.com) that makes its data public for 

research and other non-commercial purposes. In 

addition, we have added other data drawn from the 

Hollywood Stock Exchange (www.hsx.com), an 

artificial market where players trade in stocks that 

track the relative popularity of movie actors. 

 

The data are voluminous, consisting of over 300,000 

movies, 650,000 persons, and 11,000 studios. Those 

objects are connected by over 2.3 million acted-in 

links, 300,000 directed links, and 200,000 produced 

links. The available data on movies vary widely. For 

example, not all movies have releases, and HSX data 

are only available for a small percentage of actors in 

IMDb. Data are more complete for more recent movies 

and persons. 

 
Figure 1: Example schema for data from the 

Internet Movie Database. 

The movie data support a variety of interesting 

predictive modeling tasks. We have already mentioned 

one — predicting the opening weekend box office 

receipts of a movie — and we will use this task as an 

example throughout the paper. Specifically, we will 

focus on predicting a probability distribution over a 

simple binary attribute of movies — does the movie 

make more than $2 million in its opening weekend? 

We will call this attribute receipts. 
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We could attempt to predict other attributes of objects 

(e.g., a movie's genre or an actor's gender) or attributes 

of links (e.g, the type of a link between a person and a 

movie) with PROXIMITY. In addition to these, other 

types of prediction tasks are certainly possible. One 

could attempt to learn models that predict missing 

links between objects. For example, reviewers 

sometimes call a movie a "crypto-sequel" when it stars 

the same actors and has a similar plot line as another 

recent movie, but does not explicitly tie the two 

storylines. For example, the 1998 movie "You've Got 

Mail" starring Tom Hanks and Meg Ryan was said to 

be a crypto-sequel to the 1993 movie "Sleepless in 

Seattle" (as well as a remake of the 1940 movie "Shop 

Around The Corner" starring James Stewart and 

Margaret Sullavan). Given enough examples of crypto-

sequels, a data mining algorithm could learn a 

predictive model from the movie data. Recent work by 

Getoor, Friedman, Koller, and Taskar (2001) has 

created models that predict the existence of missing 

links. One could also attempt to learn models that 

predict an attribute of a subgraph, rather than only a 

single object or link.  

 

For example, the emergence of a highly paid 

Hollywood movie star may consist of a set of 

successful movies in which the actor had a starring 

role and one or more awards. Models of this pattern 

would consist of many objects and links, combined in 

a particular temporal sequence. In this paper, we will 

focus almost exclusively on the task of learning 

probability distributions over the values of attributes of 

objects and links. While predicting link existence and 

classifying subgraphs are extremely interesting 

problems, the techniques learning probabilistic models 

for these tasks are much less numerous and much less 

well-developed than for simple attribute modeling. 

One important input to relational learning algorithms is 

a schema or interpretation of the data that specifies a 

type system over the objects and links in the data. For 

example, Figure 1 above specifies one schema for the 

movie data, but others are possible.  

 

 

For example, an alternative schema might specify 

people as either actors, directors, or producers. Figure 

2 provides a hierarchy of possible object types as well 

as two possible families of schemas constructed from 

those object types (a full schema would also specify a 

set of link types). Such a hierarchy is sometimes called 

an ontology (Gruber 1993). 

 
Figure 2: An example ontology of movie objects. 

 

Querying and Learning: 

To address learning tasks of this kind, our research 

group is constructing PROXIMITY — a system for 

machine learning and data mining in relational data. 

The system is designed as a framework within which a 

variety of analysis tools can be used in combination. 

At the foundation of PROXIMITY is a graph database 

for storing semi-structured data that can be represented 

as a graph. The database can be accessed by tools for 

querying data, sampling data, and calculating attributes 

that depend partially or entirely on network structure 

(e.g., measures drawn from social network analysis). 

Sampled data can then be analyzed with tools that 

construct statistical models. Finally, all these tools can 

be called from a scripting language interface. In 

addition to these components, we are developing 

additional components for clustering, graph 

partitioning, and additional types of statistical 

modeling. In this paper, we will focus on a relatively 

simple combination of two tools — our query 

language and one of our learning algorithm. The query 

language is a visual language for expressing queries to 

the graph database. The learning algorithm constructs 

relational probability trees (RPTs), a type of 

probabilistic classifier for relational data. The two 

components work in concert.  
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The query language is used to extract subgraphs from a 

large network of data; the RPT algorithm is used to 

learn a model that estimates a conditional probability 

distribution for the value of an attribute of a class of 

objects or links represented in all those subgraphs. 

That estimate is conditioned on the attributes of other 

objects and links in the subgraph. For example, a query 

might extract subgraphs consisting of a movie and all 

directly related actors, producers, directors, studios, 

and awards. An RPT could then be constructed to 

estimate the probability that a movie makes more than 

$2 million in its opening weekend (receipts =True), 

given attributes of the actors, producers, directors, 

studios, and awards. Note that differentmovies will 

have different numbers of related objects such as 

actors and awards. Thus, the subgraphs could not be 

represented directly as simple attribute vectors. 

 

Our query language, QGraph, represents queries as 

graphs with associated attribute constraints and 

annotations on vertices and edges (Blau, Immerman, 

and Jensen 2002). For example, Figure 3 shows the 

query described above with a movie and all its related 

objects. The numeric annotation [1..] on the actor 

vertex specifies that a match must have one or more 

actors, and that all associated actors should be returned 

as part of each matching subgraph. Some object types 

and link types are left unspecified because of known 

connectivity constraints in the data. Matches to the 

query are shown in Figure 4. Actual names of people, 

studios, and movies are left out for simplicity.  

 

The first match has three actors and no award; the 

second has four actors and no award, and shares an 

actor and a studio with the first match; the third match 

has only a single actor, but won an award. The fact that 

entire subgraphs are returned as part of a match is a 

subtle, yet vital, feature of the language for our 

purposes. Other languages such as SQL, for example, 

can only return a single record as a match, not a record 

of variable size, such as a subgraph. 

 
Figure 3: QGraph query for IMDb data. 

 

 
 

Figure 4: Matches to the query in Figure 3. 

 

Our learning algorithm for relational probability trees 

constructs trees such as the one shown in Figure 5. The 

tree represents a series of questions to ask about any 

subgraph returned by the corresponding query. In this 

tree, the root node asks whether the movie has more 

than five actors born after 1943. If so, the subgraph 

travels down the left-hand branch to a node asking 

whether the movie at the center of the subgraph is a 

drama.  

 

The subgraph continues moving down appropriate 

branches of the tree until a leaf node is reached. The 

leaf nodes contain probability distributions over the 

values of the receipts attribute. Leaf nodes in Figure 5 

shows the number of movie subgraphs of each class 

that reach the leaf, as well as their respective 

probabilities. The leftmost pair of numbers indicate the 

number and probability of movies with opening 

weekend box office receipts exceeding $2 million 

(receipts = True). The second numbers indicate the 

converse (receipts = False). 
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Figure 5: An example relational probability tree 

(RPT) 

 

Our construction algorithm for RPTs is a recursive 

partitioning algorithm similar in spirit to CART 

(Breiman, Friedman, Olshen and Stone 1984), C4.5 

(Quinlan 1993), and CHAID (Kass 1980). However, 

the RPT algorithm searches over the attributes of 

different object types in the subgraph and multiple 

methods of aggregating the values of those attributes 

and creating binary splits on those aggregated values. 

For example, for a numeric attribute such as birth year, 

it searches over splits such as MEAN(birthyr) > x, 

PROPORTION(birthyr > x) > y, MAXIMUM(birthyr) 

> y, MINIMUM(birthyr) > x, and COUNT(birthyr > x) 

> y. Our current approach continues partitioning the 

training data until a stopping criteria is reached. Our 

current stopping criteria uses a Bonferroni-adjusted 

chi-square test analogous to that used in CHAID.  

 

However, such methods face a variety of problems due 

to multiple comparison effects (Jensen and Cohen 

2000), and we are exploring the use of randomization 

tests (Jensen 1992) to better adjust for such effects. 

This two-step approach of querying and then learning 

is necessary because of the semi-structured data model 

that underlies Proximity. In Proximity's graph 

database, objects and links are not created with strong 

type information. Rather, data about each object or 

link is stored in zero or more attributes, name-value 

pairs such as <age, 54> or <genre, comedy>. Even 

type information (e.g., person or movie) is stored as an 

ordinary attribute without privledged status.  

As a result, attributes are not constrained to occur in 

particular combinations, in contrast to more 

conventional relational databases, where a static 

schema defines both type information and the fields 

(attributes) corresponding to each entity or relation 

type. If such structure is needed in Proximity, it can be 

imposed by a QGraph query. The labels in a query 

(e.g., the "movie", "actor", and other labels in Figure 

3) are assigned to the matching portions of a subquery 

and remain on those elements for use by other 

algorithms such as the RPT construction algorithm. 

Similarly, we often employ particular schemas (such 

as the one shown in Figure 1) to aid communication, 

but this is a convenience, not a necessity. 

 

This high degree of flexibility imposes a performance 

penalty for querying. However, such flexibility is 

essential for effective machine learning and data 

mining. First, practical data mining often involves the 

creation of many new attributes as a human data 

analyst tries alternative methods for understanding and 

modeling the data. Adding many attributes to a 

conventional database would require constant updates 

to its schema, a costly operation for traditional 

relational databases. Second, a particular schema is 

just one way of interpreting a given data set, and it can 

bias analysis in important ways. To enable truly 

effective data mining, analysts must be able to change 

the schema easily, and thus reconceptualize the 

domain (Jensen & Neville 2002b; Neville & Jensen 

2002). 

 

Comparison and Contrast: 

Techniques for relational learning can be better 

understood by examining them in the context of a set 

of design choices and statistical issues. This section 

describes several decision choices and the next section 

covers a small set of unique statistical issues facing 

relational learning algorithms. 

 

Data characteristics: 

• Network size — Raw size is one of the most 

obvious methods of characterizing a relational data 

set. PROXIMITY has been constructed and 
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evaluated on relatively large networks. The largest 

data set we have analyzed (on wireless phone fraud) 

contains nearly 2 million objects and 7 million links. 

The complete IMDb data set contains over 1.1 

million objects and over 3.1 million links. These 

fairly large data sets contrast with the relatively 

small networks typically examined by work in social 

network analysis and inductive logic programming. 

 

• Connectivity — The degree of connectivity among 

different portions of the data graph isanother 

important characteristic of relational data sets. Our 

work focuses on networks consisting of a small 

number of large connected components. In contrast, 

much of the work in ILP and SNA has focused on 

many small disconnected components, each of 

which can be considered a data instance. For 

example, some work in ILP has analyzed the 

relational structure of molecules to predict their 

mutagenicity (Srinivasan, Muggleton, Sternberg, 

and King 1996). Each molecule is considered a 

single instance for purposes of learning.  

 

• Homogeneity — Many techniques that analyze 

relational data assume the data consist 

ofhomogeneous objects. Such networks include sets 

of web pages, phone numbers, or persons within an 

organization. In contrast, several recently developed 

techniques, including our work on RPTs, can 

analyze sets of relational data with heterogenous 

objects, such as movies, people, and studios that 

make up the IMDb data.  

 

Task: 

• Level of relational dependence — The most 

commonly used modeling techniques frommachine 

learning, data mining, and statistics analyze 

independent attribute vectors, thus assuming that 

relational dependencies are unimportant, or at least 

beyond the scope of analysis. Specialized techniques 

for spatial and temporal data have been developed 

that assume a highly regular type of relational 

dependence.  

 

In contrast, the work discussed here addresses 

relational data sets with potentially irregular 

relational structure, with variation in the number and 

type of links among objects, and these variations are 

assumed to have significance for modeling.  

 

• Type of task — Nearly all the algorithms discussed 

here focus on supervised learning. That is,they 

attempt to predict the value of some attribute whose 

true value is known in the data set. In contrast, some 

approaches focus on unsupervised learning, where 

the task is to discern some unknown structure in the 

data. Clustering algorithms are a form of 

unsupervised learning, and similar work has recently 

been undertaken for relational data (e.g., Taskar, 

Segal, and Koller 2001).  

 

• Level of determinism — RPTs, PRMs, and many of 

the other approaches discussed hereattempt to learn 

probabilistic models of relational data. However, 

some techniques are specially adapted to learning in 

deterministic domains. For example, such 

techniques have been applied to chess, learning 

grammars for artificial and natural languages, and 

inducing computer programs from examples. Most 

work in inductive logic programming is focused on 

deterministic domains, though some recent work 

extends this work into probabilistic domains 

(Dzeroski and Lavrac).  

 

• Locality of inference — PROXIMITY's 

combination of querying for subgraphs and 

learningbased on those subgraphs assumes that all 

relevant relational information is preserved in the 

portion of the entire data set represented in the 

subgraph. If important information resides on 

elements outside the matched subgraph, then the 

RPT cannot capture it. The subgraph is assumed to 

represents the relevant "local neighborhood" of an 

object (e.g., a movie), and more global features of 

the graph are assumed to be unimportant. Similar 

locality constraints apply explicitly or implicitly for 

most techniques, but the degree of these constraints 

can vary considerably.  
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Model Representation and Learning: 

• Type of model — To date, we have incorporated 

modeling algorithms into PROXIMITYthatconstruct 

conditional or discriminative models. This contrasts 

with other work focused on constructing generative 

models. Generative models define a probability 

distribution over the entire space of data instances. 

For example, for the problem of predicting the 

receipts of movies, a generative model would define 

the probability of all possible movie subgraphs 

along with a probability distribution over possible 

values of the receipts attribute. In contrast, a 

discriminative model defines a probability 

distribution over the values of receipts, given a 

particular subgraph. As with other types of Bayesian 

network models, PRMs are generative models. As 

with other types of tree-based models, RPTs are 

discriminative models. Generative models have a 

wider range of uses (such as detecting anomalies in 

a data set), provide a more complete description of 

the dependencies in a data set, and allow for more 

robust inference in the presence of missing data. 

However, their accuracy on purely discriminative 

tasks is often lower than models explicitly learned 

for that purpose, and they can be more difficult to 

learn.  

 

• Search over model structures — The RPT learning 

algorithm searches over a wide range ofpossible 

structures for the tree and for the attributes included 

in the tree. In contrast, some approaches to 

relational learning, including first-order Bayesian 

networks, PROXIMITY's own relational Bayesian 

classifer, and other techniques in social network 

analysis only learn the parameters for a model with 

fixed structure and attributes.  

 

• Attribute construction — RPT learning involves a 

limited form of attribute construction.Aggregate 

attributes (e.g., average actor age) are constructed 

and evaluated when constructing the tree. Some 

techniques such as ILP offer far more extensive 

search of such "constructed" attributes, greatly 

expanding the set of possible models that can be 

learned (Silverstein and Pazzani 1991). Other 

techniques do no search whatsoever, relying on the 

existing attributes on objects and links.  

 

• Use of background knowledge — Data analysts 

often have substantial background knowledgethat 

can greatly assist model construction. Some 

techniques can used encoded background 

knowledge in the learning process. For example, 

background knowledge in first-order logic can be 

used by ILP approaches to speed and improve 

learning. Similarly, prior probability distributions 

can be used in Bayesian learning techniques. To 

date, PROXIMITY does not employ any explicit 

form of background knowledge in its learning 

algorithms.  

 

Statistical Issues: 

Our recent work on relational learning has 

concentrated on the unique challenges of learning 

probabilistic models in relational data. Specifically, we 

are examining how particular characteristics of 

relational data affect the statistical inferences 

necessary for accurate learning. We have identified 

three features of relational data — concentrated 

linkage, degree disparity, and relational autocorrelation 

— and shown how they lead to two pathological 

behaviors in learning algorithms. To explain more 

fully, the relevant features of relational data are: 

 

• Concentrated linkage — Real relational data sets 

can show striking non-uniformities in 

theconcentration of linkage between different types 

of objects. For example, in our IMDb data, movies 

are linked to only a single primary studio, and each 

such studio is typically linked to many movies. We 

refer to this as concentrated linkage (Jensen and 

Neville 2002a). It contrasts with other situations 

where a smaller number of movies link to a single 

object (e.g., directors) or where many movies link to 

many objects of the same type simultaneously (e.g., 

actors). Figure 6 shows a schematic of the two 

situations. We have found concentrated linkage in 

many relational data sets. Perhaps the best example 
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is publicly traded companies that each link to a 

single accounting firm, of which there are only a 

very small number.  

 

 
Figure 6: Concentrated linkage 

 

• Degree disparity — Another characteristic that 

occurs in some relational data sets is degree 

disparity. This condition arises when objects of 

different classes have widely differentdistributions 

of degree (the number links to objects of a particular 

type). For example, in IMDb, we found that US-

based studios were systematically linked to a larger 

number of movies than foreign studios (p<0.0001). 

Figure 7 shows degree disparity schematically. We 

have found similar degree disparity in other data 

sets. For example, the number of owners differs 

systematically among publicly traded companies in 

different industries and the number of hyperlinks 

differs systematically among different classes of 

web pages at university web sites.  

 
Figure 7: Degree disparity 

 

• Relational autocorrelation — Autocorrelation is the 

correlation among values of the sameattribute for 

related objects. For example, temporal 

autocorrelation occurs when values of a given 

attribute (e.g., stock price) at time t tend to correlate 

highly with the value of the same attribute at time 

t+1. By analogy, we define relational 

autocorrelation as the correlation among values of 

given variable on objects that are nearby in graph 

space (Jensen and Neville 2002a). For example, the 

box office receipts of a movie tend to be highly 

correlated with the receipts of other movies made by 

the same director (correlation coefficient = 0.65) but 

not for movies starring the same actors (correlation 

coefficient = 0.17). Figure 8 shows autocorrelation 

schematically. We have found many other examples 

of autocorrelation, including correlation of the fraud 

status of interconnected wireless phone numbers and 

topics of interconnected web pages.  

 
 

Figure 8: Relational autocorrelation 

 

These three characteristics of relational data can 

greatly complicate efforts to construct good statistical 

models. Specifically, they can lead to: 

 

• Biased feature selection — Our recent work has 

shown that high levels of concentratedlinkage and 

relational autocorrelation can cause data mining 

algorithms to select models that have the weakest, 

rather than the strongest, statistical support from the 

data (Jensen and Neville 2002a). This pathology 

occurs because linkage and autocorrelation combine 

to reduce the effective sample size of the data, thus 

increasing the variance of statistics used to assess 

the relatively utility of different components in 

learned models. Given that learning algorithms 

select the best component among many options, 

they can often select components with high 

variance, but low true utility, thus reducing the 

overall accuracy of the resulting model.  

 

• Spurious correlation — In other work, we 

demonstrate a pathology associated with 

buildingmodels that aggregate the values of many 

objects (e.g., the ages of many actors associated 

with a movie). This is a common method for 

simplifying relational data, and it is used in both 

RPTs and PRMs. When aggregation is used on data 

with degree disparity and autocorrelation, it can lead 

data mining algorithms to include completely 

spurious elements in their models (Type I errors) 

and to completely miss very useful elements (Type 
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II errors) (Jensen and Neville, in preparation). These 

errors occur with degree disparity because many 

aggregation functions (e.g., Max) will produce 

apparent correlation between the aggregated values 

(e.g., maximum movie receipts) and a class label 

(e.g., studio location) whenever degree disparity 

occurs, regardless of whether movie receipts has any 

correlation with studio location. 

 

Both of these effects show the problems associated 

with violating the assumption of independence among 

data instances that underlies so many of the techniques 

common to machine learning, data mining, and 

statistical modeling techniques. These results imply 

that new approachhes are necessary to extend current 

techniques for data mining to relational data. We are 

developing one potentially promising class of 

techniques, based on randomization tests and 

resampling-based methods.  

 

We expect that these computationally intensive 

statistical procedures will allow us to adjust for the 

unique characteristics of a given relational data set, 

and make accurate parameter estimates and hypothesis 

tests. We are incorporating these approaches into our 

algorithm for constructing relational probability trees. 

We conjecture that similar approaches will need to be 

incorporated into all accurate techniques for building 

statistical models from relational data. 

 

Conclusions: 

Recent work in machine learning and data mining has 

made impressive strides toward learning highly 

accurate models of relational data. However, little of 

this work has made good use of research in other areas, 

such as social network analysis and statistics. Cross-

disciplinary efforts and joint research efforts should be 

encouraged to promote rapid development and 

dissemination of useful algorithms and data 

representations. In particular, this work should focus 

on the unique statistical challenges raised by relational 

data. 
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