

 Page 411

High Data Reduction Techniques to Maintain Bug Triage

Mr.Podomoni Suresh Kumar

MCA,

CMR College of Engineering & Technology,

Hyderabad.

CH.Dayakar Reddy

CMR College of Engineering & Technology,

Hyderabad.

ABSTRACT:

Software companies spend over 45 percent of cost in

dealing with software bugs. An inevitable step of

fixing bugs is bug triage, which aims to correctly

assign a developer to a new bug. To decrease the time

cost in manual work, text classification techniques are

applied to conduct automatic bug triage.

In this paper, we address the problem of data reduction

for bug triage, i.e., how to reduce the scale and

improve the quality of bug data. We combine instance

selection with feature selection to simultaneously

reduce data scale on the bug dimension and the word

dimension.

To determine the order of applying instance selection

and feature selection, we extract attributes from

historical bug data sets and build a predictive model

for a new bug data set.

We empirically investigate the performance of data

reduction on totally 600,000 bug reports of two large

open source projects, namely Eclipse and Mozilla. The

results show that our data reduction can effectively

reduce the data scale and improve the accuracy of bug

triage.

Our work provides an approach to leveraging

techniques on data processing to form reduced and

high-quality bug data in software development and

maintenance.

INTRODUCTION

What is Data Mining?

Structure of Data Mining:

Generally, data mining (sometimes called data or

knowledge discovery) is the process of analyzing data

from different perspectives and summarizing it into

useful information - information that can be used to

increase revenue, cuts costs, or both. Data mining

software is one of a number of analytical tools for

analyzing data. It allows users to analyze data from

many different dimensions or angles, categorize it, and

summarize the relationships identified. Technically,

data mining is the process of finding correlations or

patterns among dozens of fields in large relational

databases.

How Data Mining Works?

While large-scale information technology has been

evolving separate transaction and analytical systems,

data mining provides the link between the two. Data

mining software analyzes relationships and patterns in

stored transaction data based on open-ended user

queries. Several types of analytical software are

available: statistical, machine learning, and neural

networks.

Generally, any of four types of relationships are

sought:

 Page 412

Classes: Stored data is used to locate data in

predetermined groups. For example, a restaurant chain

could mine customer purchase data to determine when

customers visit and what they typically order. This

information could be used to increase traffic by having

daily specials.

lusters: Data items are grouped according to logical

relationships or consumer preferences. For example,

data can be mined to identify market segments or

consumer affinities.

Associations:Data can be mined to identify

associations. The beer-diaper example is an example

of associative mining.

Sequential patterns: Data is mined to anticipate

behavior patterns and trends. For example, an outdoor

equipment retailer could predict the likelihood of a

backpack being purchased based on a consumer's

purchase of sleeping bags and hiking shoes

EXISTING SYSTEM:

To investigate the relationships in bug data, Sandusky

et al. form a bug report network to examine the

dependency among bug reports. Besides studying

relationships among bug reports, Hong et al. build a

developer social network to examine the collaboration

among developers based on the bug data in Mozilla

project. This developer social network is helpful to

understand the developer community and the project

evolution.

By mapping bug priorities to developers, Xuan et al.

identify the developer prioritization in open source bug

repositories. The developer prioritization can

distinguish developers and assist tasks in software

maintenance. To investigate the quality of bug data,

Zimmermann et al. design questionnaires to developers

and users in three open source projects. Based on the

analysis of questionnaires, they characterize what

makes a good bug report and train a classifier to

identify whether the quality of a bug report should be

improved.

Duplicate bug reports weaken the quality of bug data

by delaying the cost of handling bugs. To detect

duplicate bug reports, Wang et al. design a natural

language processing approach by matching the

execution information.

PROPOSED SYSTEM:

In this paper, we address the problem of data reduction

for bug triage, i.e., how to reduce the bug data to save

the labor cost of developers and improve the quality to

facilitate the process of bug triage. Data reduction for

bug triage aims to build a small-scale and high-quality

set of bug data by removing bug reports and words,

which are redundant or non-informative. In our work,

we combine existing techniques of instance selection

and feature selection to simultaneously reduce the bug

dimension and the word dimension. The reduced bug

data contain fewer bug reports and fewer words than

the original bug data and provide similar information

over the original bug data.

We evaluate the reduced bug data according to two

criteria: the scale of a data set and the accuracy of bug

triage. In this paper, we propose a predictive model to

determine the order of applying instance selection and

feature selection. We refer to such determination as

prediction for reduction orders. Drawn on the

experiences in software metrics,1 we extract the

attributes from historical bug data sets. Then, we train

a binary classifier on bug data sets with extracted

attributes and predict the order of applying instance

selection and feature selection for a new bug data set.

SYSTEM ARCHITECTURE:

 Page 413

IMPLEMENTATION

MODULES:

 Dataset Collection

 Preprocessing Method

 Feature Selection/ Instance Selection

 Bug Data Reduction

 Performance Evaluation

MODULES DESCSRIPTION:

Dataset Collection:

To collect and/or retrieve data about activities, results,

context and other factors. It is important to consider

the type of information it want to gather from your

participants and the ways you will analyze that

information. The data set corresponds to the contents

of a single database table, or a single statistical data

matrix, where every column of the table represents a

particular variable. After collecting the data to store

the Database.

Preprocessing Method:

Data preprocessing or Data cleaning, Data is cleansed

through processes such as filling in missing values,

smoothing the noisy data, or resolving the

inconsistencies in the data. And also used to removing

the unwanted data.

Commonly used as a preliminary data mining practice,

data preprocessing transforms the data into a format

that will be more easily and effectively processed for

the purpose of the user.

Feature Selection/ Instance Selection:

The combination of instance selection and feature

selection to generate a reduced bug data set. We

replace the original data set with the reduced data set

for bug triage. Instance selection is a technique to

reduce the number of instances by removing noisy and

redundant instances. By removing uninformative

words, feature selection improves the accuracy of bug

triage. It recovers the accuracy loss by instance

selection.

Bug Data Reduction:

The data set can reduce bug reports but the accuracy of

bug triage may be decreased. It improves the accuracy

of bug triage. It tends to remove these words to reduce

the computation for bug triage. The bug data reduction

to reduce the scale and to improve the quality of data

in bug repositories. It reducing duplicate and noisy bug

reports to decrease the number of historical bugs.

Performance Evaluation:

In this Performance evaluation, algorithm can provide

a reduced data set by removing non-representative

instances. The quality of bug triage can be measured

with the accuracy of bug triage. to reduce noise and

redundancy in bug data sets.

Screenshots:

Admin: Towards effective bug triage eith software

data reduction techniques

 Page 414

Login: Registered user has credential to login

Manager Login: Manager have credential to manage

all the user accounts

Developer login: Developer login is Testing login

where they will use admin/admin

CONCLUSION:

Bug triage is an expensive step of software

maintenance in both labor cost and time cost. In this

paper, we combine feature selection with instance

selection to reduce the scale of bug data sets as well as

improve the data quality. To determine the order of

applying instance selection and feature selection for a

new bug data set, we extract attributes of each bug data

set and train a predictive model based on historical

data sets. We empirically investigate the data reduction

for bug triage in bug repositories of two large open

source projects, namely Eclipse and Mozilla. Our work

provides an approach to leveraging techniques on data

processing to form reduced and high-quality bug data

in software development and maintenance. In future

work, we plan on improving the results of data

reduction in bug triage to explore how to prepare a

highquality bug data set and tackle a domain-specific

software task. For predicting reduction orders, we plan

to pay efforts to find out the potential relationship

between the attributes of bug data sets and the

reduction orders.

REFERENCES:

J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix

this bug?” in Proc. 28th Int. Conf. Softw. Eng., May

2006, pp. 361–370.

S. Artzi, A. Kie_zun, J. Dolby, F. Tip, D. Dig, A.

Paradkar, and M. D. Ernst, “Finding bugs in web

applications using dynamic test generation and

 Page 415

explicit-state model checking,” IEEE Softw., vol. 36,

no. 4, pp. 474–494, Jul./Aug. 2010.

J. Anvik and G. C. Murphy, “Reducing the effort of

bug report triage: Recommenders for development-

oriented decisions,” ACM Trans. Soft. Eng.

Methodol., vol. 20, no. 3, article 10, Aug. 2011.

C. C. Aggarwal and P. Zhao, “Towards graphical

models for text processing,” Knowl. Inform. Syst., vol.

36, no. 1, pp. 1–21, 2013.

Bugzilla, (2014). [Online].Avaialble:

http://bugzilla.org/

K. Balog, L. Azzopardi, and M. de Rijke, “Formal

models for expert finding in enterprise corpora,” in

Proc. 29th Annu. Int. ACM SIGIR Conf. Res.

Develop. Inform. Retrieval, Aug. 2006, pp. 43–50.

P. S. Bishnu and V. Bhattacherjee, “Software fault

prediction using quad tree-based k-means clustering

algorithm,” IEEE Trans. Knowl. Data Eng., vol. 24,

no. 6, pp. 1146–1150, Jun. 2012.

H. Brighton and C. Mellish, “Advances in instance

selection for instance-based learning algorithms,” Data

Mining Knowl. Discovery, vol. 6, no. 2, pp. 153–172,

Apr. 2002.

S. Breu, R. Premraj, J. Sillito, and T. Zimmermann,

“Information needs in bug reports: Improving

cooperation between developers and users,” in Proc.

ACM Conf. Comput. Supported Cooperative Work,

Feb. 2010, pp. 301–310.

V. Bol_on-Canedo, N. S_anchez-Maro~no, and A.

Alonso-Betanzos, “A review of feature selection

methods on synthetic data,” Knowl. Inform. Syst., vol.

34, no. 3, pp. 483–519, 2013.

V. Cerver_on and F. J. Ferri, “Another move toward

the minimum consistent subset: A tabu search

approach to the condensed nearest neighbor rule,”

IEEE Trans. Syst., Man, Cybern., Part B, Cybern., vol.

31, no. 3, pp. 408–413, Jun. 2001.

D. _Cubrani_c and G. C. Murphy, “Automatic bug

triage using text categorization,” in Proc. 16th Int.

Conf. Softw. Eng. Knowl. Eng., Jun. 2004, pp. 92–97.

Eclipse. (2014). [Online]. Available: http://eclipse.org/

B. Fitzgerald, “The transformation of open source

software,” MIS Quart., vol. 30, no. 3, pp. 587–598,

Sep. 2006.

A. K. Farahat, A. Ghodsi, M. S. Kamel, “Efficient

greedy feature selection for unsupervised learning,”

Knowl. Inform. Syst., vol. 35, no. 2, pp. 285–310, May

2013.

http://eclipse.org/

