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ABSTRACT: 

Software companies spend over 45 percent of cost in 

dealing with software bugs. An inevitable step of 

fixing bugs is bug triage, which aims to correctly 

assign a developer to a new bug. To decrease the time 

cost in manual work, text classification techniques are 

applied to conduct automatic bug triage.  

In this paper, we address the problem of data reduction 

for bug triage, i.e., how to reduce the scale and 

improve the quality of bug data. We combine instance 

selection with feature selection to simultaneously 

reduce data scale on the bug dimension and the word 

dimension.  

To determine the order of applying instance selection 

and feature selection, we extract attributes from 

historical bug data sets and build a predictive model 

for a new bug data set.  

We empirically investigate the performance of data 

reduction on totally 600,000 bug reports of two large 

open source projects, namely Eclipse and Mozilla. The 

results show that our data reduction can effectively 

reduce the data scale and improve the accuracy of bug 

triage.  

Our work provides an approach to leveraging 

techniques on data processing to form reduced and 

high-quality bug data in software development and 

maintenance. 

INTRODUCTION 

What is Data Mining? 

 

Structure of Data Mining: 

Generally, data mining (sometimes called data or 

knowledge discovery) is the process of analyzing data 

from different perspectives and summarizing it into 

useful information - information that can be used to 

increase revenue, cuts costs, or both. Data mining 

software is one of a number of analytical tools for 

analyzing data. It allows users to analyze data from 

many different dimensions or angles, categorize it, and 

summarize the relationships identified. Technically, 

data mining is the process of finding correlations or 

patterns among dozens of fields in large relational 

databases. 

How Data Mining Works? 

While large-scale information technology has been 

evolving separate transaction and analytical systems, 

data mining provides the link between the two. Data 

mining software analyzes relationships and patterns in 

stored transaction data based on open-ended user 

queries. Several types of analytical software are 

available: statistical, machine learning, and neural 

networks. 

Generally, any of four types of relationships are 

sought: 
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Classes: Stored data is used to locate data in 

predetermined groups. For example, a restaurant chain 

could mine customer purchase data to determine when 

customers visit and what they typically order. This 

information could be used to increase traffic by having 

daily specials. 

lusters: Data items are grouped according to logical 

relationships or consumer preferences. For example, 

data can be mined to identify market segments or 

consumer affinities.  

Associations:Data can be mined to identify 

associations. The beer-diaper example is an example 

of associative mining. 

Sequential patterns: Data is mined to anticipate 

behavior patterns and trends. For example, an outdoor 

equipment retailer could predict the likelihood of a 

backpack being purchased based on a consumer's 

purchase of sleeping bags and hiking shoes 

EXISTING SYSTEM: 

To investigate the relationships in bug data, Sandusky 

et al. form a bug report network to examine the 

dependency among bug reports. Besides studying 

relationships among bug reports, Hong et al. build a 

developer social network to examine the collaboration 

among developers based on the bug data in Mozilla 

project. This developer social network is helpful to 

understand the developer community and the project 

evolution.  

By mapping bug priorities to developers, Xuan et al. 

identify the developer prioritization in open source bug 

repositories. The developer prioritization can 

distinguish developers and assist tasks in software 

maintenance. To investigate the quality of bug data, 

Zimmermann et al. design questionnaires to developers 

and users in three open source projects. Based on the 

analysis of questionnaires, they characterize what 

makes a good bug report and train a classifier to 

identify whether the quality of a bug report should be 

improved.   

Duplicate bug reports weaken the quality of bug data 

by delaying the cost of handling bugs. To detect 

duplicate bug reports, Wang et al. design a natural 

language processing approach by matching the 

execution information. 

PROPOSED SYSTEM: 

In this paper, we address the problem of data reduction 

for bug triage, i.e., how to reduce the bug data to save 

the labor cost of developers and improve the quality to 

facilitate the process of bug triage.  Data reduction for 

bug triage aims to build a small-scale and high-quality 

set of bug data by removing bug reports and words, 

which are redundant or non-informative. In our work, 

we combine existing techniques of instance selection 

and feature selection to simultaneously reduce the bug 

dimension and the word dimension. The reduced bug 

data contain fewer bug reports and fewer words than 

the original bug data and provide similar information 

over the original bug data.  

We evaluate the reduced bug data according to two 

criteria: the scale of a data set and the accuracy of bug 

triage. In this paper, we propose a predictive model to 

determine the order of applying instance selection and 

feature selection. We refer to such determination as 

prediction for reduction orders. Drawn on the 

experiences in software metrics,1 we extract the 

attributes from historical bug data sets. Then, we train 

a binary classifier on bug data sets with extracted 

attributes and predict the order of applying instance 

selection and feature selection for a new bug data set. 

SYSTEM ARCHITECTURE: 
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IMPLEMENTATION 

MODULES: 

 Dataset Collection  

 Preprocessing Method 

 Feature Selection/ Instance Selection 

 Bug Data Reduction 

 Performance Evaluation 

MODULES DESCSRIPTION: 

Dataset Collection: 

To collect and/or retrieve data about activities, results, 

context and other factors. It is important to consider 

the type of information it want to gather from your 

participants and the ways you will analyze that 

information. The data set corresponds to the contents 

of a single database table, or a single statistical data 

matrix, where every column of the table represents a 

particular variable. After collecting the data to store 

the Database. 

 

Preprocessing Method: 

Data preprocessing or Data cleaning, Data is cleansed 

through processes such as filling in missing values, 

smoothing the noisy data, or resolving the 

inconsistencies in the data. And also used to removing 

the unwanted data.  

Commonly used as a preliminary data mining practice, 

data preprocessing transforms the data into a format 

that will be more easily and effectively processed for 

the purpose of the user. 

 

Feature Selection/ Instance Selection: 

The combination of instance selection and feature 

selection to generate a reduced bug data set. We 

replace the original data set with the reduced data set 

for bug triage. Instance selection is a technique to 

reduce the number of instances by removing noisy and 

redundant instances. By removing uninformative 

words, feature selection improves the accuracy of bug 

triage. It recovers the accuracy loss by instance 

selection. 

 

Bug Data Reduction: 

The data set can reduce bug reports but the accuracy of 

bug triage may be decreased. It improves the accuracy 

of bug triage. It tends to remove these words to reduce 

the computation for bug triage. The bug data reduction 

to reduce the scale and to improve the quality of data 

in bug repositories. It reducing duplicate and noisy bug 

reports to decrease the number of historical bugs. 

 

Performance Evaluation: 

In this Performance evaluation, algorithm can provide 

a reduced data set by removing non-representative 

instances. The quality of bug triage can be measured 

with the accuracy of bug triage. to reduce noise and 

redundancy in bug data sets. 

Screenshots: 

Admin: Towards effective bug triage eith software 

data reduction techniques 
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Login: Registered user has credential to login  

 

Manager Login: Manager have credential to manage 

all the user accounts 

 

Developer login: Developer login is Testing login 

where they will use admin/admin 

 

CONCLUSION: 

Bug triage is an expensive step of software 

maintenance in both labor cost and time cost. In this 

paper, we combine feature selection with instance 

selection to reduce the scale of bug data sets as well as 

improve the data quality. To determine the order of 

applying instance selection and feature selection for a 

new bug data set, we extract attributes of each bug data 

set and train a predictive model based on historical 

data sets. We empirically investigate the data reduction 

for bug triage in bug repositories of two large open 

source projects, namely Eclipse and Mozilla. Our work 

provides an approach to leveraging techniques on data 

processing to form reduced and high-quality bug data 

in software development and maintenance. In future 

work, we plan on improving the results of data 

reduction in bug triage to explore how to prepare a 

highquality bug data set and tackle a domain-specific 

software task. For predicting reduction orders, we plan 

to pay efforts to find out the potential relationship 

between the attributes of bug data sets and the 

reduction orders. 
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