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Abstract: 

We present a novel method to recognize planar 

structures in a single image and estimate their 3D 

orientation. This is done by exploiting the relationship 

between image appearance and 3D structure, using 

machine learning methods with supervised training 

data. As such, the method does not require specific 

features or use geometric cues, such as vanishing 

points. We employ general feature representations 

based on spatiograms of gradients and color, coupled 

with relevance vector machines for classification and 

regression. We first show that using hand-labeled 

training data, we are able to classify pre-segmented 

regions as being planar or not, and estimate their 3D 

orientation. We then incorporate the method into a 

segmentation algorithm to detect multiple planar 

structures from a previously unseen image. 

 

INTRODUCTION: 

This project is concerned with the automatic extraction 

of 3D structure from single images. While the creation 

of 3D models of real-world scenes from image data 

has been a topic of interest for a long time, it is usual 

for this to involve either multiple views of a scene or 

video data, exploiting parallax to obtain information 

about scene depth. Inferring depth from only a single 

image is much more challenging. However, previous 

works have shown that a number of image cues can be 

exploited to extract information about depth, shape, or 

other 3D structure.Two prominent existing methods 

are those of Saxena et al. [32] and Hoiem et al. [19].  

 

The former is able to recover an approximate depth 

map for an image having learned the relationship 

between image appearance and ground truth depth 

maps derived from laser scanning. 

 

RELATED WORK: 

Here we discuss examples of prior work on extracting 

planar structure from single images. This can be 

divided into two main categories:  methods which 

explicitly use geometric properties, such as parallel 

lines and texture; and work which aims to recognize 

structure based on learning from training examples. 

Given two or more sets of parallel lines lying on a 

plane, their respective vanishing points uniquely define 

the plane‘s 3D orientation [17]. Thus, detecting such 

line features in an image enables the extraction of 

structure, providing they lie on a common plane. One 

approach is to detect rectangular structures, such as 

windows or doors, which provide orthogonal parallel 

lines in the same plane [22], [27], which can be used 

for basic camera pose recovery and wide baseline 

matching. However, these methods rely on orthogonal, 

Manhattan-like structure, and reliable line detection, 

hence limiting applicability. 

 

Machine Learning Methods: 

More recent work has looked at techniques for 

learning the relationship between appearance and 

structure. A good example of such a technique is by 

Torralba and Oliva [35], who estimate overall depth 

using knowledge that certain types of structure tend to 

appear at particular distances. However, this work 
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focuses on global scene properties, which is a level of 

understanding too coarse for most interesting 

applications. Saxena et al. [32] go further than this by 

estimating whole-image depth maps based on training 

images labeled with absolute depth. 

 
Fig.2: Main components of the plane recognition 

algorithm. 

 

They can create basic 3D models of the scene, built 

from locally planar facets, and their comparison to 

ground truth depth shows good accuracy. However, the 

resulting models do not explicitly represent higher-

level structures—The super-pixel segments are all 

assumed to be locally planar, and accuracy of planar 

facet orientations is not reported. Rather, the focus of 

the work is to produce visually plausible renderings of 

the scene, which are assessed by human subjects. This 

is in contrast to the work we present here, where we 

explicitly aim to find large-scale planes in the image, 

and to assign them an accurate orientation. 

 

PLANE RECOGNITION: 

In this section we describe the plane recognition 

algorithm, which classifies image regions as being 

planar or not, and for the former provides a 3D 

orientation estimate. We emphasize that this works on 

individual, pre-segmented image regions only, and 

does not apply to the image as a whole; marking the 

relevant planar or non-planar image region is part of 

the data acquisition process. The main components are 

shown in Fig. 2. 

 

Training Set: 

The plane normal can then be obtained from n ¼K
T
l, 

where K is the 3 _ 3 intrinsic camera calibration 

matrixes [17]. It is this relationship between camera 

parameters and plane orientation that makes it possible 

to recover accurate plane orientations for new data, 

because the relationship between image appearance 

and orientation is constant.  

 

Fig: Examples of hand-segmented regions and their 

ground truth orientation (rightmost image is obtained 

by warping) 

 

This requires a consistent and known camera 

calibration for all images used, which is consistent 

with our intended application area of SLAM and 3D 

reconstruction, but makes running our algorithm on 

other existing datasets problematic. To further increase 

the size of training set, we synthetically generate new 

variations from the marked-up set, first by reflecting 

all the regions about the vertical axis; then we generate 

examples of planes with different orientations by 

warping the regions—effectively simulating the view 

as seen by a camera in different poses [17]. Examples 

of training data are shown in Fig. 3. 

 

Salient Points: 

An image region will generally contain a large amount 

of visual information, as well as potentially less 

informative blank regions. To create a more compact 

representation, and focus on parts of the image which 

are more likely to be useful, we select a subset of 

salient points in the image around which to concentrate 

further processing. This is achieved with the difference 

of Gaussians (DoG) saliency detector [24], which 

selects blob-like regions in the image.  

 

Image Descriptors: 

Image descriptors are created in the region about each 

salient point, where the region size is dictated by the 

scale returned by the saliency operator. We use two 

complementary feature descriptors: the first is gradient 

orientation histograms to describe texture, which 

consist of histograms of edge orientation, computed by 
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applying edge filters to the image. We create four 

histograms per patch, one for each quadrant, 

comprised of 12 angular bins covering the range ½0; 

pÞ, and concatenated to give a 48D descriptor. 

Secondly, we represent color using RGB histograms, 

created by concatenating intensity histograms from the 

red, green and blue channels of the patch. Each has 20 

bins, giving a 60D descriptor. The importance of color 

for classifying structure was demonstrated by [19], and 

as we hoped, combining both types of descriptor gives 

superior performance to either in isolation (see Section 

6.1.1). However, color is not beneficial for estimating 

orientation, and so we maintain separate 

representations for classification and regression, the 

former comprising gradient and color information, the 

latter with gradient only. 

 

Bag of Words: 

To further reduce dimensionality, we represent the 

distribution of descriptors in a region using a bag of 

words approach [25]. We identify clusters in descriptor 

space and their centers then form ‗visual words‘, 

creating a ‗vocabulary‘ codebook. Two separate 

vocabularies are created, to represent the gradient and 

color descriptor spaces—created by running K-means 

on a set of 100 representative images. Regions are then 

compactly represented by a pair of word histograms, 

expressing the occurrence ofgradient and color words 

from the respective vocabularies. 

 

PLANE DETECTION:  

In this section, we describe the plane detection 

algorithm, which identifies planar regions in images 

and estimates their orientation. As illustrated in Fig. 4, 

we do this by applying the plane recognition algorithm 

at different locations over the image, and use this to 

estimate planarity at individual points, and after 

clustering and smoothing we are able to extract 

individual planar structures. Example results from each 

stage are shown in Fig. 5. The recognition algorithm, 

as explained above, uses a discrete set of points, and so 

the density of such points determines the segmentation 

resolution that we can expect. In effect, we aim to 

group these points into planar and non-planar regions 

based on their spatial adjacency and compatibility in 

terms of planar characteristics; since these points are 

the cancroids of the image patches used to describe the 

image, our point-based segmentation is effectively 

segmenting the image itself.  

 

Location Sampling: 

The first stage of the algorithm is to apply plane 

recognition (Section 4) at multiple overlapping 

locations in the image, to sample possible locations 

where planes might be.  

 
 

 

Fig. Outputs from plane detection: from the input 

image (a), we apply plane recognition over the image 

to obtain a point-wise estimate of orientation (b). This 

is segmented into distinct regions (c), from which the 

final plane detections are derived (d).a set of up to 100 

regions per image, centered over a subset of points. 

These regions are circular with a fixed radius (50 

pixels in the experiments) and all points within such a 

region are used as input to one invocation of PR, 

giving planar/non-planar classifications (and 

orientation estimates) at these locations. 

 

 

Segmentation: 

The goal of the segmentation stage is to take the points 

in the local plane estimate (above), and separate them 

into distinct planar or non-planar regions. This is 

achieved in three steps: first, to cluster the labels 

assigned to points to obtain a discrete set of assignable 

labels; assign each point its most likely label; and then 

to extract connected regions of points with the same 

label. While a number of segmentation algorithms 

could be employed to achieve this, the problem is 



 

  
                                                                                                                                                                                                                    Page 671 

 

naturally expressed as a simple MRF on a graph 

connecting the points. The segmentation of planes 

from non-planes, and into planes of different 

orientations, is done separately, since different criteria 

are used for the two stages (classification probabilities 

and orientation estimates, respectively), and they act 

on different sub-graphs of the point set (orientations 

are usually not defined for regions deemed non-

planar). A joint segmentation should be possible, but 

we present details of the simpler model 

here.Subdividing planar regions based on their 

orientation estimates is a little more complicated, as 

the labels belong to the continuous range of normal 

vectors, rather than simply two classes.  

 

RESULTS: 

This section presents results of experiments to evaluate 

the proposed algorithms. First, we look at performance 

of the plane recognition algorithm on individual image 

regions; before showing the results of experiments to 

evaluate the full plane detection method, both against 

our own ground truth data, and by comparing with 

prior work. 

 

Plane Recognition: 

The data we used for evaluating the plane recognition 

algorithm consist of regions extracted manually from 

images (we are not using the whole image), labeled 

with the true class (plane or non-plane) and orientation 

(normal vector), as described above. We used two 

datasets, for training and testing.  

The training set was used for cross validation, to 

evaluate the accuracy and consistency of the method, 

and to investigate performance using different 

representations and parameter values, before training 

the full algorithm. This consisted of 556 regions 

captured by a 320 _ 240 pixel calibrated webcam. 

 

 
Fg: a-j 

 

Independent Data: 

Example outputs of plane recognition, showing correct 

classification (a-j) and good orientation estimation (a-

g), plus some failure cases: poor orientation estimate 

(k,l), misclassification as non-plane (m,n), and 

misclassification as planar (o). Orange/cyan 

boundaries denote ground-truth plane/non-plane 

respectively; those classified as planes have green 

arrows (estimated orientation), ground-truth 

orientation is drawn with blue arrows. Fig:(a-j) shows 

examples of successful plane recognition, from the 

independent data. Correctly classified planes and their 

orientation are indicated by green arrows (ground truth 

is shown in blue) while correctly identified non-planar 

regions are indicated by cyan circles, including 

vehicles, foliage and people. Note in particular the 

variation in appearance of the planar regions, including 

both regular and irregular texture, demonstrating the 

generality of the algorithm. 

 

Multi-resolution Grid: 

To compare this with the original version, we 

evaluated this new algorithm on the independent 

dataset. It gave a classification accuracy of 81.6 

percent, and a median orientation error of 16.3 degrees 

(histogram of errors in Fig. 9b). These results are a 

little worse than the DoG method, but we believe this 

constitutes good performance—especially since this 

means the detection is now covering almost the entire 

image (94 percent by area). 
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Fig: shows a selection of results, alongside the inter-

mediate local plane estimates (Section 5.1) and ground 

truth. Example 10c shows that it is quite capable of 

detecting planes in environments where there are 

dominant vanishing lines; but example 10d is 

important since it shows it can also cope in the absence 

of any obvious geometric structure, where such 

methods would fail. Note also Fig. 10b (and Fig. 1), 

where non-planar areas are successfully segmented 

from the planar surfaces. 

 

Smoothing: 

We discussed how a MRF can be employed to smooth 

the assignment of planarity and orientation labels to 

the points, before extracting regions. The parameters 

aP ;aO control the relative influence of the unary and 

pair 

 
 

Fig: Examples of using the grid-based whole-image 

method, com-pared to ground truth and the 

original saliency-based version. 

CONCLUSIONS: 

We have shown that it is possible to learn the 

relationship between appearance and structure in 

single images, and presented a new algorithm to detect 

planes, which can for the first time estimate a 3D 

orientation. The approach comprises a method to 

estimate the planarity and orientation of individual 

regions, based on learning from a training set. This is 

then used in a plane detection algorithm that does not 

require a priori region segmentation or knowledge of 

plane boundaries. Our algorithm can detect planes with 

good accuracy compared to labeled ground truth, and 

gives comparable segmentations to the most similar 

work [19]. 

 

The plane detection works by repeated sampling of 

windows to recover individual planes; however, this 

makes it unable to deal with small planar regions. An 

avenue of future work, therefore, would be to 

incorporate edge or con-tour information, which can 

be beneficial in scene layout estimation [20]. A similar 

technique could also be applied to relative depth 

estimation [32]—to improve the fidelity of plane 

detection, or to use alongside plane detection for more 

sophisticated interpretation of images. 
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