

 Page 485

High Throughput Radix-D Multiplication Using BCD

Y.Raj Kumar

PG Scholar, VLSI&ES,

Dept of ECE,

Vidya Bharathi Institute of

Technology,

Janagaon, Warangal, Telangana.

Dharavath Jagan, M.Tech

Associate Professor,

Dept of ECE,

Vidya Bharathi Institute of

Technology,

Janagaon, Warangal, Telangana.

B.Kranthi Kumar, M.Tech

Associate Professor & HOD,

Dept of ECE,

Vidya Bharathi Institute of

Technology,

Janagaon, Warangal, Telangana.

Abstract:

In digital systems, multiplier is the prominent deciding

factor to the overall speed, area and power

consumption. The intention of this project is to

improve the parallel decimal multiplication. The

proposed decimal multiplier uses internally a

redundant BCD (Binary Coded Decimal) code. The

overloaded BCD or ODDS (Overloaded Decimal Digit

Set) representation was proposed to improve the

decimal Multi-operand addition, sequential and

parallel decimal multiplications. The proposed system

goes through three main stages. First, Partial Product

Generation (PPG) algorithm uses radix10 recoding that

produces a reduced number of partial products.

Second, Partial Product Reduction (PPR) algorithm is

used to reduce the partial products into two 2d-digit

words (A,B). Third, Non- redundant BCD conversion

produces final BCD products (P=A+B). The parallel

decimal multiplier simplifies the implementation and

increases the operation speed. The proposed decimal

multiplier reduces the overall multiplier area for

similar target delays with respect to the fastest

implementation. The high speed area efficient decimal

multiplication using CSA adder reduces the delay

compared to existing system.

Keywords:

Carry Save Adder, redundant excess-3 code, Parallel

multiplication.

I. INTRODUCTION:

Decimal fixed-point and floating-point formats are

important in financial, commercial, and user-oriented

computing. Since area and power dissipation are

critical design factors in state-of-the-art DFPUs,

multiplication and division are performed iteratively

by means of digit-by digit algorithms and therefore

they present low performance. Moreover, the

aggressive cycle time of these processors puts an

additional constraint on the use of parallel techniques

for reducing the latency of DFP multiplication in high-

performance DFPUs. The improvement of parallel

decimal multiplication by exploiting the redundancy of

two decimal representations: the ODDS and the

redundant BCD excess-3 (XS-3) representation, a self

complementing code with the digit set [-3,12]. The

general redundant BCD arithmetic is used to (that

includes the ODDS, XS-3 and BCD representations to

accelerate parallel BCD multiplication in two ways

such as Partial Product Generation and Partial Product

Reduction.

The design of area efficient high speed with reasonable

power consumption The decimal multiplication is one

of the most important decimal arithmetic operations

which have a growing demand in the area of

commercial, financial, and scientific computing. The

reasons behind the use of binary data for doing the

arithmetic operations in almost all the computer

systems is the speed and simplicity of binary

arithmetic, efficiency in storing the binary data. But,

for the Digital Signal processing and commercial

applications, the use of decimal arithmetic is still

relevant. But the speed of the operation major concern

for the decimal software. Moreover, the commercial

databases contain more decimal data than binary data.

For the purpose of processing, these decimal data are

converted into binary data.

 Page 486

And, once the processing is completed, those are again

converted back into the decimal format. Cause some

delay. Binary Coded Decimal (BCD) on-going

research which is carried out in almost everywhere

using BCD with reduced area and delay. The main

objectives to improve the performance of BCD

multiplication. Other objectives are given below. To

avoid long carry-propagations in the generation of

decimal positive multiplicand multiples. To obtain the

negative multiples from the corresponding positive

ones easily.To simplify conversion of the partial

products generated in XS-3 to the ODDS

representation for efficient partial product reduction.

II. RADIX-10 PARALLEL DECIMAL

MULTIPLIER:

A. SD Radix-10 Architecture:

The Radix-10 architecture for d-digit BCD

decimal fixed-point parallel multiplication is based

on the techniques for partial product generation

and reduction respectively. The code (4221) and

(5211) is used instead of BCD to represent the

partial product is the main feature of this

architecture. This improves the reduction of

decimal partial product with respect to other

proposals, in terms of latency and area is expected.

The architecture of the d-digit SD radix -10

multiplier consists of the following stages,

Generation of decimal partial products coded in

(4221), reduction of partial products and a final

BCD carry propagate addition. B. Partial Product

Generation The generation of the d+1 partial

product is performed by an encoding of the

multiplier into d SD radix- 10 digits. Each SD

radix-10 digit controls a level of 5:1 muxes, which

selects a positive multiplicand multiple (0, X, 2X,

3X, 4X, 5X) coded in (4221). To obtain each

partial product a level of XOR gates inverts the

output bits of the 5:1 muxes when the sign of the

corresponding SD radix-10 digit is negative.

Before being reduced the d+ 1 partial product,

coded in (4221), are aligned according to their

decimal weights.

Each p-digit column of the partial product array is

reduced to two decimal digits using one of the

decimal digit p: 2 CSA trees. The number of digits

to be reduced for each column varies from p=d+1

to p= 2. Thus, the d+ 1 partial product are reduced

to two 2d digit operands S and H coded in (4221).

Figure:1 Binary P:2 CSA Tree

The nine’s complement of a positive decimal operand

is given by this implementation of leads to a complex

implementation, since the Zi digits of the multiples

generated may take values higher than 9. A simple

implementation is obtained by observing that the

excess-3 of the nine’s complement of an operand is

equal to the bit-complement of the operand coded in

excess-3. The final product is a 2d-digit BCD word

given by P=2H +S. Before being added, S and H need

to be processed. S is recoded from (4221) to BCD

excess-6. The H × 2 multiplication is performed in

parallel with the recoding of S. This ×2 blocks uses a

(4221) to (5421) digit recoder and a 1-bit wired left

shift to obtain the operand 2H coded in BCD shows in

Figure 3. For the final BCD carrypropagate addition

uses a quaternary tree (Q-T) adder based on

conditional speculative decimal addition. It has low

latency and requires less hardware than other

alternatives. C. Partial Product Reduction The partial

product arrays generated by the SD radix-10 encoding

each column of p digits is reduced to two digits by

 Page 487

means of a decimal digit p:2 CSA tree shown in Figure

1. The decimal carries are passed between adjacent

digit columns and decimal coding method used for

decimal carry-save addition.

Figure: 2 Scheme of x2 for BCD-4221.

 To perform the decimal coding instead of BCD for an

efficient implementation of decimal carry-save

addition with binary CSAs or full adders use (4221)

and (5211). The use of these codes avoids the need for

decimal corrections and need to focus on the ×2

decimal multiplication shown in Figure 2. The

Decimal p:2 CSA Trees for Digits Coded in (4221)

Operands Long carry propagation because of that area

and delay is more in this system.

III. IMPLEMENTATION:

The algorithm and architecture of a BCD parallel

multiplier that exploits some properties of two

different redundant BCD codes to speed up its

computations are redundant BCD excess-3 code (XS-

3) and the overloaded BCD representation (ODDS).

Proposed techniques are developed to reduce

significantly the latency and area of previous

representative high performance implementations. A.

Partial Product Generation Partial products are

generated in parallel using a signed-digit radix-10

recoding of the BCD multiplier with the digit set [-5,5]

and a set of positive multiplicand multiples (0X, 1X,

2X, 3X, 4X, 5X) coded in XS-3 encoding has several

advantages.

First, it is a self-complementing code the negative

multiplicand multiple can be obtained by just inverting

the bits of the corresponding positive one. The

available redundancy allows a fast and simple

generation of multiplicand multiples in a carry-free

way. Finally, the partial products can be recoded to the

ODDS representation by just adding a constant factor

into the partial product reduction tree.

Figure:3 Combinational SD Radix-10 Architecture.

The ODDS uses a similar 4-bit binary encoding as

non-redundant BCD techniques explains binary carry-

save adders and compressor trees, can be adapted

efficiently to perform decimal operations. A variety of

redundant decimal formats and arithmetic have been

proposed to improve the performance of BCD

multiplication. The BCD carry-save format represents

a radix-10 operand using a BCD digit and a carry bit at

each decimal multiplication area and power dissipation

are critical design factors in DFPU. Multiplication and

division are performed iteratively by means of digit-

by-digit algorithms for reducing the latency of DFP

multiplication in highperformance DFPUs.

B. Sign Digit Radix-10 Generation:

The partial product generation stage comprises the

recoding of the multiplier to a SD radix-10

representation, the calculation of the multiplicand

 Page 488

multiples in XS-3 code and the generation of the

ODDS partial products. The SD radix-10 encoding

produces d SD radix- 10 digits Y bk [-5, 5], with k =

0,. . . , d - 1, Yd-1 being the MSD (most significant

digit) of the multiplier shown in Figure 3.

Figure: 4 SD radix-10 Generation of Partial

Product Digit

Each digit Ybk is represented with a 5-bit hot-one code

(Y1k, Y2k, Y3k, Y4k, Y5k) to select the appropriate

multiple {1X, . . , 5X} with a 5:1 mux and a sign bit

Ysk that controls the negation of the selected multiple

shown in figure 4. The negative multiples are obtained

by ten’s complementing the positive ones. This is

equivalent to taking the nine’s complement of the

positive multiple and then adding 1. As we have

shown in Section 2, the nine’s complement can be

obtained simply by bit inversion. This needs the

positive multiplicand multiples to be coded in XS- 3,

with digits in [-3,12].

The d least significant partial products PP[d-1], . . ,

PP[0] are generated from digits Ybk by using a set of

5:1 muxes. The xor gates at the output of the mux

invert the multiplicand multiple, to obtain its 9’s

complement, if the SD radix-10 digit is negative (Ysk

= 1). On the other hand, if the signals (Y1k, Y2k, Y3k,

Y4k, Y5k) are all zero then PP[k] = 0, but it has to be

coded in XS-3 bit encoding 0011. partial product signs

are encoded into their MSDs.

The generation of the most significant partial product

PP[d] is described and only depends on Ysd-1. C.

Partial Product Reduction PPR tree consists of three

parts a regular binary CSA tree to compute an

estimation of the decimal partial product sum in a

binary carry-save form (S, C). A sum correction block

to count the carries generated between the digit

columns and a decimal digit 3:2 compressor which

increments the carry-save sum according to the carries

count to obtain the final double-word product (A,B), A

being represented with excess-6 BCD digits and B

being represented with BCD digits. The PPR tree can

be viewed as adjacent columns of h ODDS digits each,

h being the column height see figure 4.3 and h _ d + 1.

Finally addition of digits Gi, Zi, Wzi of the column, Gi

+ Zi + Wzi [0, 45]. We have designed a decimal 3:2

digit compressor that reduces digits Wzi, Gi and Zi to

two digits Ai, Bi. The final BCD product by using a

single BCD carry propagate addition P = A+B, which

is the last step in the multiplication. It required that Ai

+ Bi [0, 18] to reduce the delay of the final BCD

carry-propagate adder operand A is obtained in excess-

6, so that we compute [Ai] = Ai + e in excess e = 6.

The output digits sum [Ai] + Bi [6,24]. D. Decimal

64 Implementation The maximum number of carries

transferred between adjacent columns of the binary

17:2 CSA tree is 15. These carries are labeled Ci+1[0].

. . ,Ci+1[14] (output carries) and Ci[0] , . . ,Ci[14]

(input carries).

The binary 17:2 CSA tree is built of a first level

composed of a 9:2 compressor and a 8:2 compressors,

and a second level composed of a 4:2 compressor. To

balance the delay of the 17:2 CSA tree and the bit

counter, m = 14 has been chosen. The 14-bit counter

produces the 4-bit digit Wmi. The computation of

Wmi * 6 deserves a more detailed description. The 4-

bit digit Wmi = Wi,3 ,Wmi,2 ,Wmi,1, Wmi,0, with

Wmi,j being the bits of the digit, is conveniently

represented as,

 Page 489

Wmi has been split into two parts, the 3 most

significant bits of Wg[0]i+1 and least-significant bit,

Wmi,0. Digit Wti is obtained by the concatenation of

the most-significant bit of Wg[0]i+1* 2 and LSB of

Wg[0]i, A row of decimal 3:2 digit compressors is

used to reduce the 3-operand partial product sum (G,

Z, Wz) to two BCD operands (A, B), with A

represented in excess-6. E. Decimal 128

Implementation The maximum height of the partial

product array by the 34 x34-digit BCD multiplier is h

= 35. The optimal value for parameter m is m = 31.

Therefore, the addition of these carries has been split

into two parts. First, a 31-bit counter evaluates Wmi,

the 5-bit sum of the 31 fastest carries.

Then, the two slowest carries, Ci+1[31] and Ci+1[32],

are added to Wmi into a second 5-bit counter. digits Si,

Ci, Wt[0]i, Wt[1]i, are reduced to two digits Gi;Zi 

[0, 15] using a 4-bit binary 4:2 CSA. Finally, the three

digits Gi, Zi, Wzi are reduced to two excess-6 BCD

digits Ai and Bi by using the decimal digit 3:2

compressor shown in figure 3. It reduces the overall

critical path latency, area and improving speed of

parallel decimal multiplication to avoid long carry-

propagations which Reduces the number of partial

products generation.

IV. SIMULATION OUTPUTS:

A. 16-Bit Digit Multiplication (Existing):

64 decimal multiplication is designed and

implemented in Verilog HDL. Its simulation output is

shown in Figure 5. Let ai and bi are two decimal 4 bit

numbers, p is the carry counter output selection inputs

add the two decimal number and produce the output

sum.

a)

b)

c)

Figure: a)Block Diagram, b)RTL Schematic, c)

Waveform

B. 128-Bit Digit Multiplication (Proposed)

a)

 Page 490

b)

c)

Figure: a)Block Diagram, b)RTL Schematic, c)

Waveform

Performance Comparision

A. Existing

a)

b)

Figure: Area & Delay for existing method

B. Proposed

a)

b)

Figure: Area & Delay for Proposed method

V. CONCLUSION:

The high speed and area efficient decimal multiplier

using CSA. The existing and proposed implemented

and their results were compared. From the obtained

results, it is clear that the proposed decimal performs

in terms of reduced area and delay because of arry

save adder. Compared to the conventional method, the

proposed method reduces the delay . Implementing

this high speed area efficient binary coded decimal in

Finite Impulse Response (FIR) filter can be

considered, which is extensively used as high speed

DSP application and can be implement in FPGA.

REFERENCES:

[1]. Alvaro Vazques, Elisardo Antelo and Javier

Bruguera (2014), ‘Fast Radix-10 Multiplication Using

Redundant BCD Codes’, IEEE Vol. 63, No.8, pp.325-

338.

[2]. Carlough S and Schwarz E (2007), ‘Power Six

Decimal Divide’, Proc. 18th IEEE Symp. on

Application-Specific Systems, Architectures, and

Processors, Vol. 89, No. 8, pp. 28–133.

[3]. Dadda L (2007), ‘Multioperand and Parallel

Decimal Adder: A Mixed Binary and BCD Approach’,

IEEE Transactions on Computers, Vol. 56, No. 10, pp.

1320–1328.

 Page 491

[4]. Dadda L and Nannarelli A (2008), ‘A Variant of a

Radix-10 Combinational Multiplier’, IEEE Int.

Symposium in Circuits and Systems, ISCAS 2008,

Vol. 37, No. 2, pp. 3370–3373.

 [5]. Erle M.A, Schwarz E.M and M. J. Schulte (2005),

‘Decimal Multiplication With Efficient Partial Product

Generation’, Proc. 17th IEEE Symposium on

Computer Arithmetic, Vol. 73, No. 4, pp. 21–28.

[6]. Erle M.A and M. J. Schulte (2003), ‘Decimal

Multiplication Via Carry-Save Addition’, Proc. IEEE

Int. Conf. on Application-Specific Systems,

Architectures, and Processors, Vol. 51, No.7, pp. 348–

358.

 [7]. Gorgin S and Jaberipur G (2013), ’High Speed

Parallel Decimal Multiplication with Redundant

Internal Encodings’, IEEE Transactions on Computers,

Vol.45, No 160, pp. 232-249.

[8]. Han L and Ko S (2013), ‘High Speed Parallel

Decimal Multiplication with Redundant Internal

Encodings’, IEEE Transactions on Computers, Vol.

62, No. 5 pp. 956–968.

 [9]. G.Jaberipur, and A. Kaivani (2009), ‘Improving

the Speed of Parallel Decimal Multiplication’, IEEE

Transactions on Computers, Vol. 58, No. 11, pp.39–

52.

 [10]. Vazquez A,Antelo E and Montuschi P (2010),

’Improved Design of High-Performance Parallel

Decimal Multipliers’, IEEE Transactions on

Computers, Vol. 59, No. 5, pp. 679–693.

