

 Page 501

Routing Queries in Unstructured P2P Networks

B.Siva

M.Tech Student

Gokul Institute of Technology & Sciences

Piridi, Vizianagaram, Bobbili, Andhra Pradesh.

G Bhagya Lakshmi

Assistant Professor

Gokul Institute of Technology & Sciences

Piridi, Vizianagaram, Bobbili, Andhra Pradesh.

ABSTRACT:

Finding a document or resource in an unstructured

peer-to-peer network can be an exceedingly difficult

problem. In this paper we propose a query routing

approach that accounts for arbitrary overlay

topologies, nodes with heterogeneous processing

capacity, e.g., reflecting their degree of altruism, and

heterogenous class-based likelihoods of query

resolution at nodes which may reflect query loads and

the manner in which files/resources are distributed

across the network. The approach is shown to be

stabilize the query load subject to a grade of service

constraint, i.e., a guarantee that queries' routes meet

pre-specified class-based bounds on their associated a

priori probability of query resolution. An explicit

characterization of the capacity region for such

systems is given and numerically compared to that

associated with random walk based searches.

Simulation results further show the performance

benefits, in terms of mean delay, of the proposed

approach. Additional aspects associated with reducing

complexity, estimating parameters, and adaptation to

class-based query resolution probabilities and traffic

loads are studied.

EXISTING SYSTEM:

 In a purely unstructured P2P network, a node

only knows its overlay neighbors. With such

limited information, search techniques for

unstructured networks have mostly been based

on limited-scope flooding, simulated random

walks, and their variants.

 Much research in this area has focused on

evaluating these search techniques based on the

contact time, i.e., number of hops required to

find the target, using the spectral theory of

Markov chains on (random) graphs, see e.g.,

Unfortunately in heterogenous settings where

service capacity or resolution likelihoods vary

across peers, such search techniques perform

poorly under high query loads.

 The inefficiencies of purely unstructured

networks can be partially addressed by hybrid

P2P systems, e.g., FastTrack and Gnutella2.

DISADVANTAGES OF EXISTING SYSTEM:

 In structured networks the difficulty of

search/discovery is shifted to that of maintaining

the structural invariants required to achieve

efficient

 In query resolution particularly in dynamic

settings with peer/content churn or when

reactive load balancing is required.

 Standard backpressure-based routing our

policies suffer from a major drawback: each

node needs to share the state of its potentially

large number of non-empty queues with its

neighbors.

 Complexity problem will be also raised.

PROPOSED SYSTEM:

 Given a hybrid P2P topology and query

classification, we propose a novel query

resolution mechanism which stabilizes the

 Page 502

system for all query loads within a ‗capacity

region‘, i.e., the set of loads for which stability is

feasible.

 Essentially, our policy is a biased random walk

where forwarding decision for each query is

based on instantaneous query loads at super-

peers.

 To balance the load across heterogeneous super-

peers, the policy aims at reducing the differential

backlog at neighboring super-peers, while taking

into account the class and history information to

improve the query's resolvability.

 Our policy draws upon standard backpressure

routing algorithm, which is used to achieve

stability in packet switching networks,

 We propose a query forwarding mechanism for

unstructured (hybrid) P2P networks with the

following properties.

 It dynamically accounts for heterogeneity in

super-peer's ‗service rate,‘ reflecting their

altruism, and query loads across the network. To

the best of our knowledge, this is the first work

to rigorously account for such heterogeneity in

devising a search mechanism for P2P networks.

 It is based on classifying queries into classes.

This classification serves as a type of name

aggregation, which enables nodes to infer the

likelihoods of resolving class queries, which, in

turn, are used in learning how to forward

queries.

 Our approach is fully distributed in that it

involves information sharing only amongst

neighbors, and achieves stability subject to a

Grade of Service (GoS) constraint on query

resolution. The GoS constraint corresponds to

guaranteeing that each query class follows a

route over which it has a reasonable ‗chance‘ of

being resolved.

 We provide and evaluate several interesting

variations on our stable mechanism that help

significantly improve the delay performance,

and further reduce the complexity making it

amenable to implementation.

ADVANTAGES OF PROPOSED SYSTEM:

 Reducing complexity

 Estimating parameters, and adaptation to class-based

query resolution probabilities and traffic loads are

studied.

 Stable Policies

 Estimating Query Resolution Probabilities

 Alternate Grades of Service Strategies

 It is based on classifying queries into classes

 The GoS constraint corresponds to guaranteeing that

each query class follows a route over which

 It has a reasonable ‗chance‘ of being resolved

 This provides a basis for substantially reducing

complexity by approximations

ALGORITHM

 Basic Backpressure Algorithm

 The weights used in above algorithm for each link

are different from those used in traditional multi-

commodity backpressure algorithm

SYSTEM ARCHITECTURE:

MODULES:

 Constructing System Model

 Stable Query Forwarding Policy

 Estimating Query Resolution Probabilities

 Reducing Complexity

MODULES DESCSRIPTION:

Constructing System Model

 In the initial module, we develop the system

with the entities required to show the proposed

 Page 503

model with the evaluation proof of your novel

contribution. So we develop the module with

nodes. We assume that time is slotted, and each

super-peer has an associated service rate,

corresponding to positive integer number of

queries it is willing to resolve/forward in each

slot.

 We assume that super peers keep a record of

files/resources available at subordinate peer.

This information is communicated to super peers

when a subordinate peer joins a super peer.

Subordinate peers may initiate a query request at

a super peer, but do not participate in forwarding

or query resolution

 If a class query at node cannot be resolved it

may be forwarded to one of its neighbors. The

likelihood a node can resolve such a query

depends not only on its class but also itshistory,

i.e., the set of nodes it visited in the past. Note

that the history is not ordered. For example,

suppose 3 nodes in a network partition

files/resources associated with class. If two of

these nodes attempted and failed in resolving a

given class query then it will for sure be

resolved at the third node. In other contexts, if a

search for a particular media file failed at many

nodes, it is more likely that the file is rare, and

the conditional likelihood that it is resolved at

the next node might lower.

Stable Query Forwarding Policy

 In this module, we will propose a query

scheduling and forwarding policy that ensures

the GoS for each class, is distributed, easy to

implement, and is stable. We begin by defining

the stability for such networks and the associated

capacity region. The module is develop such that

the following aspects arising in P2P search

systems: (a) history dependent probability of

query resolution at each node, (b) updates in

‗types‘ of queries as they get forwarded to

different nodes, (c) computing the quality of

service received by query via its history and

designing an appropriate exit strategy upon

receiving enough service.

 While the routing decisions are to be based on

instantaneous queue loads at the neighbors, the

decisions themselves affect the type/queue to

which a query belongs. In this module, we

develop a distributed dynamic algorithm where

each node makes decisions based on its queue

states and that of its neighbors and only needs to

know

Estimating Query Resolution Probabilities

 In this module, we develop the estimation of

query resolution probabilities. So far we have

assumed that resolution probabilities for queries

of different types are known. In practice they

can be easily estimated. In order to ensure

unbiased estimates can be obtained at each node,

suppose a small fraction of all queries is marked

‗RW‘, forwarded via the random walk policy

with a large TTL, and given scheduling priority

over other queries.

 With a sufficiently large TTL this ensures that

each node will see a random sample of all query

and types it could see and thus allow for

unbiased estimates. All queries which are not

marked ‗RW‘ are treated according to our

backpressure policy based on the estimated

query resolution probabilities. A node receives

‗RW‘ marked samples in time. Thus the error is

small for large enough. If the contents are static,

one may discontinue the estimation process after

large enough time, in which case the time-

averaged performance of the policy remains

unchanged.

 Alternatively, to allow persistent tracking of

changes in resolution probabilities, we may

estimate the query resolution probabilities via

samples provided from a control algorithm,

without using a separate unbiased random walk.

The convergence of estimation and stability of

the system can be jointly obtained via stochastic

approximation framework under time scale

 Page 504

separation between content dynamics and search

dynamics.

Reducing Complexity

 In this module, we develop the Reducing the

complexities in the system. Not unlike standard

backpressure-based routing our policies suffer

from a major drawback: each node needs to

share the state of its potentially large number of

non-empty queues with its neighbors. For

backpressure-based routing the number of

queues per node corresponds to the number of

flows (commodities) in the network. In our

context, the number of queues per node

corresponds to number of query types it could

see worst case.

 In this module we propose simple modification

and approximations that considerably reduce the

overheads, albeit with some penalty in the

performance. The key idea is to define

equivalence classes of query types that share a

‗similar‘ history, in the sense that they have

similar conditional probabilities of resolution,

and have them share a queue. For example, all

query types of class which have visited the same

number of nodes might be grouped together,

reducing the number of queues to or better.

Alternatively we will show one can further

reduce overheads by approximately grouping

similar query types based on their classes and

the cumulative number of class files/resources

they have seen in nodes, reducing the number of

queues to where is a set of quantization levels.

Intuitively such queries have seen similar

opportunities if files/resources are randomely

made available in the network.

IMPLEMENTATION

MODULES:

 Constructing System Model

 Stable Query Forwarding Policy

 Estimating Query Resolution Probabilities

 Reducing Complexity

MODULES DESCSRIPTION:

Constructing System Model

 In the initial module, we develop the system

with the entities required to show the proposed

model with the evaluation proof of your novel

contribution. So we develop the module with

nodes. We assume that time is slotted, and each

super-peer has an associated service rate,

corresponding to positive integer number of

queries it is willing to resolve/forward in each

slot.

 We assume that super peers keep a record of

files/resources available at subordinate peer.

This information is communicated to super peers

when a subordinate peer joins a super peer.

Subordinate peers may initiate a query request at

a super peer, but do not participate in forwarding

or query resolution

 If a class query at node cannot be resolved it

may be forwarded to one of its neighbors. The

likelihood a node can resolve such a query

depends not only on its class but also itshistory,

i.e., the set of nodes it visited in the past. Note

that the history is not ordered. For example,

suppose 3 nodes in a network partition

files/resources associated with class. If two of

these nodes attempted and failed in resolving a

given class query then it will for sure be

resolved at the third node. In other contexts, if a

search for a particular media file failed at many

nodes, it is more likely that the file is rare, and

the conditional likelihood that it is resolved at

the next node might lower.

Stable Query Forwarding Policy

 In this module, we will propose a query

scheduling and forwarding policy that ensures

the GoS for each class, is distributed, easy to

implement, and is stable. We begin by defining

the stability for such networks and the associated

capacity region. The module is develop such that

the following aspects arising in P2P search

systems: (a) history dependent probability of

 Page 505

query resolution at each node, (b) updates in

‗types‘ of queries as they get forwarded to

different nodes, (c) computing the quality of

service received by query via its history and

designing an appropriate exit strategy upon

receiving enough service.

 While the routing decisions are to be based on

instantaneous queue loads at the neighbors, the

decisions themselves affect the type/queue to

which a query belongs. In this module, we

develop a distributed dynamic algorithm where

each node makes decisions based on its queue

states and that of its neighbors and only needs to

know

Estimating Query Resolution Probabilities

 In this module, we develop the estimation of

query resolution probabilities. So far we have

assumed that resolution probabilities for queries

of different types are known. In practice they

can be easily estimated. In order to ensure

unbiased estimates can be obtained at each node,

suppose a small fraction of all queries is marked

‗RW‘, forwarded via the random walk policy

with a large TTL, and given scheduling priority

over other queries.

 With a sufficiently large TTL this ensures that

each node will see a random sample of all query

and types it could see and thus allow for

unbiased estimates. All queries which are not

marked ‗RW‘ are treated according to our

backpressure policy based on the estimated

query resolution probabilities. A node receives

‗RW‘ marked samples in time. Thus the error is

small for large enough. If the contents are static,

one may discontinue the estimation process after

large enough time, in which case the time-

averaged performance of the policy remains

unchanged.

 Alternatively, to allow persistent tracking of

changes in resolution probabilities, we may

estimate the query resolution probabilities via

samples provided from a control algorithm,

without using a separate unbiased random walk.

The convergence of estimation and stability of

the system can be jointly obtained via stochastic

approximation framework under time scale

separation between content dynamics and search

dynamics.

Reducing Complexity

 In this module, we develop the Reducing the

complexities in the system. Not unlike standard

backpressure-based routing our policies suffer

from a major drawback: each node needs to

share the state of its potentially large number of

non-empty queues with its neighbors. For

backpressure-based routing the number of

queues per node corresponds to the number of

flows (commodities) in the network. In our

context, the number of queues per node

corresponds to number of query types it could

see worst case.

 In this module we propose simple modification

and approximations that considerably reduce the

overheads, albeit with some penalty in the

performance. The key idea is to define

equivalence classes of query types that share a

‗similar‘ history, in the sense that they have

similar conditional probabilities of resolution,

and have them share a queue. For example, all

query types of class which have visited the same

number of nodes might be grouped together,

reducing the number of queues to or better.

Alternatively we will show one can further

reduce overheads by approximately grouping

similar query types based on their classes and

the cumulative number of class files/resources

they have seen in nodes, reducing the number of

queues to where is a set of quantization levels.

Intuitively such queries have seen similar

opportunities if files/resources are randomely

made available in the network.

 Page 506

INPUT DESIGN AND OUTPUT DESIGN

INPUT DESIGN

The input design is the link between the information

system and the user. It comprises the developing

specification and procedures for data preparation and

those steps are necessary to put transaction data in to a

usable form for processing can be achieved by

inspecting the computer to read data from a written or

printed document or it can occur by having people

keying the data directly into the system. The design of

input focuses on controlling the amount of input

required, controlling the errors, avoiding delay, avoiding

extra steps and keeping the process simple. The input is

designed in such a way so that it provides security and

ease of use with retaining the privacy. Input Design

considered the following things:

 What data should be given as input?

 How the data should be arranged or coded?

 The dialog to guide the operating personnel in

providing input.

 Methods for preparing input validations and

steps to follow when error occur.

OBJECTIVES

1. Input Design is the process of converting a user-

oriented description of the input into a computer-based

system. This design is important to avoid errors in the

data input process and show the correct direction to the

management for getting correct information from the

computerized system.

2.It is achieved by creating user-friendly screens for the

data entry to handle large volume of data. The goal of

designing input is to make data entry easier and to be

free from errors. The data entry screen is designed in

such a way that all the data manipulates can be

performed. It also provides record viewing facilities.

3. When the data is entered it will check for its validity.

Data can be entered with the help of screens.

Appropriate messages are provided as when needed so

that the user will not be in maize of instant. Thus the

objective of input design is to create an input layout that

is easy to follow

OUTPUT DESIGN

A quality output is one, which meets the requirements of

the end user and presents the information clearly. In any

system results of processing are communicated to the

users and to other system through outputs. In output

design it is determined how the information is to be

displaced for immediate need and also the hard copy

output. It is the most important and direct source

information to the user. Efficient and intelligent output

design improves the system‘s relationship to help user

decision-making.

1. Designing computer output should proceed in an

organized, well thought out manner; the right output

must be developed while ensuring that each output

element is designed so that people will find the system

can use easily and effectively. When analysis design

computer output, they should Identify the specific output

that is needed to meet the requirements.

2. Select methods for presenting information.

3. Create document, report, or other formats that contain

information produced by the system.

The output form of an information system should

accomplish one or more of the following objectives.

 Convey information about past activities, current

status or projections of the

 Future.

 Signal important events, opportunities,

problems, or warnings.

 Trigger an action.

 Confirm an action.

SCREEN SHOTS

 Page 507

CONCLUSION

To summarize, we provided a novel, distributed, and

reliable search policy for unstructured peer-to-peer

networks with super-peers. Our backpressure based

policy can provide capacity gains of as large as 68%

over traditional random walk techniques. We also

provided modifications to the algorithm that make it

amenable to implementation.

REFERENCES

[1] Wikipedia, ―Peer-to-peer,‖ 2011 [Online]. Available:

http://en.wikipedia.org/wiki/Peer-to-peer

[2] I. Stoicaet al., ―Chord: A scalable peer-to-peer

lookup protocol for internet applications,‖ IEEE/ACM

Trans. Netw., vol. 11, no. 1, pp. 17–32, Feb. 2003.

[3] X. Li and J. Wu, ―Searching techniques in peer-to-

peer networks,‖ in Handbook of Theoretical and

Algorithmic Aspects of Ad Hoc, Sensor,Peer-to-Peer

Networks. Boca Raton, FL, USA: CRC Press, 2004.

[4] C. Gkantsidis, M. Mihail, and A. Saberi, ―Random

walks in peer-topeer networks,‖ in Proc. IEEE

INFOCOM, 2004, pp. 120–130.

[5] C. Gkantsidis, M. Mihail, and A. Saberi, ―Hybrid

search schemes for unstructured peer to peer networks,‖

in Proc. IEEE INFOCOM, 2005, pp. 1526–1537.

[6] S. Ioannidis and P. Marbach, ―On the design of

hybrid peer-to-peer systems,‖ in Proc. ACM

SIGMETRICS, Annapolis, MD, USA, Jun. 2008, pp.

157–168.

[7] P. Patankar, G. Nam, G. Kesidis, T.

Konstantopoulos, and C. Das, ―Peer-to-peer unstructured

anycasting using correlated swarms,‖ in Proc. ITC,

Paris, France, Sep. 2009, pp. 1–8.

[8] R. Gupta and A. Somani, ―An incentive driven

lookup protocol for chord-based peer-to-peer (P2P)

 Page 508

networks,‖ in Proc. Int. Conf. High Perform.Comput.,

Bangalore, India, Dec. 2004, pp. 8–18.

[9] D. Menasche, L. Massoulie, and D. Towsley,

―Reciprocity and barter in peer-to-peer systems,‖ in

Proc. IEEE INFOCOM, 2010, pp. 1–9.

[10] B. Mitra, A. K. Dubey, S. Ghose, and N. Ganguly,

―How do superpeer networks emerge?,‖ in Proc. IEEE

INFOCOM, 2010, pp. 1–9.

[11] D. Karger and M. Ruhl, ―Simple efficient load

balancing algorithms for peer-to-peer systems,‖ in Proc.

16th ACMSPAA, 2004, pp. 36–43.

[12] B. Yang and H. Garcia-Molina, ―Designing a super-

peer network,‖ in Proc. IEEE ICDE, 2003, pp. 49–60.

[13] L. Tassiulas and A. Ephremides, ―Stability

properties of constrained queueing systems and

scheduling policies for maximum throughput in

multihop radio networks,‖ IEEE Trans. Autom. Control,

vol. 37, no. 12, pp. 1936–1948, Dec. 1992.

[14] M. J. Neely, E. Modiano, and C. E. Rohrs,

―Dynamic power allocation and routing for time varying

wireless networks,‖ in Proc. IEEE INFOCOM, 2003, pp.

745–755.

[15] L. Ying, S. Shakkottai, A. Reddy, and S. Liu, ―On

combining shortest-path and back-pressure routing over

multihop wireless networks,‖ IEEE/ACM Trans. Netw.,

vol. 19, no. 3, pp. 841–854, Jun. 2011.

[16] M. Alresaini, M. Sathiamoorthy, B.

Krishnamachari, and M. Neely, ―Backpressure with

adaptive redundancy (BWAR),‖ in Proc. IEEE

INFOCOM,

Mar. 2012, pp. 2300–2308.

[17] L. Bui, R. Srikant, and A. Stolyar, ―A novel

architecture for reduction of delay and queueing

structure complexity in the back-pressure algorithm,‖

IEEE/ACM Trans. Netw., vol. 19, no. 6, pp. 1597–1609,

Dec. 2011.

[18] B. Ji, C. Joo, and N. Shroff, ―Delay-based back-

pressure scheduling in multihop wireless networks,‖

IEEE/ACM Trans. Netw., vol. 21, no. 5, pp. 1539–1552,

Oct. 2013.

[19] Y. Cui, E. Yeh, and R. Liu, ―Enhancing the delay

performance of dynamic backpressure algorithms,‖

IEEE/ACM Trans. Netw., 2015, to be published.

[20] L. Georgiadis, M. J. Neely, and L. Tassiulas,

―Resource allocation and cross-layer control in wireless

networks,‖ Found. Trends Netw., vol. 1, no. 1, pp. 1–

144, 2006.

[21] Y. Cui, V. Lau, R. Wang, H. Huang, and S. Zhang,

―A survey on delayaware resource control for wireless

systems—Large deviation theory, stochastic Lyapunov

drift, distributed stochastic learning,‖ IEEE Trans. Inf.

Theory, vol. 58, no. 3, pp. 1677–1701, Mar. 2012.

[22] S. Asmussen, Applied Probability and Queues.

NewYork,NY,USA: Springer, 1987.

[23] H. J. Kushner and G. Yin, Stochastic

Approximation and Recursive Algorithms and

Applications. New York, NY, USA: Springer, 2003.

