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ABSTRACT: 

The study of fluid dynamics is core of the most 

important branches of research in and applied sciences 

because of its wide range of applications such as in 

astrophysical, geophysical, aero dynamic problems. In 

meteorology hydrology, and oceanography the study 

of fluids is basic since the atmosphere and the ocean 

are fluids. The study of fluids through or past porous 

medium assumed importance because of its 

importance applications in diverse fields of science, 

engineering and technology. The practical applications 

are in the percolation of water through soil extraction 

and filtration of oils from wells, the drainage of water, 

irrigation sanitary engineering and also in the inter 

disciplinary fields such as biomedical engineering etc. 

The flow in as porous medium is governed by Darcy’s 

law or Brinkman model.  

 

The classical Darcy’s law [Muskat[2]] states that the 

pressure gradient pushes the fluid against the body 

forces exerted by the medium which can be expressed 

as V =
−K

μ
∇P. The flow gives good results in the 

solutions when the flow is unidirectional or the flow is 

at low speed. In general the specific discharge 

increases the convective forces get developed and the 

internal stress generates in the fluid due to its viscous 

nature and produces distortion in the velocity field in 

the case of highly porous media such as fiber glass, 

papers of dandelion the flow occurs even in the 

absence of the pressure gradient.  

 

 

Modifications for the classical Darcy’s law were 

considered by Beavers and Joseph[6] saffman[10] and 

others. A generalized Darcy’s law proposed by 

Brinkman is given by 0 = -∇p −  
μ

k
 v + μ∇2v   where 

μ and K are coefficients of viscosity of the fluid and 

permeability of the porous medium. The generalized 

equation for the flow through the porous medium is 

p  
∂v

∂t
+  v. ∇ v  = ∇p +  μ∇2v −  

μ

k
 v. The classical 

Darcy’s law helps in studying flows through porous 

medium. In the case of highly porous medium such as 

porous of dandelion etc, the Darcy’s law fails to 

explain the flow near the surface in the absence of 

pressure gradient. The non-Daecian approach is 

employed to study the problem of flow through highly 

porous medium by several investigation [12, 15, 9 and 

14] 

 

The study of magneto hydrodynamic flows through or 

past porous media is of considerable interest because 

of its abundant application in several branches of 

science and technology, such as Astrophysical, 

Geophysical, ground water flow, petroleum 

engineering problems and in developing magnetic 

generators for obtaining electrical energy at minimum 

cost. The development of MHD generators needs the 

study of the effect of magnetic field on various flow 

patterns. Hartmann [1] studied the problem of steady 

magneto hydro dynamic channel flow of a conducting 

fluid under a uniform magnetic field transverse to an 

electrically insulated channel wall.  
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Hughes and young [5] considered the problem of flow 

through a rectangular channel bounded by walls which 

are infinitely conduction or perfectly insulation. The 

genera problem of the rectangular channel flow has 

been discussed considering various cases of insulating 

conducting walls. Jagadeesed [4] studied the hydro-

magnetic coquette flow between two conducting 

porous walls. Chandrasekhara  investigated the study 

MHD flow of viscous incompressible fluid in a 

squeeze film bounded above by a porous thin plate.    

Free convection flows are of great interest in a number 

of industrial applications such as fiber and granular 

insulation, geothermal systems, etc. buoyancy is also 

of importance in an environment where difference 

between land and air temperatures can give rise to 

complicated flow patterns. Magneto hydro-dynamic 

has attracted the attention of a  large number of 

scholars due to its diverse applications. In astrophysics 

and geophysics, it is applied to study the stellar and 

solar structures interstellar matter, radio propagation 

through the ionosphere, etc. in engineering it finds its 

application in MHD pumps, MHD bearing etc. 

 

The phenomenon of mass transfer is also very 

common in theory of stellar structure and observable 

effects are detectable, at least on the solar surface. The 

study of effects of magnetic field on free convection 

flow is important in liquid metals, electrolytes and 

ionized gases. The thermal physics of hydro magnetic  

Radiative flows are encountered in countless industrial 

and environment processes, e.g., heating and cooling 

chambers, fossil fuel combustion energy process, 

evaporation from large open water reservoirs, 

astrophysical flows, solar power technology and space 

vehicle re-entry. In view of the applications in 

industries, science and engineering fields the applicant 

plans to study some MHD flows through or past 

porous media. 

 

I. INTRODUCTION: 

The viscous flow through porous media occurs in 

many industrial situations and has got several 

important scientific and engineering applications such 

as flow through packed beds and ion-exchange beds, 

extraction of energy from the geothermal regions, 

filtration of solids from liquids. Literature survey 

reveals that most of the research works available in 

flow through porous media is confined to 

undeformable porous media and the work on 

deformable porous media is very limited. The coupled 

phenomenon of fluid flow and deformation of porous 

materials is a problem of prime importance in 

geomechanics and biomechanics. One such application 

of interaction of free flow and deformable porous 

media is the study of hemodynamic effect of the 

endothelial glycocalyx. In view of these applications 

Terzaghi [1] was the first among others who initiated 

the study of flow through deformable porous materials 

and subsequently Biot [2–4] continued the work of 

Ref. [1] and proposed a successful theory of soil 

consolidation and acoustic propagation. Further, Atkin 

and Craine [5], Bowen [6] and Bedford and 

Drumheller [7] made some important contributions to 

the theory of mixtures. Jayaraman [8] extended the 

work of Biot [2] to water transport in the artery wall.  

 

Mow et al. [9,10] and Holmes and Mow [11] 

developed a similar theory for the study of biological 

tissue mechanics and rectilinear cartilages. Sreenadh et 

al. [12] analyzed the Couette flow of a viscous fluid in 

a parallel plate channel in which a finite deformable 

porous layer is attached to the lower plate. It is found 

that the increase in the volume fraction component of 

fluid phase reduces the magnitude of velocity in the 

free flow region of the horizontal channel.All the 

above mentioned researchers restricted their analyses 

to Newtonian fluid flow through deformable porous 

media. It is essential to note that most of the 

technological indus-tries prefer non-Newtonian fluids. 

Prasad et al. [13,16] have done extensive work on 

porous media considering non-Newtonian fluid with 

different physical situation. Further, it is evinced from 

surveys that biofluids are classified as non-Newtonian 

fluids. Numerous researchers conveniently used 

Jeffrey model to explain the biological fluid flow in 

living organisms. 
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Peristaltic transport of a Jeffrey fluid under the 

influence of transverse magnetic field in an 

asymmetric channel was analyzed by Kothandapani 

and Srinivas [17] and Nadeem and Akbar[18] whereas 

Hayat and Ali [19] analyzed the same effects in a tube. 

Nadeem et al. [20] examined the effects of thermal 

radiation on the boundary layer flow of a Jeffrey fluid 

over an exponentially stretching surface. Vajravelu et 

al. [21] explained the influence of heat transfer on 

peristaltic transport of a Jeffrey fluid in a vertical 

porous stratum. Hayat et al. [22] studied the boundary 

layer flow of a Jeffrey fluid with convective boundary 

conditions. The effect of magnetic field on the 

peristaltic pumping of a Jeffrey fluid in an inclined 

channel was analyzed by Krishna Kumari et al. [23]. 

Recently, Bhaskara Reddy et al. [24] studied the flow 

of a Jeffrey fluid between torsionally oscillating disks 

and Santhosh [25] examined the flow of a Jeffery fluid 

through a porous medium in narrow tube. Most 

recently, Vajravelu et al. [26] analyzed the influence of 

free convection on nonlinear peristaltic transport of a 

Jeffrey fluid in a finite vertical porous stratum using 

the Brinkman model and established that the effect of 

viscous and Darcy dissipations is to reduce the rate of 

heat transfer in the finite vertical porous channel under 

peristalsis. In view of the above studies, the present 

paper deals with the effect of deformable porous layer 

on the classical Couette flow of a Jeffrey fluid between 

two parallel plates. MHD flow of a Jeffrey fluid 

between a deformable porous layer and a moving rigid 

plate is investigated. The fluid velocity, displacement 

of the solid matrix, mass flux and its fractional 

increase are obtained. The effects of various physical 

parameters on the flow quantities are discussed 

through graphs and Tables. 

 

II. MATHEMATICAL FORMULATION 

Consider, a steady, fully developed Couette flow 

through a channel with solid walls at y = −L and y = h 

and deformable porous layer of thickness L attached to 

the lower wall as shown in Fig. 1. The flow over the 

deformable layer is bounded above by a rigid plate 

moving with velocity U0.  

The flow region between the plates is divided into two 

regions. The flow region between the lower plate y = 

−L and the interface y = 0 is termed as deformable 

porous layer whereas the flow region between the 

interface y = 0 and the upper plate y = h is the free 

flow region. The fluid velocity in the free flow region 

and in the porous flow region are assumed respectively 

as (q , 0, 0) and (v, 0, 0). The displacement due to the 

deformation of the solid matrix is taken as (u, 0, 0). A 

pressure gradient ∂
∂
 

p
x = G0 is applied, producing an 

axially directed flow in the channel. Further, a uniform 

transverse magnetic field of strength B0 is applied 

perpendicular to the walls of channel. The constitutive 

equations for an incompressible Jeffrey fluid are   

 
where T and s are the Cauchy’s stress tensor and extra 

stress tensor respectively, p is the pressure, I is the 

identity tensor, λ1is the ratio of relaxation to 

retardation time, λ2 is the retardation time, γ is shear 

rate, and dots over the  quantities indicate 

differentiation with respect to time. In view of the 

assumptions mentioned above, the equations of motion 

in the deformable porous layer 

and free flow region are (See for details Barry et al. 

[27] and Ranganatha et al. [28]). 
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III. NONDIMENSIONALIZATION OF THE 

FLOW QUANTITIES 

It is convenient to introduce the following non-

dimensional quantities. 

 
In view of the above dimensionless quantities, after 

neglecting the hats (∧), the Eqs. (1)–(4) take the 

following form  

 
The parameter δ is a measure of the viscous drag of the 

outside fluid relative to drag in the porous medium.  

The parameter η is the ratio of the bulk fluid viscosity 

to the apparent fluid viscosity in the porous layer. The 

boundary conditions are 

 

 

 
IV. SOLUTION OF THE PROBLEM 

Equations (5)–(7) are coupled with differential  

quations that can be solved by using the boundary 

conditions  8a). The solid displacement and fluid 

velocities in the free flow region and deformable 

porous layer are obtained as below, 
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V. MASS FLOW RATE 

(i) Mass flow rate with deformable porous layer 

The dimensionless mass flow rate Md per unit width of 

the channel in the free flow region 

(0 ≤ y ≤ 1) is given by: 

 
(ii) Mass flow rate in absence of deformable porous 

layer 

The fluid velocity qr for the MHD Couette flow of a 

Jeffrey fluid between parallel plates y = 0 and y = 1 is 

obtained on solving equation (7) subject to the 

boundary conditions 

 

 

 
Fig. 2 a Velocity and displacement profiles for 

different values of U0 with δ = 2.0, ε = 0.2, λ1 = 0.5, 

M = 1.0, η = 0.5, φ f = 0.5, b velocity profile for 

different values of U0 with δ = 2.0, ε = 0.2, λ1 = 0.5, 

M = 1.0, η = 0.5, φ f = 0.5 

 

 
Let F denote the fractional increase in mass flow rate 

due to deformable porous layer and it is defined by; 

 

Shear Stress 

The shear stress in the free flow region in non-

dimensional form is given by 

 

 
and the shear stress at the upper plate is 

 

 
VI. RESULTS AND DISCUSSIONS 

The solutions for the fluid velocities q, v, in the free 

flow region and deformable porous layer and solid 

displacement of solid matrix u are evaluated 

numerically for different values of physical parameters 

such as the volume fraction of component φ f , the 

viscous drag parameter δ, the viscosity parameter η, 

the thickness of lowerwall ε,magnetic field parameter 

M, Jeffrey parameter λ1 and upper plate velocity U0. 

In order to understand the mathematical model,we 

present the numerical results graphically for fluid 

velocities q, v, in the free flow region and deformable 

porous layer and solid displacement of solid matrix u 
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with y in Figs. 2 to 6. Variations of Md , F and τ1 with 

φ f are tabulated in Tables 1, 2 and 3.Figures 2a, b 

elucidate the variation of fluid velocities q, v and solid 

displacement u in the channel which is calculated from 

Eqs. (9)–(11), for different values of U0. It is observed 

that the increment in the upper plate velocity enhances 

the fluid velocities q, v and displacement of the solid 

matrix u in the channel. The variation of fluid 

velocities q, v in the channel is calculated for different 

values of viscosity parameter η and is exhibited in Fig. 

3a, b. Here, the effect of the viscosity parameter is 

dominant in the lower half of the free flowregion and 

is not  

 

 

 
Significant in the upper half of the flowregion. It is 

also found that the velocity v increases with  

increasing viscosity parameter η.This is because 

increasing viscosity parameter μf /2μa  gives rise to an 

increase in the velocity in the porous layer (which may 

be due to reduction in apparent viscosity). Figure 4a, b 

explains the effect of velocities q, v and solid 

displacement u in the channel which is calculated for 

different values of volume fraction of component φ f 

.It is observed that at the interface y = 0, the velocities 

q, v increases with the increase in φ f and is reverse in 

the case of solid displacement u. The effect of 

increasing values of Jeffrey parameter λ1 is observed 

from Fig. 5a, b. It is clear from governing Eqs. (2) and 

(3), that an increase in Jeffrey parameter λ1 results in 

the decrease in the viscosity of the fluid.  

 

So the velocities q, vand solid displacement increases 

with the increase in λ1. The effect of different values 

of magnetic field parameter M on q,v and u is shown 

in Fig. 6a, b. It is observed that v and u decreases with 

the increase in the magnetic field parameter M and in 

the case of free flow velocity q opposite behavior are 

reported. This is due to the fact that with the increasing 

value of M, the Lorentz force associated with the 

magnetic field increases and it produces more 

resistance to the transport phenomena in the free flow 

region. The influence 
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Fig. 3 a Velocity profile for different values of η in 

deformable porous region with δ = 2.0, ε = 0.2,U0 = 

1.0, λ1 = 0.5, M = 1.0, φ f = 0.5, b velocity profile for 

different values of η in free flow region with  δ = 

2.0, ε = 0.2,U0 = 1.0, λ1 = 0.5, M = 1.0, φ f = 0.5. 

 

 

 
Fig. 4 a Velocity and displacement profiles for 

different values of φ f with δ = 2.0, ε = 0.2, λ1 = 0.5, 

M = 1.0, η = 0.5,U0 = 1.0, b velocity profile for 

different values of η with δ = 2.0, ε = 0.2,U0 = 1.0, 

λ1 =0.5, M = 1.0, η = 0.5, φ f = 0.5 

 

the thickness of the deformable porous media on the 

flow velocity and solid  is placement is depicted in Fig. 

7. It is clear that the increment in the thickness of the 

deformable porous layer enhances the velocity and 

displacement. This is similar to the behavior observed 

by Channabasappa et al. [30] for the undeformable 

porous layer. 

 

 

 
Fig. 5 a Velocity and displacement profile for 

different values of λ1 with δ = 2.0, ε = 0.2,U0 = 1.0, 

M =1.0, η = 0.5, φ f = 0.5, b velocity profile for 
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different values of λ1 with δ = 2.0, ε = 0.2,U0 = 1.0, 

η = 0.5, M = 1.0, φ f = 0.5 

 

The variation of mass flow rate for Md in the free flow 

region is calculated using Eq. (12) for different values 

of upper plate velocity U0 and magnetic field 

parameter and are tabulated in Table 1. It is observed 

that the mass flow rate increases with increase in the 

upper plate velocity U0. Further, the effect of magnetic 

field is to reduce the mass flow rate, depending on the 

strength of the magnetic field, which is similar to the 

observation made by Rudraiah et al. [29] for the 

Hartmann flow over a non-deformable permeable bed. 

Table 2 explains the variation of mass flow rate Md 

and fractional increase F with λ1 which is calculated 

using Eq. (14). It is clear from the table that both Md 

and F increases with increase in Jeffrey parameter λ1. 

Thus the effect of non-Newtonian Jeffrey parameter λ1 

enhance the flux in the free flow region. The variation 

of shear stress τ1 with λ1 and M is calculated using 

Eq. (15)  

 

 
Fig. 6 a Velocity and displacement profiles for 

different values of M in deformable propous region 

with δ = 2.0, ε = 0.2, λ1 = 0.5, η = 0.5,U0 = 1.0, φ f = 

0.5, b velocity profile for different values of M with 

δ = 2.0, ε = 0.2, λ1 = 0.5,U0 = 1.0, η = 0.5, φ f = 0.5 

And are tabulated in Table 3. It is evident from Table 3 

that the shear stress at the upper plate  decreases with 

the increase in Jeffrey parameter λ1 and increases for 

increasing magnetic 

field parameter M. 

 

VII. CONCLUSIONS 

The present study deals with MHD Couette flow of a 

Jeffrey fluid over a deformable porous layer. The 

results are analyzed for different values of the 

pertinent parameters, namely, Jeffrey 

 
Fig. 7 Velocity and displacement profiles for 

different values of ε in deformable propous region 

with δ =2.0, η = 0.5,U0 = 1.0, φ f = 0.5,M = 1.0 

 

Parameter, upper plate velocity, volume fraction 

component. The findings of the problem are helpful in 

understanding the blood (modeled as Jeffrey fluid) 

flow behavior near the tissue layer (modeled as a 

deformable porous layer). Some of the interesting 

findings are as follows:  

 

– The velocity of the fluid in the free flow region and 

the deformable porous layer and solid displacement 

increases with an increase in the upper plate velocity. 

 

– The effect of increase in the volume fraction 

component φ f enhances the fluid velocity between the 

parallel plates. But opposite behavior is observed in 

the case of solid displacement. 

 

– The effect of magnetic field reduces the fluid 

velocity in the free flow region. In the deformable 

porous layer, both the fluid velocity and displacement 
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of the solid matrix increase with increase in magnetic 

field. 

 

– The flux in the free flow region increases with an 

increase in the Jeffrey parameter. Also opposite 

behavior is noticed in case of magnetic field. 

 

– The effect of increase in the magnetic field 

parameter enhances the shear stress at the 

upper plate. 
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