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Fluid Dynamics: MHD Flows Through or Past a Porous Media
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ABSTRACT:

The study of fluid dynamics is core of the most
important branches of research in and applied sciences
because of its wide range of applications such as in
astrophysical, geophysical, aero dynamic problems. In
meteorology hydrology, and oceanography the study
of fluids is basic since the atmosphere and the ocean
are fluids. The study of fluids through or past porous
medium assumed importance because of its
importance applications in diverse fields of science,
engineering and technology. The practical applications
are in the percolation of water through soil extraction
and filtration of oils from wells, the drainage of water,
irrigation sanitary engineering and also in the inter
disciplinary fields such as biomedical engineering etc.
The flow in as porous medium is governed by Darcy’s
law or Brinkman model.

The classical Darcy’s law [Muskat[2]] states that the
pressure gradient pushes the fluid against the body
forces exerted by the medium which can be expressed

as Vz_TKVP. The flow gives good results in the

solutions when the flow is unidirectional or the flow is
at low speed. In general the specific discharge
increases the convective forces get developed and the
internal stress generates in the fluid due to its viscous
nature and produces distortion in the velocity field in
the case of highly porous media such as fiber glass,
papers of dandelion the flow occurs even in the
absence of the pressure gradient.

Volume No: 4 (2017), Issue No: 6 (June)

www.ijmetmr.com

’, ; ‘
'
A\

\

G.Viswanad Reddy
Professor,
Department of Mathematics,
S.V University,
Tirupati, A.P India.

Modifications for the classical Darcy’s law were
considered by Beavers and Joseph[6] saffman[10] and
others. A generalized Darcy’s law proposed by

Brinkman is given by 0 = -Vp — (%) v+ uv2v where
p and K are coefficients of viscosity of the fluid and

permeability of the porous medium. The generalized
equation for the flow through the porous medium is
p (?3_: + (v. V)V) = Vp+ uViv-— (%) v. The classical
Darcy’s law helps in studying flows through porous
medium. In the case of highly porous medium such as
porous of dandelion etc, the Darcy’s law fails to
explain the flow near the surface in the absence of
pressure gradient. The non-Daecian approach is
employed to study the problem of flow through highly
porous medium by several investigation [12, 15, 9 and
14]

The study of magneto hydrodynamic flows through or
past porous media is of considerable interest because
of its abundant application in several branches of
science and technology, such as Astrophysical,
Geophysical, ground water flow, petroleum
engineering problems and in developing magnetic
generators for obtaining electrical energy at minimum
cost. The development of MHD generators needs the
study of the effect of magnetic field on various flow
patterns. Hartmann [1] studied the problem of steady
magneto hydro dynamic channel flow of a conducting
fluid under a uniform magnetic field transverse to an
electrically insulated channel wall.
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Hughes and young [5] considered the problem of flow
through a rectangular channel bounded by walls which
are infinitely conduction or perfectly insulation. The
genera problem of the rectangular channel flow has
been discussed considering various cases of insulating
conducting walls. Jagadeesed [4] studied the hydro-
magnetic coquette flow between two conducting
porous walls. Chandrasekhara investigated the study
MHD flow of viscous incompressible fluid in a
squeeze film bounded above by a porous thin plate.
Free convection flows are of great interest in a number
of industrial applications such as fiber and granular
insulation, geothermal systems, etc. buoyancy is also
of importance in an environment where difference
between land and air temperatures can give rise to
complicated flow patterns. Magneto hydro-dynamic
has attracted the attention of a large number of
scholars due to its diverse applications. In astrophysics
and geophysics, it is applied to study the stellar and
solar structures interstellar matter, radio propagation
through the ionosphere, etc. in engineering it finds its
application in MHD pumps, MHD bearing etc.

The phenomenon of mass transfer is also very
common in theory of stellar structure and observable
effects are detectable, at least on the solar surface. The
study of effects of magnetic field on free convection
flow is important in liquid metals, electrolytes and
ionized gases. The thermal physics of hydro magnetic
Radiative flows are encountered in countless industrial
and environment processes, e.g., heating and cooling
chambers, fossil fuel combustion energy process,
evaporation from large open water reservoirs,
astrophysical flows, solar power technology and space
vehicle re-entry. In view of the applications in
industries, science and engineering fields the applicant
plans to study some MHD flows through or past
porous media.

I. INTRODUCTION:

The viscous flow through porous media occurs in
many industrial situations and has got several
important scientific and engineering applications such
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as flow through packed beds and ion-exchange beds,
extraction of energy from the geothermal regions,
filtration of solids from liquids. Literature survey
reveals that most of the research works available in
flow through porous media is confined to
undeformable porous media and the work on
deformable porous media is very limited. The coupled
phenomenon of fluid flow and deformation of porous
materials is a problem of prime importance in
geomechanics and biomechanics. One such application
of interaction of free flow and deformable porous
media is the study of hemodynamic effect of the
endothelial glycocalyx. In view of these applications
Terzaghi [1] was the first among others who initiated
the study of flow through deformable porous materials
and subsequently Biot [2-4] continued the work of
Ref. [1] and proposed a successful theory of soil
consolidation and acoustic propagation. Further, Atkin
and Craine [5], Bowen [6] and Bedford and
Drumbheller [7] made some important contributions to
the theory of mixtures. Jayaraman [8] extended the
work of Biot [2] to water transport in the artery wall.

Mow et al. [9,10] and Holmes and Mow [11]
developed a similar theory for the study of biological
tissue mechanics and rectilinear cartilages. Sreenadh et
al. [12] analyzed the Couette flow of a viscous fluid in
a parallel plate channel in which a finite deformable
porous layer is attached to the lower plate. It is found
that the increase in the volume fraction component of
fluid phase reduces the magnitude of velocity in the
free flow region of the horizontal channel.All the
above mentioned researchers restricted their analyses
to Newtonian fluid flow through deformable porous
media. It is essential to note that most of the
technological indus-tries prefer non-Newtonian fluids.
Prasad et al. [13,16] have done extensive work on
porous media considering non-Newtonian fluid with
different physical situation. Further, it is evinced from
surveys that biofluids are classified as non-Newtonian
fluids. Numerous researchers conveniently used
Jeffrey model to explain the biological fluid flow in
living organisms.
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Peristaltic transport of a Jeffrey fluid under the
influence of transverse magnetic field in an
asymmetric channel was analyzed by Kothandapani
and Srinivas [17] and Nadeem and Akbar[18] whereas
Hayat and Ali [19] analyzed the same effects in a tube.
Nadeem et al. [20] examined the effects of thermal
radiation on the boundary layer flow of a Jeffrey fluid
over an exponentially stretching surface. Vajravelu et
al. [21] explained the influence of heat transfer on
peristaltic transport of a Jeffrey fluid in a vertical
porous stratum. Hayat et al. [22] studied the boundary
layer flow of a Jeffrey fluid with convective boundary
conditions. The effect of magnetic field on the
peristaltic pumping of a Jeffrey fluid in an inclined
channel was analyzed by Krishna Kumari et al. [23].
Recently, Bhaskara Reddy et al. [24] studied the flow
of a Jeffrey fluid between torsionally oscillating disks
and Santhosh [25] examined the flow of a Jeffery fluid
through a porous medium in narrow tube. Most
recently, Vajravelu et al. [26] analyzed the influence of
free convection on nonlinear peristaltic transport of a
Jeffrey fluid in a finite vertical porous stratum using
the Brinkman model and established that the effect of
viscous and Darcy dissipations is to reduce the rate of
heat transfer in the finite vertical porous channel under
peristalsis. In view of the above studies, the present
paper deals with the effect of deformable porous layer
on the classical Couette flow of a Jeffrey fluid between
two parallel plates. MHD flow of a Jeffrey fluid
between a deformable porous layer and a moving rigid
plate is investigated. The fluid velocity, displacement
of the solid matrix, mass flux and its fractional
increase are obtained. The effects of various physical
parameters on the flow quantities are discussed
through graphs and Tables.

Il. MATHEMATICAL FORMULATION
Consider, a steady, fully developed Couette flow
through a channel with solid wallsaty =—-L andy = h
and deformable porous layer of thickness L attached to
the lower wall as shown in Fig. 1. The flow over the
deformable layer is bounded above by a rigid plate
moving with velocity U,.
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The flow region between the plates is divided into two
regions. The flow region between the lower plate y =
—L and the interface y = 0 is termed as deformable
porous layer whereas the flow region between the
interface y = 0 and the upper plate y = h is the free
flow region. The fluid velocity in the free flow region
and in the porous flow region are assumed respectively
as (g, 0, 0) and (v, 0, 0). The displacement due to the
deformation of the solid matrix is taken as (u, 0, 0). A
pressure gradient ,° °, = Gq is applied, producing an
axially directed flow in the channel. Further, a uniform
transverse magnetic field of strength B, is applied
perpendicular to the walls of channel. The constitutive
equations for an incompressible Jeffrey fluid are

f:—ﬁf+§.§=ﬁ@+h%")

where T and s are the Cauchy’s stress tensor and extra
stress tensor respectively, p is the pressure, | is the
identity tensor, Alis the ratio of relaxation to
retardation time, A2 is the retardation time, y is shear
rate, and dots over the guantities indicate
differentiation with respect to time. In view of the
assumptions mentioned above, the equations of motion
in the deformable porous layer

and free flow region are (See for details Barry et al.
[27] and Ranganatha et al. [28]).
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111. NONDIMENSIONALIZATION OF THE
FLOW QUANTITIES

It is convenient to introduce the following non-
dimensional quantities.

Gy, G, WGy,

y=hy,u=-——i,v=—-——V, ¢=-—of,
H Kf i
L WGy - I
e=— Uy=——1Upi=-——
h L hGy

In view of the above dimensionless quantities, after
neglecting the hats (A), the Egs. (1)—(4) take the
following form

)

&
— = -h 5
i = -l ()
d’u_“ 364 1- ¢! 6
F' +|)n[(+ )1—¢] (0)
dl
d—q—M%mn 14 0

wher = H =8 = 6=

The parameter 3 is a measure of the viscous drag of the
outside fluid relative to drag in the porous medium.
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The parameter 7 is the ratio of the bulk fluid viscosity
to the apparent fluid viscosity in the porous layer. The
boundary conditions are

it y=-ev=0, u=0, (fa)
- ¢f L dq | du &
=l a W bl |
it y=lg=10 (8c)

IV. SOLUTION OF THE PROBLEM

Equations (5)—(7) are coupled with differential
quations that can be solved by using the boundary
conditions 8a). The solid displacement and fluid
velocities in the free flow region and deformable
porous layer are obtained as below,
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V. MASS FLOW RATE
(i) Mass flow rate with deformable porous layer
The dimensionless mass flow rate Md per unit width of
the channel in the free flow region
(0<y<1)isgiven by:

|

@ﬂ—q(“ﬂq—qn 1
My= [ gdy= $— 1
dfm p T (12)

0

(if) Mass flow rate in absence of deformable porous
layer

The fluid velocity gr for the MHD Couette flow of a
Jeffrey fluid between parallel platesy =0andy =1 is
obtained on solving equation (7) subject to the
boundary conditions

at y=0:9,=0

o Egriom 20, Lo &8
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Fig. 2 a Velocity and displacement profiles for
different values of U0 with 6 =2.0,£=0.2, A1 = 0.5,
M =1.0,n=0.5, ¢ f=0.5, b velocity profile for
different values of U0 with 6 =2.0, £=0.2, A1 = 0.5,

M=1.0,n=05¢f=05
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aty=lg=l

a1l
I can be seen that g, = Ae” + Be™ + # where A = Ely -B.B= ]W%%

The dimensionless mass flow rate My per unit width of the channel n the free flow region
(0<y<1)isgivenby:

| UHMUMWHW%W%MHHMM
Mj‘ = }(]{d} =

(144"

(13
I

Let F denote the fractional increase in mass flow rate
due to deformable porous layer and it is defined by;

o Md — M,r
= M]_

F

(14)

Shear Stress
The shear stress in the free flow region in non-
dimensional form is given by

1 dg
T @y

and the shear stress at the upper plate is

oy
1= -0’ 1§

VI. RESULTS AND DISCUSSIONS

The solutions for the fluid velocities g, v, in the free
flow region and deformable porous layer and solid
displacement of solid matrix u are evaluated
numerically for different values of physical parameters
such as the volume fraction of component ¢ f , the
viscous drag parameter J, the viscosity parameter m,
the thickness of lowerwall ,magnetic field parameter
M, Jeffrey parameter A1 and upper plate velocity UO.
In order to understand the mathematical model,we
present the numerical results graphically for fluid
velocities g, v, in the free flow region and deformable
porous layer and solid displacement of solid matrix u
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with y in Figs. 2 to 6. Variations of Md , F and t1 with
¢ f are tabulated in Tables 1, 2 and 3.Figures 2a, b
elucidate the variation of fluid velocities g, v and solid
displacement u in the channel which is calculated from
Egs. (9)—(11), for different values of UQ. It is observed
that the increment in the upper plate velocity enhances
the fluid velocities g, v and displacement of the solid
matrix u in the channel. The variation of fluid
velocities g, v in the channel is calculated for different
values of viscosity parameter n and is exhibited in Fig.
3a, b. Here, the effect of the viscosity parameter is
dominant in the lower half of the free flowregion and
iS not

Table 1 Variation of My with ¢f for different values of Ug and M for fixed values of § = 2.0,6 =02, 4y =
03,7=05M=Tandd=20,e=024 =05n=0510ph=1

! Md
of U=l =2 =3 Up=4 M=1 M=2 M=} M=4

02 0557112 LOGII0 1451108 1898106 0557112 0.167963 0086183 0.033692

03 0560509 1009183 1457838 1006532 0360509 0.172616 0.000807 0.038203

04 0565185 1016168 1467150 1018133 0363185 0.178048  0.007021  0.064194
0.1

=

5 0571066 104951 1478836 1932721 0571066 0186796  0.104506  0.071381
6 0578060 1035306 1492733 1950070 0.578060 0193963 0.113276  0.071%464
T 0586060 104739 1508636 1969922 0.586062 0206230 0.1221%4  0.088147
8 0504960 1060639 1526371 1991995 0.5M960 0217405 0.132892 0.097159
01
01

= o = =

9 0604635 LOT5088 1543541 2015995 0604633 0229246 0143333 0.106268
10 0514964 1090516 1.566067 2041619 0614064 0241550 0153908 0.115284

Table 2 Variation of My and F with ¢ for different values of 2 for fixed values of M = 1,5 = 20, ¢ =
02,7=05,Up=1

of My F
=0 y=05 =1 ny=15 4=05 =1 ny=15 5=2

02 054430 0557112 0572397 0586436 1602474 4683919 6947339 9448118
03 0543577 0560509 0576005 0590243 1714987 4720755 6998679  9.516801
04 0547916 0565185 0380965 0.505443 1745980 4771022 7069141 9610087
05 0353384 0571066 0387190 0601959 2784957 483865  T.157440  9.728827
06 0559003 0578060 0594578 0600674 2831311 4906249  7.262000 9.868101
)567382 0586062 0.603009 0.618450 2884352 4990002 7381047 10.026314
)S75T25 0594960 0612356 0.628172 2943327 5082853 7512670 10.200806
)5B4828 0604635 0.622487 0.638667 3007447 5183483  T.654800  10.388842

0
0
0
0504584 0614964 0633266 0640800 3075910 5290358  7.805738 10587707
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Table 3 Vasiation of  at the upper wall y = | with 4/ for different values of A and M for fxed values of
M=15=20¢=02 hy =035,7=03, U[:. =lands=20¢ :02J«| =05,7=03, U“ =

¥
W=05 =l n=13 =1 M=l M=l M=} N=4

02 0511925 0362034 0260741 0209220 0520925 LS2090 2302635 3100983
03 05IMB 0359872 0261271 0207162 0517923 1520141 230433 3108891
04 031412 0355662 0263879 02330 051412 1515001 21219746 3107441
05 050482 0350378 0259%29 0200808 0503482 1508508 2293804 3103702
06 049740 0344108 0254597 0196634 0497240 1500923 2289631 3103743
07 0487800 0336952 0248867 0.191893  OASTR09 1492421 2285056 3101643
08 0477323 0329008 0242531 086665 04T 1483181 2280201 3009460
09 0465921 0320420 0235683 0.I81030 0465922 147334 2275182 3097255
[0 0453749 0311271 0228424 0075071 0AS349 1463197 2270099  3.093072

Significant in the upper half of the flowregion. It is
also found that the wvelocity v increases with
increasing viscosity parameter m.This is because
increasing viscosity parameter uf /2upa gives rise to an
increase in the velocity in the porous layer (which may
be due to reduction in apparent viscosity). Figure 4a, b
explains the effect of velocities g, v and solid
displacement u in the channel which is calculated for
different values of volume fraction of component ¢ f
It is observed that at the interface y = 0, the velocities
g, v increases with the increase in ¢ fand is reverse in
the case of solid displacement u. The effect of
increasing values of Jeffrey parameter A1 is observed
from Fig. 5a, b. It is clear from governing Egs. (2) and
(3), that an increase in Jeffrey parameter A1 results in
the decrease in the viscosity of the fluid.

So the velocities g, vand solid displacement increases
with the increase in A1. The effect of different values
of magnetic field parameter M on g,v and u is shown
in Fig. 6a, b. It is observed that v and u decreases with
the increase in the magnetic field parameter M and in
the case of free flow velocity q opposite behavior are
reported. This is due to the fact that with the increasing
value of M, the Lorentz force associated with the
magnetic field increases and it produces more
resistance to the transport phenomena in the free flow
region. The influence

June 2017

Page 333



ISSN No: 2348-4845

Technology, Management and Research

A Peer Reviewed Open Access International Journal

=31, 264, L8

0.3 e 011 g ik [
¥
[LIRT
[Ts
Lol = L34, 066, 1.0
L

e

024

i T

wn (5] [T} (13 [T 18

Fig. 3 a Velocity profile for different values of n in
deformable porous region with 6 = 2.0, £ =0.2,U0 =
1.0,A1=0.5,M =1.0, ¢ £=0.5, b velocity profile for

different values of n in free flow region with & =
2.0,6=0.2,U0=1.0,A1=0.5 M=1.0,¢f=0.5.
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Fig. 4 a Velocity and displacement profiles for
different values of ¢ f with 6 =2.0, £ =0.2, A1 = 0.5,
M = 1.0, =0.5U0 = 1.0, b velocity profile for
different values of n with 6 = 2.0, € =0.2,U0 = 1.0,

21 =05, M=1.0,1=05,¢f=05

the thickness of the deformable porous media on the
flow velocity and solid is placement is depicted in Fig.
7. 1t is clear that the increment in the thickness of the
deformable porous layer enhances the velocity and
displacement. This is similar to the behavior observed
by Channabasappa et al. [30] for the undeformable
porous layer.

(a) w1

LAty

4-RLle.ng

(b} 1.8
/
ax- %

Aasie Ly _E

Fig. 5 a Velocity and displacement profile for
different values of A1 with 8 =2.0, £ =0.2,U0 = 1.0,

M =1.0,1=0.5, ¢ f=0.5, b velocity profile for
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different values of A1 with 8 =2.0, £ =0.2,U0 = 1.0,
n=05M=10,9f=05

The variation of mass flow rate for Md in the free flow
region is calculated using Eq. (12) for different values
of upper plate velocity UO and magnetic field
parameter and are tabulated in Table 1. It is observed
that the mass flow rate increases with increase in the
upper plate velocity UO. Further, the effect of magnetic
field is to reduce the mass flow rate, depending on the
strength of the magnetic field, which is similar to the
observation made by Rudraiah et al. [29] for the
Hartmann flow over a non-deformable permeable bed.
Table 2 explains the variation of mass flow rate Md
and fractional increase F with A1 which is calculated
using Eq. (14). It is clear from the table that both Md
and F increases with increase in Jeffrey parameter A1.
Thus the effect of non-Newtonian Jeffrey parameter A1
enhance the flux in the free flow region. The variation
of shear stress t1 with A1 and M is calculated using
Eqg. (15)

(3) 016 ———|

0,144 -

o184 M=d4.0, 202000 -7 -
- -

5 008

Fig. 6 a Velocity and displacement profiles for
different values of M in deformable propous region
with$=2.0,£€=02,11=051n=05U0=10,¢f=
0.5, b velocity profile for different values of M with

6=20,6=02,A1=05U0=10,n=05,¢f=0.5
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And are tabulated in Table 3. It is evident from Table 3
that the shear stress at the upper plate decreases with
the increase in Jeffrey parameter A1 and increases for
increasing magnetic

field parameter M.

VII.  CONCLUSIONS

The present study deals with MHD Couette flow of a
Jeffrey fluid over a deformable porous layer. The
results are analyzed for different values of the
pertinent parameters, namely, Jeffrey

L

L]
Lh-
LE ]
B
T wis
(AL

i
-0

Fig. 7 Velocity and displacement profiles for
different values of € in deformable propous region
with 6 =2.0,1=0.5U0=10,¢f=05M=1.0

Parameter, upper plate velocity, volume fraction
component. The findings of the problem are helpful in
understanding the blood (modeled as Jeffrey fluid)
flow behavior near the tissue layer (modeled as a
deformable porous layer). Some of the interesting
findings are as follows:

— The velocity of the fluid in the free flow region and
the deformable porous layer and solid displacement
increases with an increase in the upper plate velocity.

— The effect of increase in the volume fraction
component ¢ f enhances the fluid velocity between the
parallel plates. But opposite behavior is observed in
the case of solid displacement.

— The effect of magnetic field reduces the fluid

velocity in the free flow region. In the deformable
porous layer, both the fluid velocity and displacement

June 2017

Page 335



ISSN No: 2348-4845

Technology, Management and Research

A Peer Reviewed Open Access International Journal

of the solid matrix increase with increase in magnetic
field.

— The flux in the free flow region increases with an
increase in the Jeffrey parameter. Also opposite
behavior is noticed in case of magnetic field.

— The effect of increase in the magnetic field
parameter enhances the shear stress at the
upper plate.
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