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ABSTRACT 

Content-aware image retrieval is a very important topic 

nowadays, when the amount of digital image data is 

highly increasing. Existing sketch based image 

retrieval (SBIR) systems perform at a reduced level on 

real life images, where background data may distort 

image descriptors and retrieval results. To avoid this, a 

preprocessing step is introduced in this paper to 

distinguish between foreground and background, using 

integrated saliency detection. To build the descriptor 

only on the most relevant pixels, orientation feature is 

extracted at salient Modified Harris for Edges and 

Corners (MHEC) keypoints using an improved edge 

map, resulting in a Salient Orientation Histogram 

(SOH). The proposed SBIR system is also augmented 

with a segmentation step for object detection. The 

method is tested on the THUR15000 database, 

containing random internet images. Image retrieval 

and object detection both give promising results 

compared to other state-of-the-art methods. 

 

1. INTRODUCTION 

Content-aware image retrieval is a very important topic 

nowadays with the constantly increasing amount of 

digital image data. Outline sketches have recently been 

shown to be more comfortable for retrieval than a 

complete image, as sketch based image retrieval (SBIR) 

expects simpler descriptors resulting in faster 

comparison and retrieval. 

 

Descriptors can be grouped into global and local types. 

While the former includes information of the whole 

image, the latter concentrates only on a small image part. 

Recently published SBIR systems employs local 

features, as global ones are not handling affine variations 

well, and the fact that fine details of the drawing are 

often missing. 

 

Existing SBIR systems are mainly tested on image 

databases without significant background information. 

However, randomly selected internet images often 

contain a lot of background data with varying texture 

and color, which can influence the image descriptors and 

make the comparisons more challenging. To avoid this, a 

preprocessing step can help to distinguish between 

foreground and background, which increases the 

importance of saliency detection. 

 

However, the dimension of a salient area description can 

still be very high, thus further reduction is needed. 

Interest point detectors, like Harris emphasize relevant 

structures in the image. Thus, if the local descriptors are 

calculated at interest point locations, the extracted salient 

region information can be reduced while retaining their 

relevance. Modified Harris for Edges and Corners 

(MHEC) was proposed earlier by the author   for 

efficient image segmentation, and the method’s strong 

ability for object detection was also shown previously, 

supporting its capability of holding efficient structure 

and content information for image comparisons and 

retrieval. 

 

Orientation as a descriptor has already been introduced 

in earlier SBIR systems; moreover many improvements 

of the Histogram of Oriented Gradients (HoG) were 

published over the past years. The original HoG 

calculated the histogram for the whole image. Improved 

adaptations of HoG for SBIR systems are mostly using 

canny edge maps with orientation histograms calculated 

on pixels of the Canny edge map or randomized pixels. 

Following this technique, the background texture may 
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create false edges in the canny edge map and the 

keypoint selection could include background hits. Both 

of them may cause the distortion of the orientation 

histogram and reduced retrieval accuracy. 

 

2. SALIENT KEYPOINT DETECTION 

2.1. Texture distinctiveness 

Statistical texture distinctiveness model was introduced 

in and it used a rotational-invariant neighborhood-based 

textural representation to learn representative texture 

atoms for sparse texture model. Statistical texture 

distinctiveness measures the uniqueness of the atoms 

and the relationships between them, by constructing a 

weighted graph model. The S(x, y) texture 

distinctiveness map (see Fig. 1(b)) quantifies the 

expected relative distinctiveness of each texture, 

incorporating high-level aspects, such as spatial location 

of regions relative to the image center. For detailed 

description, see. The S map is thresholded with Otsu’s 

method  to extract highly distinctive image parts. By 

selecting the region of maximal area, an automatic SROI 

is initialized. In Figure 1(b) the SROI areas can be well 

identified in both samples. 

 
Figure1: Sample images for illustrating the proposed 

SBIR system: (a) the original image; (b) S texture 

distinctiveness map; (c) Rmod improved edge map; (d) 

MHECS point set; (e) canny edge map and (f) the 

detection result achieved by DHVFC. 

 

2.2. MHEC interest point set and improved edge 

map: 

If the aim is to emphasize object contours, the Modified 

Harris for Edges and Corners (MHEC) detector is shown 

to be an efficient tool. The method adapts the Harris 

matrix and uses its λ1 and λ2 eigenvalues in the 

following modification of the R characteristic function. 

Rmod = max (λ1, λ2).      (1) 

The introduced modification has the ability to emphasize 

edge and corner regions in a balanced manner. MHEC 

interest points (pi) are selected as the local maxima of 

the Rmod. The point set is able to represent points-of-

interest inside the salient SROI region, therefore, the 

importance of the extracted pixels is two-fold: while the 

S ensures the distinctiveness of the selected texture; 

MHEC points represent potential object contours inside 

the SROI area. Features extracted for the MHEC points 

are able to describe the corresponding object more 

efficiently. The point subset inside the SROI area is 

marked by MHECS, samples are given in Fig. 1(d). 

Besides the MHEC point set, the calculated Rmod map 

emphasizes the object contours, therefore it can be 

applied for gradient calculation and for the extraction of 

the orientation histogram. By using the Rmod map, a 

more specific contour map is obtained, than other 

traditional edge maps (e.g. Canny) used in previous 

SBIR systems. 

The examples of Figure 1 illustrate the main contribution 

of the paper: while the Canny edge maps in earlier SBIR 

systems often include false edges which can severely 

distort the orientation histograms (Fig. 1(e)), the 

improved edge map (Fig. 1(c)) together with the salient 

point set (Fig. 1(d)) is able to sample the most relevant 

pixels of the image and extract essential orientation 

information. For earlier methods, the parallel edges of 

the background in the butterfly image and the presence 

of other objects in the dog image may influence the 

orientation statistics, leading to distorted histograms. 

3. PROPOSED METHOD 

Image Retrieval and Segmentation 

Here for image retrieval we are using Scale Invariant 

Feature Transform. 

 

3.1. Scale-invariant feature transform (SIFT): 

SIFT is an algorithm in computer vision to detect and 

describe local features in images. For any object in an 
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image, interesting points on the object can be extracted 

to provide a "feature description" of the object. This 

description, extracted from a training image, can then be 

used to identify the object when attempting to locate the 

object in a test image containing many other objects. To 

perform reliable recognition, it is important that the 

features extracted from the training image be detectable 

even under changes in image scale, noise and 

illumination. Such points usually lie on high-contrast 

regions of the image, such as object edges. 

 

Another important characteristic of these features is that 

the relative positions between them in the original scene 

shouldn't change from one image to another. 

 

A. Scale-space extrema detection: 

We begin by detecting points of interest, which are 

termed keypoints in the SIFT framework. The image is 

convolved with Gaussian filters at different scales, and 

then the difference of successive Gaussian-blurred 

images are taken. Key points are then taken as 

maxima/minima of the Difference of Gaussian(DoG) 

that occur at multiple scales. 

 

Specifically, a DoG image   is given by where   is the 

convolution of the original image   with the Gaussian 

blur  at scale  i.e. Hence a DoG image between scales 

and   is just the difference of the Gaussian-blurred 

images at scales   and  For scale space extrema detection 

in the SIFT algorithm, the image is first convolved with 

Gaussian-blurs at different scales. The convolved images 

are grouped by octave (an octave corresponds to 

doubling the value of), and the value of   is selected so 

that we obtain a fixed number of convolved images per 

octave. Then the Difference-of-Gaussian images are 

taken from adjacent Gaussian-blurred images per octave. 

 

Once DoG images have been obtained, keypoints are 

identified as local minima/maxima of the DoG images 

across scales. This is done by comparing each pixel in 

the DoG images to its eight neighbors at the same scale 

and nine corresponding neighboring pixels in each of the 

neighboring scales. If the pixel value is the maximum or 

minimum among all compared pixels, it is selected as a 

candidate keypoint. 

 

This keypoint detection step is a variation of one of 

the blob detection methods developed by Lindeberg by 

detecting scale-space extrema of the scale normalized 

Laplacian,
 
that is detecting points that are local extrema 

with respect to both space and scale, in the discrete case 

by comparisons with the nearest 26 neighbours in a 

discretized scale-space volume. The difference of 

Gaussians operator can be seen as an approximation to 

the Laplacian, with the implicit normalization in 

the pyramid also constituting a discrete approximation of 

the scale-normalized Laplacian. 

 

B.Keypoint localization: 

Scale-space extrema detection produces too many 

keypoint candidates, some of which are unstable. The 

next step in the algorithm is to perform a detailed fit to 

the nearby data for accurate location, scale, and ratio 

of principal curvatures. This information allows points to 

be rejected that have low contrast (and are therefore 

sensitive to noise) or are poorly localized along an edge. 

 

First, for each candidate keypoint, interpolation of 

nearby data is used to accurately determine its position. 

The initial approach was to just locate each keypoint at 

the location and scale of the candidate keypoint. The 

new approach calculates the interpolated location of the 

extremum, which substantially improves matching and 

stability. The interpolation is done using the 

quadratic Taylor expansion of the Difference-of-

Gaussian scale-space function,   with the 

candidate keypoint as the origin. This Taylor expansion 

is given by: 

 
Where D and its derivatives are evaluated at the 

candidate keypoint and   is the 

offset from this point. The location of the extremum is 

determined by taking the derivative of this function with 
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respect to x and setting it to zero. If the offset x^ is larger 

than 0.5 in any dimension, then that's an indication that 

the extremum lies closer to another candidate keypoint. 

In this case, the candidate keypoint is changed and the 

interpolation performed instead about that point. 

Otherwise the offset is added to its candidate keypoint to 

get the interpolated estimate for the location of the 

extremum. 

 

C. Get rid of Low Contrast points: 

Key points generated in the previous step produce a lot 

of key points. Some of them lie along an edge, or they 

don't have enough contrast. In both cases, they are not 

useful as features. So we get rid of them. The approach 

is similar to the one used in the Harris Corner Detector 

for removing edge features. 

 

This is simple. If the magnitude of the intensity (i.e., 

without sign) at the current pixel in the DoG image (that 

is being checked for minima/maxima) is less than a 

certain value, it is rejected. 

 

Because we have subpixel keypoints (we used the Taylor 

expansion to refine keypoints), we again need to use the 

taylor expansion to get the intensity value at subpixel 

locations. If it's magnitude is less than a certain value, 

we reject the keypoint. 

 

D. Salient Oriented Histogram: 

After step 3, we have legitimate key points. They've 

been tested to be stable. We already know the scale at 

which the keypoint was detected (it's the same as the 

scale of the blurred image). So we have scale invariance. 

The next thing is to assign an orientation to each 

keypoint. This orientation provides rotation invariance. 

 

The idea is to collect gradient directions and magnitudes 

around each keypoint. Then we figure out the most 

prominent orientation(s) in that region. And we assign 

this orientation(s) to the keypoint. 

 

Any later calculations are done relative to this 

orientation. This ensures rotation invariance. 

The size of the "orientation collection region" around the 

keypoint depends on it's scale. The bigger the scale, the 

bigger the collection region.  

First, the Gaussian-smoothed image  at the 

keypoint's scale  is taken so that all computations are 

performed in a scale-invariant manner. For an image 

sample L(x,y) at scale , the gradient 

magnitude, m(x,y), and orientation, , are 

precomputed using pixel differences: 

 

Gradient magnitudes and orientations are calculated 

using these formulae: 

 
 

The magnitude and orientation is calculated for all pixels 

around the keypoint. Then, A histogram is created for 

this. 

 
Figure2: Orientation assignment 

 

In this histogram, the 360 degrees of orientation are 

broken into 36 bins (each 10 degrees). Lets say the 

gradient direction at a certain point (in the "orientation 

collection region") is 18.759 degrees, then it will go into 

the 10-19 degree bin. And the "amount" that is added to 

the bin is proportional to the magnitude of gradient at 

that point. 

 

Once you've done this for all pixels around the keypoint, 

the histogram will have a peak at some point. Above, 

you see the histogram peaks at 20-29 degrees. So, the 

http://www.aishack.in/tutorials/histograms-from-simplest-to-the-most-complex/
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keypoint is assigned orientation 3 (the third bin). Also, 

any peaks above 80% of the highest peak are converted 

into a new keypoint. This new keypoint has the same 

location and scale as the original. But it's orientation is 

equal to the other peak. 

 

So, orientation can split up one keypoint into multiple 

keypoints. 

 

E.Keypoint descriptor 

Previous steps found keypoint locations at particular 

scales and assigned orientations to them. This ensured 

invariance to image location, scale and rotation. Now we 

want to compute a descriptor vector for each keypoint 

such that the descriptor is highly distinctive and partially 

invariant to the remaining variations such as 

illumination, 3D viewpoint, etc. This step is performed 

on the image closest in scale to the keypoint's scale.  

 
Figure3: locating the descriptor points. 

 

First a set of orientation histograms is created on 4x4 

pixel neighborhoods with 8 bins each. These histograms 

are computed from magnitude and orientation values of 

samples in a 16 x 16 region around the keypoint such 

that each histogram contains samples from a 4 x 4 

subregion of the original neighborhood region. The 

magnitudes are further weighted by a Gaussian function 

with   equal to one half the width of the descriptor 

window. The descriptor then becomes a vector of all the 

values of these histograms. Since there are 4 x 4 = 16 

histograms each with 8 bins the vector has 128 elements. 

This vector is then normalized to unit length in order to 

enhance invariance to affine changes in illumination. To 

reduce the effects of non-linear illumination a threshold 

of 0.2 is applied and the vector is again normalized. 

Although the dimension of the descriptor, i.e. 128, seems 

high, descriptors with lower dimension than this don't 

perform as well across the range of matching tasks and 

the computational cost remains low due to the 

approximate BBF method used for finding the nearest-

neighbor. Longer descriptors continue to do better but 

not by much and there is an additional danger of 

increased sensitivity to distortion and occlusion. It is 

also shown that feature matching accuracy is above 50% 

for viewpoint changes of up to 50 degrees. Therefore, 

SIFT descriptors are invariant to minor affine changes. 

To test the distinctiveness of the SIFT descriptors, 

matching accuracy is also measured against varying 

number of keypoints in the testing database, and it is 

shown that matching accuracy decreases only very 

slightly for very large database sizes, thus indicating that 

SIFT features are highly distinctive. 

 

4. Experimental Results: 

An image is considered as true positive if it contains a 

target object specified by the keywords. According to 

the results, the proposed SOH-based retrieval looks 

promising, the achieved true positive ratio is the highest 

in almost all categories and the method reached the 

highest average relevance on the whole database. 

 

The best retrieval images for all the three methods are 

shown in Figure. Proposed automatic detection 

technique is able to perform at high accuracy, achieving 

the highest performance in the majority of the keywords 

and for the average  on the whole database. 

 
Figure4: GUI for content based image retrieval. 
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Figure5: Input image taken from database. 

 

 
Figure6: Retrieved image. 

 

5. Conclusion: 

In this paper, a novel SBIR system is introduced, using a 

salient keypoint based orientation histogram (SOH). The 

proposed method first extracts the salient image region 

based on texture distinctiveness, followed by a Modified 

Harris for Edges and Corners (MHEC) interest point 

detection. This way the most relevant pixels of the image 

are selected to build an orientation histogram on an 

improved edge map, instead of applying Canny edge 

map like earlier SBIR systems. 

The edge map is also adapted for segmentation. Overall, 

the proposed descriptor achieves high performance on 

the dataset, and it also provides an efficient object 

detection method. Future work will investigate the 

improved integration of saliency in SBIR systems. 
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