

 Page 509

Wireless Sensor Networks Path Inference in: I Path

M.Soumya

M.Tech Student,

Gokul Institute of Technology & Sciences,

Piridi, Vizianagaram, Bobbili, Andhra Pradesh.

G Bhagya Lakshmi

Assistant Professor,

Gokul Institute of Technology & Sciences,

Piridi, Vizianagaram, Bobbili, Andhra Pradesh.

ABSTRACT:

Recent wireless sensor networks (WSNs) are

becoming increasingly complex with the growing

network scale and the dynamic nature of wireless

communications. Many measurement and diagnostic

approaches depend on per-packet routing paths for

accurate and fine-grained analysis of the complex

network behaviors. In this paper, we propose iPath, a

novel path inference approach to reconstructing the

per-packet routing paths in dynamic and large-scale

networks. The basic idea of iPath is to exploit high

path similarity to iteratively infer long paths from short

ones. iPath starts with an initial known set of paths and

performs path inference iteratively. iPath includes a

novel design of a lightweight hash function for

verification of the inferred paths. In order to further

improve the inference capability as well as the

execution efficiency, iPath includes a fast

bootstrapping algorithm to reconstruct the initial set of

paths. We also implement iPath and evaluate its

performance using traces from large-scale WSN

deployments as well as extensive simulations. Results

show that iPath achieves much higher reconstruction

ratios under different network settings compared to

other state-of-the-art approaches.

EXISTING SYSTEM:

 With the routing path of each packet, many

measurement and diagnostic approaches are able

to conduct effective management and protocol

optimizations for deployed WSNs consisting of a

large number of unattended sensor nodes.

For example, PAD depends on the routing path

information to build a Bayesian network for

inferring the root causes of abnormal phenomena.

 Path information is also important for a network

manager to effectively manage a sensor network.

For example, given the per-packet path

information, a network manager can easily find out

the nodes with a lot of packets forwarded by them,

i.e., network hop spots. Then, the manager can

take actions to deal with that problem, such as

deploying more nodes to that area and modifying

the routing layer protocols.

 Furthermore, per-packet path information is

essential to monitor the fine-grained per-link

metrics. For example, most existing delay and loss

measurement approaches assume that the routing

topology is given as a priori.

 The time-varying routing topology can be

effectively obtained by per-packet routing path,

significantly improving the values of existing

WSN delay and loss tomography approaches.

DISADVANTAGES OF EXISTING SYSTEM:

 The growing network scale and the dynamic

nature of wireless channel make WSNs become

increasingly complex and hard to manage.

 The problem of existing approach is that its

message overhead can be large for packets with

long routing paths.

 Considering the limited communication resources

of WSNs, this approach is usually not desirable in

practice.

 Page 510

PROPOSED SYSTEM:

 In this paper, we propose iPath, a novel path

inference approach to reconstruct routing paths at

the sink side. Based on a real-world complex

urban sensing network with all node generating

local packets, we find a key observation: It is

highly probable that a packet from node and one of

the packets from 's parent will follow the same

path starting from 's parent toward the sink. We

refer to this observation as high path similarity.

 The basic idea of iPath is to exploit high path

similarity to iteratively infer long paths from short

ones. iPath starts with a known set of paths (e.g.,

the one-hop paths are already known) and

performs path inference iteratively. During each

iteration, it tries to infer paths one hop longer until

no paths can be inferred.

 In order to ensure correct inference, iPath needs to

verify whether a short path can be used for

inferring a long path. For this purpose, iPath

includes a novel design of a lightweight hash

function. Each data packet attaches a hash value

that is updated hop by hop. This recorded hash

value is compared against the calculated hash

value of an inferred path. If these two values

match, the path is correctly inferred with a very

high probability.

 In order to further improve the inference capability

as well as its execution efficiency, iPath includes a

fast bootstrapping algorithm to reconstruct a

known set of paths.

ADVANTAGES OF PROPOSED SYSTEM:

 We observe high path similarity in a real-world

sensor network.

 It’s an iterative boosting algorithm for efficient

path inference.

 It’s a lightweight hash function for efficient

verification within iPath.

 The proposed system further propose a fast

bootstrapping algorithm to improve the inference

capability as well as its execution efficiency.

 iPath achieves higher reconstruction ratio under

different network settings compared to states of

the art.

SYSTEM ARCHITECTURE:

MODULES:

 Network Model

 Iterative Boosting

 PSP-Hashing

 Performance Analysis

MODULES DESCSRIPTION:

Network Model

 In the first module, we design the Network Model

Module. We assume a multi-hop WSN with a

number of sensor nodes.

 Each node generates and forwards data packets to

a single sink. In multi-sink scenarios, there exist

multiple routing topologies.

 The path reconstruction can be accomplished

separately based on the packets collected at each

sink. In each packet , there are several data fields

related to iPath.

 The first two hops of the routing path, origin and

parent. Including the parent information in each

packet is common best practice in many real

applications for different purposes like network

topology generation or passive neighbor discovery.

 The path length. It is included in the packet header

in many protocols like CTP. With the path length,

iPath is able to filter out many irrelevant packets

during the iterative boosting.

 A hash value of packet 's routing path. It can make

the sink be able to verify whether a short path and

 Page 511

a long path are similar. The hash value is

calculated on the nodes along the routing path by

the PSP-Hashing.

 The global packet generation time and a parent

change counter. These two fields are not required

in iPath. However, with this information, iPath can

use a fast bootstrapping algorithm to speed up the

reconstruction process as well as reconstruct more

paths.

Iterative Boosting

 iPath reconstructs unknown long paths from

known short paths iteratively. By comparing the

recorded hash value and the calculated hash value,

the sink can verify whether a long path and a short

path share the same path after the short path's

original node.

 When the sink finds a match, the long path can be

reconstructed by combining its original node and

the short path.

 There are two procedures, the Iterative-Boosting

procedure and the Recover procedure. The

Iterative-Boosting procedure includes the main

logic of the algorithm that tries to reconstruct as

many as possible packets iteratively.

 The input is an initial set of packets whose paths

have been reconstructed and a set of other packets.

During each iteration, is a set of newly

reconstructed packet paths. The algorithm tries to

use each packet in to reconstruct each packet's

path. The procedure ends when no new paths can

be reconstructed.

 The Recover procedure tries to reconstruct a long

path with the help of a short path. Based on the

high path similarity observation, the following

cases describe how to reconstruct a long path.

PSP-Hashing

 The PSPHashing (i.e., path similarity preserving)

plays a key role to make the sink be able to verify

whether a short path is similar with another long

path. There are three requirements of the hash

function.

 The hash function should be lightweight and

efficient enough since it needs to be run on

resource-constrained sensor nodes.

 The hash function should be order-sensitive. That

is, hash(A, B) and hash(B, A) should not be the

same.

 The collision probability should be sufficiently

low to increase the reconstruction accuracy.

 Traditional hash functions like SHA-1 are order-

sensitive. However, they are not desirable due to

their high computational and memory overhead.

We propose PSP-Hashing, a lightweight path

similarity preserving hash function to hash the

routing path of each packet.

 PSP-Hashing takes a sequence of node ids as input

and outputs a hash value. Each node along the

routing path calculates a hash value by three pieces

of data. One is the hash value in the packet that is

the hash result of the subpath before the current

node. The other two are the current node id and the

previous node id. The previous node id in the

routing path can be easily obtained from the packet

header

Performance Analysis

 The fast bootstrapping algorithm reconstructs the

routing path of a packet hop by hop. When the

sink reconstructs the path of a packet to a

forwarder, it can reconstruct the next-hop only

when the packet is in one of stable periods.

Therefore, the probability of a successful

reconstruction of the fast bootstrapping algorithm

is the product of the ratios of stable periods on all

forwarding nodes.

 We can calculate the probability of a successful

reconstruction by multiplying the probabilities

there exists at least one shorter helper path at

several hops.

 In iPath, the computational overhead at the node

side is negligible since there are only several

arithmetic operations. MNT, Pathfinder, and

Pathzip do not require high computational

 Page 512

overhead at the node side either. At the PC side,

the time complexity of iPath is polynomial.

SYSTEM REQUIREMENTS:

HARDWARE REQUIREMENTS:

 System : Pentium Dual Core.

 Hard Disk : 120 GB.

 Monitor : 15’’ LED

 Input Devices : Keyboard, Mouse

 Ram : 1GB.

SOFTWARE REQUIREMENTS:

 Operating system : Windows 7.

 Coding Language : JAVA

 Tool : ECLIPSE

INPUT DESIGN AND OUTPUT DESIGN

INPUT DESIGN

The input design is the link between the information

system and the user. It comprises the developing

specification and procedures for data preparation and

those steps are necessary to put transaction data in to a

usable form for processing can be achieved by

inspecting the computer to read data from a written or

printed document or it can occur by having people

keying the data directly into the system. The design of

input focuses on controlling the amount of input

required, controlling the errors, avoiding delay,

avoiding extra steps and keeping the process simple.

The input is designed in such a way so that it provides

security and ease of use with retaining the privacy.

Input Design considered the following things:

 What data should be given as input?

 How the data should be arranged or coded?

 The dialog to guide the operating personnel in

providing input.

 Methods for preparing input validations and steps

to follow when error occur.

OBJECTIVES

1. Input Design is the process of converting a user-

oriented description of the input into a computer-based

system. This design is important to avoid errors in the

data input process and show the correct direction to the

management for getting correct information from the

computerized system.

2.It is achieved by creating user-friendly screens for

the data entry to handle large volume of data. The goal

of designing input is to make data entry easier and to

be free from errors. The data entry screen is designed

in such a way that all the data manipulates can be

performed. It also provides record viewing facilities.

3. When the data is entered it will check for its

validity. Data can be entered with the help of screens.

Appropriate messages are provided as when needed so

that the user will not be in maize of instant. Thus the

objective of input design is to create an input layout

that is easy to follow

OUTPUT DESIGN

A quality output is one, which meets the requirements

of the end user and presents the information clearly. In

any system results of processing are communicated to

the users and to other system through outputs. In

output design it is determined how the information is

to be displaced for immediate need and also the hard

copy output. It is the most important and direct source

information to the user. Efficient and intelligent output

design improves the system’s relationship to help user

decision-making.

1. Designing computer output should proceed in an

organized, well thought out manner; the right output

must be developed while ensuring that each output

element is designed so that people will find the system

can use easily and effectively. When analysis design

computer output, they should Identify the specific

output that is needed to meet the requirements.

2. Select methods for presenting information.

3. Create document, report, or other formats that

contain information produced by the system.

The output form of an information system should

accomplish one or more of the following objectives.

 Page 513

 Convey information about past activities, current

status or projections of the

 Future.

 Signal important events, opportunities, problems,

or warnings.

 Trigger an action.

 Confirm an action.

IMPLEMENTATION

MODULES:

 Network Model

 Iterative Boosting

 PSP-Hashing

 Performance Analysis

MODULES DESCSRIPTION:

Network Model

 In the first module, we design the Network Model

Module. We assume a multi-hop WSN with a

number of sensor nodes.

 Each node generates and forwards data packets to

a single sink. In multi-sink scenarios, there exist

multiple routing topologies.

 The path reconstruction can be accomplished

separately based on the packets collected at each

sink. In each packet , there are several data fields

related to iPath.

 The first two hops of the routing path, origin and

parent. Including the parent information in each

packet is common best practice in many real

applications for different purposes like network

topology generation or passive neighbor discovery.

 The path length. It is included in the packet header

in many protocols like CTP. With the path length,

iPath is able to filter out many irrelevant packets

during the iterative boosting.

 A hash value of packet 's routing path. It can make

the sink be able to verify whether a short path and

a long path are similar. The hash value is

calculated on the nodes along the routing path by

the PSP-Hashing.

 The global packet generation time and a parent

change counter. These two fields are not required

in iPath. However, with this information, iPath can

use a fast bootstrapping algorithm to speed up the

reconstruction process as well as reconstruct more

paths.

Iterative Boosting

 iPath reconstructs unknown long paths from

known short paths iteratively. By comparing the

recorded hash value and the calculated hash value,

the sink can verify whether a long path and a short

path share the same path after the short path's

original node.

 When the sink finds a match, the long path can be

reconstructed by combining its original node and

the short path.

 There are two procedures, the Iterative-Boosting

procedure and the Recover procedure. The

Iterative-Boosting procedure includes the main

logic of the algorithm that tries to reconstruct as

many as possible packets iteratively.

 The input is an initial set of packets whose paths

have been reconstructed and a set of other packets.

During each iteration, is a set of newly

reconstructed packet paths. The algorithm tries to

use each packet in to reconstruct each packet's

path. The procedure ends when no new paths can

be reconstructed.

 The Recover procedure tries to reconstruct a long

path with the help of a short path. Based on the

high path similarity observation, the following

cases describe how to reconstruct a long path.

PSP-Hashing

 The PSPHashing (i.e., path similarity preserving)

plays a key role to make the sink be able to verify

whether a short path is similar with another long

path. There are three requirements of the hash

function.

 The hash function should be lightweight and

efficient enough since it needs to be run on

resource-constrained sensor nodes.

 Page 514

 The hash function should be order-sensitive. That

is, hash(A, B) and hash(B, A) should not be the

same.

 The collision probability should be sufficiently

low to increase the reconstruction accuracy.

 Traditional hash functions like SHA-1 are order-

sensitive. However, they are not desirable due to

their high computational and memory overhead.

We propose PSP-Hashing, a lightweight path

similarity preserving hash function to hash the

routing path of each packet.

 PSP-Hashing takes a sequence of node ids as input

and outputs a hash value. Each node along the

routing path calculates a hash value by three pieces

of data. One is the hash value in the packet that is

the hash result of the subpath before the current

node. The other two are the current node id and the

previous node id. The previous node id in the

routing path can be easily obtained from the packet

header

Performance Analysis

 The fast bootstrapping algorithm reconstructs the

routing path of a packet hop by hop. When the

sink reconstructs the path of a packet to a

forwarder, it can reconstruct the next-hop only

when the packet is in one of stable periods.

Therefore, the probability of a successful

reconstruction of the fast bootstrapping algorithm

is the product of the ratios of stable periods on all

forwarding nodes.

 We can calculate the probability of a successful

reconstruction by multiplying the probabilities

there exists at least one shorter helper path at

several hops.

 In iPath, the computational overhead at the node

side is negligible since there are only several

arithmetic operations. MNT, Pathfinder, and

Pathzip do not require high computational

overhead at the node side either. At the PC side,

the time complexity of iPath is polynomial.

SCREEN SHOTS

 Page 515

 Page 516

 Page 517

CONCLUSION:

In this paper, we propose iPath, a novel path inference

approach to reconstructing the routing path for each

received packet. iPath exploits the path similarity and

uses the iterative boosting algorithm to reconstruct the

routing path effectively. Furthermore, the fast

bootstrapping algorithm provides an initial set of paths

for the iterative algorithm. We formally analyze the

reconstruction performance of iPath as well as two

related approaches. The analysis results show that

iPath achieves higher reconstruction ratio when the

network setting varies. We also implement iPath and

evaluate its performance by a trace-driven study and

extensive simulations. Compared to states of the art,

iPath achieves much higher reconstruction ratio under

different network settings.

REFERENCES

[1] M. Ceriottiet al., “Monitoring heritage buildings

with wireless sensor networks: The Torre Aquila

deployment,” in Proc. IPSN, 2009, pp. 277–288.

[2] L. Mo et al., “Canopy closure estimates with

GreenOrbs: Sustainable sensing in the forest,” in Proc.

SenSys, 2009, pp. 99–112.

[3] X. Mao et al., “CitySee: Urban CO2 monitoring

with sensors,” in Proc. IEEE INFOCOM, 2012, pp.

1611–1619.

[4] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss,

and P. Levis, “Collection tree protocol,” in Proc.

SenSys, 2009, pp. 1–14.

[5] D. S. J. D. Couto, D. Aguayo, J. Bicket, and R.

Morris, “A high throughput path metric for multi-hop

wireless routing,” in Proc. MobiCom, 2003, pp. 134–

146.

[6] Z. Li, M. Li, J. Wang, and Z. Cao, “Ubiquitous

data collection for mobile users in wireless sensor

networks,” in Proc. IEEE INFOCOM, 2011, pp. 2246–

2254.

[7] X. Lu, D. Dong, Y. Liu, X. Liao, and L. Shanshan,

“PathZip: Packet path tracing in wireless sensor

networks,” in Proc. IEEE MASS, 2012, pp. 380–388.

[8] M. Keller, J. Beutel, and L. Thiele, “How was your

journey? Uncovering routing dynamics in deployed

sensor networks with multi-hop network tomography,”

in Proc. SenSys, 2012, pp. 15–28.

[9] Y. Yang, Y. Xu, X. Li, and C. Chen, “A loss

inference algorithm for wireless sensor networks to

improve data reliability of digital ecosystems.,” IEEE

Trans. Ind. Electron., vol. 58, no. 6, pp. 2126–2137,

Jun. 2011.

 Page 518

[10] Y. Liu, K. Liu, and M. Li, “Passive diagnosis for

wireless sensor networks,” IEEE/ACM Trans. Netw.,

vol. 18, no. 4, pp. 1132–1144, Aug. 2010.

[11] W. Dong, Y. Liu, Y. He, T. Zhu, and C. Chen,

“Measurement and analysis on the packet delivery

performance in a large-scale sensor network,”

IEEE/ACM Trans. Netw., 2013, to be published.

[12] J. Wang, W. Dong, Z. Cao, and Y. Liu, “On the

delay performance analysis in a large-scale wireless

sensor network,” in Proc. IEEE RTSS, 2012, pp. 305–

314.

[13] Y. Liang and R. Liu, “Routing topology inference

for wireless sensor networks,” Comput.Commun.Rev.,

vol. 43, no. 2, pp. 21–28, 2013.

[14] Y. Gaoet al., “Domo: Passive per-packet delay

tomography in wireless ad-hoc networks,” in Proc.

IEEE ICDCS, 2014, pp. 419–428.

[15] M. Lee, S. Goldberg, R. R. Kompella, and G.

Varghese, “Fine-grained latency and loss

measurements in the presence of reordering,” in Proc.

ACM SIGMETRICS, 2011, pp. 329–340.

[16] Y. Shavitt and U. Weinsberg, “Quantifying the

importance of vantage points distribution in internet

topology measurements,” in Proc. IEEE INFOCOM,

2009, pp. 792–800.

[17] M. Latapy, C. Magnien, and F. Oudraogo, “A

radar for the internet,” in Proc. IEEE ICDMW, 2008,

pp. 901–908.

[18] I. Cunha, R. Teixeira, D. Veitch, and C. Diot,

“Predicting and tracking internet path changes,” in

Proc. SIGCOMM, 2011, pp. 122–133.

[19] A. D. Jaggard, S. Kopparty, V. Ramachandran,

and R. N. Wright, “The design space of probing

algorithms for network-performance measurement,” in

Proc. SIGMETRICS, 2013, pp. 105–116.

[20] L. Ma, T. He, K. K. Leung, A. Swami, and D.

Towsley, “Identifiability of link metrics based on end-

to-end path measurements,” in Proc. IMC, 2013, pp.

391–404.

[21] Y. Gaoet al., “Pathfinder: Robust path

reconstruction in large scale sensor networks with

lossy links,” in Proc. IEEE ICNP, 2013, pp. 1–10.

[22] A. Woo, T. Tong, and D. Culler, “Taming the

underlying challenges of reliable multihop routing in

sensor networks,” in Proc. SenSys, 2003, pp. 14–27.

[23] Y. Gaoet al., “iPath: Path inference in wireless

sensor networks,” Tech. Rep., 2014 [Online].

Available:

http://www.emnets.org/pub/gaoyi/tech-ipath.pdf

[24] A. Liu and P. Ning, “TinyECC: A configurable

library for elliptic curve cryptography in wireless

sensor networks,” in Proc. IPSN, 2008, pp. 245–256.

[25] V. Handziski, A. Köpke, A. Willig, and A.

Wolisz, “TWIST: A scalable and reconfigurable

testbed for wireless indoor experiments with sensor

networks,” in Proc. REALMAN, 2006, pp. 63–70.

[26] R. Lim, C. Walser, F. Ferrari, M. Zimmerling, and

J.Beutel, “Distributed and synchronized measurements

with FlockLab,” in Proc. SenSys, 2012, pp. 373–374.

[27] Z. Li, M. Li, and Y. Liu, “Towards energy-

fairness in asynchronous duty-cycling sensor

networks,” Trans. Sensor Netw., vol. 10, no. 3, pp.

38:1–38:26, 2014.

[28] P. Levis, N. Lee, M. Welsh, and D. Culler,

“TOSSIM: Accurate and scalable simulation of entire

TinyOS applications,” in Proc. SenSys, 2003, pp. 126–

137.

http://www.emnets.org/pub/

