Content Based Image Retrieval Using Fusion of Colour Histogram and Silent Orientation Histogram

P.Lakshmi Devi, M.Tech (Ph.D)
Associate Professor,
Annamacharya Institute of Technology and Science, Rajampet.

T.Sreenivasa Reddy
M.Tech Student,
Annamacharya Institute of Technology and Science, Rajampet

Abstract:
It has very important practical significance to analyze and research minority costume from the perspective of computer vision for minority culture protection and inheritance. As first exploration in minority costume image retrieval, this paper proposed a novel image feature representation method to describe the rich information of minority costume image. Firstly, the color histogram and edge orientation histogram are calculated for divided sub-blocks of minority costume image. Then, the final feature vector for minority costume image is formed by effective fusion of color histogram and edge orientation histogram. Finally, the improved Canberra distance is introduced to measure the similarity between query image and retrieval image.

We have evaluated the performances of the proposed algorithm on self-build minority costume image dataset, and the experimental results show that our method can effectively express the integrated feature of minority costume images, including color, texture, shape and spatial information. Compared with some conventional methods, our method has higher and stable retrieval accuracy.

I. INTRODUCTION
China is a country consisting of 56 ethnic groups, and each of them has its own apparel style with distinct ethnic characteristics, due to the influence of different culture, traditions, and geographical feature. The minority costume is the important symbol of the ethnic group identification and the precious wealth of the Chinese nation. However, with the acceleration of global economic and political integration in China, various minority costume cultural traditions have been rapidly disappearing. This prompted people to think the survival of minority costume under the new historical situation. For now, the minority costumes are mainly protected by museums statically. Compared with the traditional protection mode of physical originals in museums, digital protection has longer protection time and promotes minority costume culture more conveniently.

Content-based image retrieval is a very important topic in the field of pattern recognition and artificial intelligence. It has been successfully applied to many fields, such as medical diagnosis, textiles industry and so on. The minority costumes of same nation have their own distinguished characters (unified tone, style and patterns.), which make them more advantageous than ordinary natural images in image processing. Therefore, it is of great importance to analyze the visual features of minority costumes. In this paper, the digital protection of national costume is studied from the perspective of computer vision. Although national minority clothing image have complex visual features, the main characteristics still are clothing color, fabric texture and totem shape, which are in accordance with the image feature in computer vision. So we can use traditional feature extraction algorithms to extract the features of minority costume images. At present, a large number of approaches on extraction of color, texture and shape features have been put forward and have already obtained good results in many fields. Color is the most dominant and distinguishing visual feature. The existing color feature extraction methods include color histogram [1], color moment [2], color coherence vector [3] and color correlogram [4]. In the current version of the MPEG-7 Final Committee Draft, several color descriptors have been approved including number of...
histogram descriptors [5]. Texture is used to specify the roughness or coarseness of object surface and described as a pattern with some kind of regularity. Many researchers have put forward various algorithms for texture analysis, such as the famous gray level co-occurrence matrix (GLCM) [6], local binary patterns (LBP) [7], local directional patterns (LDP) [8], and so on. With the continuously expanding of the application field, new theory, like the theory of wavelet, is introduced. And in 1996, Tai Sing Lee [9] used Gabor filters to extract texture features. Shape is the most essential feature of the object. The classic shape descriptors are the Hu moment invariants [10], the Fourier transform coefficients [11] and the histogram of oriented gradients (HOG) [12]. The minority costume image have very complex visual features, which make it more difficult to be expressed by single feature extraction algorithm. So our goal is to design a feature extraction algorithm based on multi-features to express the information of minority image comprehensively. A lot of image feature extraction algorithms based on multi-features have been proposed in recent years. In 2010, Guang-Hai Liu presents a novel image feature representation method, called multi-texton histogram [13], for image retrieval. It integrates the advantages of co-occurrence matrix and histogram by representing the attribute of co-occurrence matrix using histogram. Micro-structure descriptor [14] proposed by Guang-Hai Liu in 2011 is built based on the underlying colors in micro-structures with similar edge orientation. It effectively integrates color, texture, shape and color layout information as a whole for image retrieval. Guang-Hai Liu also proposed color difference histogram in 2013, which count the perceptually uniform color difference between two points under different backgrounds with regard to colors and edge orientations in L*a*b* color space. The image feature extraction algorithms mentioned above have all achieved high retrieval accuracy in the Corel image database [16]. In view of many image feature extraction algorithms based on multi-features have been successfully applied in image retrieval, this paper presents a comprehensive feature descriptor to express the rich visual features presented in minority costume image. This descriptor is represented by effective fusion of color histogram and edge orientation histogram. It’s implied in experimental results that the image representation techniques used in our method are an effective way of integrating low-level features into a whole.

II. RELATED WORKS
Currently, the research work of minority costume image retrieval is still in its infancy and exploration stage. We are the first ones to conduct exploratory research on the retrieval technology of minority costume image. In this paper, we construct a minority costume image dataset, in which some images are taken by ourselves and some are from the internet. Most of the minority costumes in these images are dressed by minority people or human body model, and some are photographs of tiled minority costumes. Every ethnic group has its own costume style, so we can distinguish between ethnic groups by their costumes. After a series of researches on the characteristics of minority costumes in Yunnan, we choose the six most characteristic ethnic groups’ costume as the research object, including Bai nationality, Jingpo nationality, Hani nationality, Miao nationality, Bouyei nationality and Va nationality. For each nationality we collect 100 costume images and preprocess them to size 128×96 or 96×128 in JPEG format. Figure 1 shows some image examples in the minority costume image dataset. For now, no researcher has conducted exploratory research on the retrieval technology of minority costume image. Nevertheless, many scholars have researched on the image processing technology of ordinary clothing image (especially in e-commerce field) from the perspective of computer vision. Choi Yoo-Joo [17] presents a novel approach to retrieval the person image that contain the identical clothing to a query image from the image set captured by multiple CCTV camera. Firstly, the clothing area is found based on the position of the face area; Then a feature vector is built for the clothing area, which composed by six color histograms of six sub-regions defined in the clothing area. Wang Hai-long [18] presents a method of contour feature extraction,
expression and matching to implement clothing image retrieval comprehensively, where the clothing image is from e-commerce websites. Chen jia-lin [19] presents an interactive clothing retrieval system, which supports query by a real-world image with target clothing and returns real-world images with similar clothing. A novel clothing shape feature is proposed to describe the shape of clothing in human-oriented coordinate system. And a supervised method is also proposed for learning a weighting matrix to minimize the intra-class distance while maximize the inter-class distance. Wang Yatong [20] designs and implements an image querying and retrieval system based on color feature for e-commerce apparel. The paper compares a variety of color feature extraction methods and similarity measure methods. Experiments show that Euclidean metric and global color histogram using RGB space are relatively appropriate for clothing image search. In general, all above algorithms are designed to describe the feature of ordinary clothing image from perspective of color, shape, and texture.

III. FEATURE EXTRACTION OF MINORITY COSTUME IMAGE

Calculation of Color Histogram

Color is an important visual attribute for both human perception and computer vision and it is widely used in image retrieval. The color histogram is one of the most direct and the most effective color feature representation [21]. It has advantages of transform invariant, rotate invariant and scale invariant and has been widely used in image retrieval. But it lacks spatial information. This paper incorporates spatial information to it by combining the color histograms for several sub-blocks defined in the minority clothing image. An appropriate color space and quantization must be specified along with the histogram representation. In this paper, three color spaces (RGB, HSV and CIE L*a*b*) with different quantification number are used to test the performance of our Method. The experimental results in Tables 1-3 demonstrate that the RGB color space with 8x4x4=128 quantification number is the best choice in our framework. For an image with a size of MxN, we set the color quantification number to L and denote the image by the equation $C(x, y)(x \in [0, N), y \in [0, M])$. The value range of $C(x, y)$ is $[0, L)$. We divide the image to n blocks. The color values of each block is denoted by $C_i(x, y), i \in [0, n]$, then the color histogram of each block is defined as:

$$H_{C(x,y)}(j)=\sum_{i=0}^{n}num_j(j=0, 1, ..., L-1)$$

(1)

Where num_j is the number of pixels in a sub-block whose color value is quantified to j.

Calculation of Edge Orientation Histogram

In the system of theory on computer vision, edge detection of image plays an important role. This paper constructs a feature descriptor namely edge orientation histogram, which can be seen as a texture feature and also a shape feature. The classic edge detection operator are Sobel, Roberts, Prewitt and Canny. Sobel is one of the most popular operator [22], which is named after Irwin Sobel and Gary Feldman. The Sobel operator is based on convolving the image with a small, separable,
and integer valued filter in the horizontal and vertical directions and is therefore relatively inexpensive in terms of computations. The operator uses two \(3 \times 3\) kernels which are convolved with the original image to calculate approximations of the derivatives - one for horizontal changes, and one for vertical. If we define \(R, G, B\) as the unit vectors along the \(R, G, B\) axes in RGB color space, the computations are as follows:

\[
\begin{align*}
\mathbf{g}_x &= \begin{bmatrix} 1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} \times \mathbf{R} \mathbf{g}_x = \begin{bmatrix} 1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} \\
\mathbf{g}_y &= \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -2 & 1 & -1 \end{bmatrix} \times \mathbf{R} \mathbf{g}_y = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -2 & 1 & -1 \end{bmatrix} \\
\mathbf{g}_{xy} &= \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -2 & 1 & -1 \end{bmatrix}
\end{align*}
\]

\(g_{xx}, g_{yy}, g_{xy}\) are defined as dot products of the vectors mentioned above:

\[
\begin{align*}
g_{xx} &= \mathbf{g}_x \cdot \mathbf{g}_x = \mathbf{R} \mathbf{g}_x \cdot \mathbf{R} \mathbf{g}_x \\
g_{yy} &= \mathbf{g}_y \cdot \mathbf{g}_y = \mathbf{R} \mathbf{g}_y \cdot \mathbf{R} \mathbf{g}_y \\
g_{xy} &= \mathbf{g}_{xy} \cdot \mathbf{g}_{xy} = \mathbf{R} \mathbf{g}_{xy} \cdot \mathbf{R} \mathbf{g}_{xy}
\end{align*}
\]

Using the above notations, it can be seen that the maximum gradient orientation of point \((x, y)\) is

\[
\phi(x, y) = \frac{1}{2} \arctan \left(\frac{g_{xy}}{g_{xx} - g_{yy}} \right)
\]

And the gradient magnitude at \((x, y)\) in the direction of \(\phi(x, y)\) is given by

\[
G(x, y) = \sqrt{\left[\frac{1}{2} (g_{xx} + g_{yy}) \right]^2 + \left[g_{xy} \cos 2\phi + g_{xy} \sin 2\phi \right]^2}
\]

Because \(\tan(\alpha) = \tan(\alpha \pm 2\pi)\), if \(0 < \phi < \pi / 2\) will be a solution, too. Furthermore, \(G \phi = G + \pi\); therefore, \(G(x, y)\) has to be computed only for values of \(\phi\) in the half-open interval \([0, \pi)\). Because Eq. (7) provides two values \(90\)° apart, this equation associates a pair of orthogonal directions with each point \((x, y)\):

\[
G_1(x, y) = \left[\frac{1}{2} (g_{xx} + g_{yy}) + g_{xy} \cos 2\phi_1 + g_{xy} \sin 2\phi_1 \right]^{1/2}
\]

\[
G_2(x, y) = \left[\frac{1}{2} (g_{xx} + g_{yy}) + g_{xy} \cos 2\phi_2 + g_{xy} \sin 2\phi_2 \right]^{1/2}
\]

In practical applications, the maximum of the gradient direction is taken. Thus, we can denote the gradient direction \(\phi(x, y)\) as follows:

\[
\phi(x, y) = \begin{cases}
\phi_1 & \text{if } \max(G_1, G_2) = G_1(x, y) \\
\phi_1 + \pi / 2 & \text{if } \max(G_1, G_2) = G_2(x, y)
\end{cases}
\]

To facilitate implementation, we project it into the interval \([0, 2\pi]\). After the edge orientation \(\phi(x, y)\) of each pixel has been computed, the orientations are uniformly quantized into \(m\) bins, where \(m = 12, 18, 24, 30, 36\). Data in Tables 1-3 show that the 30 bins used in the RGB color space are more suitable for our framework. Indeed, the orientations are quantized into 30 bins, each corresponding to angle intervals of \(12\)°.

We use histogram of edge orientation to represent the feature of minority costume image. Because histogram is a statistical feature, which is lack of the spatial position information of the image. Therefore, in this paper, before the extraction of edge orientation histogram feature, we divide the minority costume image with a size of \(M \times N\) into \(n\) sub-blocks first. The edge orientation values of each block is denoted \(\phi_i(x, y), (i \in [0, n])\) then the edge orientation histogram of each block is defined as

\[
H_{\phi(x,y)}(j) = \text{num}_j, (j = 0, 1, \ldots, m-1)
\]

Where \(\text{num}_j\) is the number of pixels in a sub-block whose orientation value is quantified to \(j\).

Comprehensive feature representation

The comprehensive feature extraction algorithm proposed in this paper can be represented as follows:

Step1: Divide the minority costume image with a size of \(M \times N\) into \(n\) sub-blocks, the experimental results in Table 4 demonstrate that our method gets the best results when \(n = 2 \times 2\).

Step2: Calculate the color histogram of every sub-block and then linearly combine them as

\[
H_{C(x,y)} = [H_{C_1(x,y)}, H_{C_2(x,y)}, \ldots, H_{C_n(x,y)}].
\]

Step3: Calculate the edge orientation histogram of each sub-block and then linearly combine them as follows:

\[
H_{\phi(x,y)} = [H_{\phi_1(x,y)}, H_{\phi_2(x,y)}, \ldots, H_{\phi_n(x,y)}].
\]
Step 4: Linearly Combine all the histograms mentioned in step 2 and step 3 as

\[H = [H_{c(x,y)}, H_{\phi(x,y)}] (i \in [0, n]). \]

IV. SIMILARITY MEASUREMENT

After feature extraction, each image in the minority costume image dataset is represented as a multidimensional feature vector \(H = [H_{c(x,y)}, H_{\phi(x,y)}] \).

If we use CSA and CSB to represent the dimension of color histogram \(H_{c(x,y)} \) and the dimension of edge orientation histogram \(H_{\phi(x,y)} \) respectively, a \(M = CSA + CSB \) dimensional feature vector will be extracted and stored for every image in the minority costume image dataset. Let

\[H(Q) = [H_{c1}(Q), H_{c2}(Q), ..., H_{cM}(Q)] \quad \text{and} \quad H(T) = [H_{\phi1}(T), H_{\phi2}(T), ..., H_{\phiM}(T)] \]

be the feature of query image \(Q \) and image. Then the retrieval results can be returned by computing a similarity measure of feature vector between query image and every image in the dataset.

There are many distance metrics for similarity measure, like Manhattan distance, Euclidean distance, Chi Square distance, Canberra distance etc. The experiment results in Table 6 show that Canberra distance [23] is a better distance metric for our method than others. This paper improve the Canberra distance as a new distance metric by introducing a parameter \(\lambda \), which make it more appropriate for our method. Where the \(i \)th feature of query image is \(is \) the \(i \)th feature of target image \(T \) in dataset.

\[D(Q,T) = \sqrt{\frac{1}{2} \sum_{i=1}^{M} \left(\frac{1}{H_{c_i}(Q) + H_{c_i}(T)} \right) [H_{c_i}(Q) - H_{c_i}(T)]^2} \]

Where \(Hi(Q) \) is the \(i \)th feature of query image \(Q \), \(Hi(T) \) is the \(i \)th feature of target image \(T \) in dataset.

V. EXPERIMENTS AND RESULTS

In this section, we evaluate the performance of our method by using the minority costume image dataset described in section. The precision and recall curves are adopted to evaluate the effectiveness of our method, which are the most common measurements used for evaluating image retrieval performance. Precision and Recall are defined as follows:

\[\text{Precision} = \frac{I_y}{N} \]
\[\text{Recall} = \frac{I_y}{M} \]

Where \(N \) is the correct number of images retrieved in the top \(N \) positions that are similar to the query image, \(M \) is the total number of images in the database similar to the query, and \(N \) is the total number of images retrieved. In our image retrieval system, \(N=12 \) and \(M=100 \). In our experiment, every image of the minority costume image dataset is used as query image. We first compute the precision and recall percentage of every image, and then average precision and recall percentage for each category and for all query images are computed.

Obviously, the quantization number of color and edge orientation all have direct influence on the formation of image feature in according to the description in section. So different quantization numbers for color and edge orientation are used to test the performance of the proposed method (with \(2 \times 2 = 4 \) sub-blocks and \(\lambda = 0.5 \)) in the L*a*b*, RGB and HSV color spaces. The values of precision and recall with the top 12 matches are listed. From these data, we can see that the RGB color space is more suitable for our method than the other two color spaces. When the quantization numbers for color and edge orientation are 128 and 30 respectively, the precision of our method is 65.90%. When the quantization number for color is increased to \(6 \times 6 \times 6 = 216 \), the performance of our method is reduced, because as the color quantization number is increased, too many noisy features may be obtained, which will not enhance the description power. So we select the RGB color space with 128 and 30 quantization numbers for color and edge orientation respectively in this paper, then a 632-dimensional feature vector is extracted for every image in the minority costume image dataset.

Figure shows the retrieval results for the query “Miao nationality” with the proposed approach. The top-left image is the query image, and the similar images
returned include the query image itself. One error result is retrieved in the fourth row and first column.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose a novel feature extraction approach for minority costume image retrieval, which combines color, texture, shape and spatial features of minority costume image effectively. Our experimental results demonstrate that our method has good retrieval performance and strong adaptability. And it’s much more effective than other algorithms reported earlier in the article, such as GLCM, LBP, LDP, Gabor-based feature descriptor, Hu invariant distance, HOG, MTH, MSD and CDH. Because the local feature of minority costume image are obvious, region-based image retrieval for minority costume image dataset will be studied in future work. Maybe, image segmentation will be considered as an assistant to extract the local feature and semantic feature of minority costume image.

REFERENCES

