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Abstract: 

We propose a novel system for the automatic 

detection and recognition of text in traffic signs. 

Scene structure is used to define search regions 

within the image, in which traffic sign candidates are 

then found. Maximally stable extremal regions 

(MSERs) and hue, saturation, and value color 

thresholding are used to locate a large number of 

candidates, which are then reduced by applying 

constraints based on temporal and structural 

information. A recognition stage interprets the text 

contained within detected candidate regions. 

Individual text characters are detected as MSERs and 

are grouped into lines, before being interpreted using 

optical character recognition (OCR). Recognition 

accuracy is vastly improved through the temporal 

fusion of text results across consecutive frames. The 

method is comparatively evaluated and achieves an 

overall Fmeasure of 0.87. 

Index Terms: Maximally stable extremal region 

(MSER), scene structure, text detection, traffic text 

sign recognition. 

I. INTRODUCTION 

THE automatic detection and recognition of traffic 

signs is a challenging problem, with a number of 

important application areas, including advanced driver 

assistance systems, road surveying, and autonomous 

vehicles. 

While much research exists on both the automatic 

detection and recognition of symbol-based traffic 

signs, e.g., [1]–[6], and the recognition of text in real 

scenes, e.g., [7]–[14], there is far less research focused 

specifically on the recognition of text on traffic 

information signs [15]–[17]. This could be partly due 

to the difficulty of the task caused by problems, such 

as illumination and shadows, blurring, occlusion, and 

sign deterioration. 

Without the use of additional temporal or contextual 

in-formation, there is few information to determine 

traffic signs from nontraffic signs on the fly, while 

driving, other than basic features, such as shape or 

color. On this basis, the number of false positives 

(FPs) likely to occur in a cluttered image, such as a 

road scene, is high. This is demonstrated in the 

example in Fig. 1, where although the traffic sign 

present in both images is successfully detected, more 

FPs are detected by the system (in the top scene) when 

additional structural and temporal information is not 

deployed. 

We approach this problem by detecting large numbers 

of text-based traffic sign candidates using basic shape 

and color information. This over detection is important 

to ensure that no true positives (TPs) are missed. We 

then reduce the large number of detected candidate 

regions by making use of the structure of the scene, as 

well as its temporal information, to eliminate unlikely 

candidates. 

The proposed system comprises two main stages: 

detection and recognition. The detection stage exploits 

knowledge of the structure of the scene, i.e., the size 

and location of the road in the frame, to determine the 

regions in the scene that it should search for traffic text 

signs. These regions are defined once the vanishing 

point (VP) of the scene and, hence, the ground plane 

are determined. 
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Potential candidate regions for traffic signs are then 

located only within these scene search regions, using a 

combination of MSERs and hue, saturation, and value 

(HSV) color thresholding. By matching these regions 

through consecutive frames, temporal information is 

used to further eliminate FP detected regions, based on 

the motion of regions with respect to the camera and 

the structure of the scene. 

 

Once a potential traffic sign has been located, the next 

stage of the algorithm attempts to recognize text within 

the region. First, an approximate perspective transform 

is applied to the region, in order to vertically align text 

characters. Candidate components for text characters 

are then located within the region and sorted into 

potential text lines, before being interpreted using an 

off-the-shelf optical character recognition (OCR) 

package. To improve the accuracy of recognition, 

OCR results from several frames are combined 

together by matching individual words through frames 

and using a weighted histogram of results. The entire 

system pipeline is shown in Fig. 2. 

 
Fig. 1. System output showing detection of traffic 

signs (top) without and (bottom) with the use of 

structural and temporal information. 

 
Fig. 2. Pipeline for detection and recognition stages of 

the proposed approach. 

 

II. RELATED WORK 

Much research exists on the detection and recognition 

of text in natural scenes. Approaches to this problem 

can be broadly divided into two groups: region-based 

methods, e.g., [9], [12], and [18], and connected 

component (CC)-based methods, e.g., [10], [11], [13], 

[14], and [19]. Region-based text detection methods 

use local features, such as texture, to locate text 

regions, whereas CC-based methods attempt to 

segment text characters individually by using 

information such as intensity, color distribution, and 

edges. They usually consist of three phases: a first 

stage to detect CCs within the image, a second stage to 

eliminate unlikely CCs based on their features, and a 

final stage that attempts to group the remaining CCs 

into words or lines. 

 

More relevant to the context of this paper, the amount 

of research focused specifically on the detection of text 

within traffic signs is fairly limited, perhaps due to the 

difficulty of the task. The existing state-of-the-art 

methods all consist of two stages: detection and 

recognition, e.g., [15]–[17]. 

 

Wu et al. [15] found candidate regions, using a 

combination of Shi and Tomasi features [20], Gaussian 

mixture models, and geometric analysis. The authors 

assumed that traffic sign text appeared on a vertical 

plane with respect to the motion and optical axis of the 

camera. However, in reality, it is likely that text signs 

will appear from a viewpoint that is not quite fronto-

parallel. Therefore, a perspective transform is 
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necessary to give OCR a better chance of text 

recognition, as performed by our proposed method.  

 

Candidate regions were matched through consecutive 

frames, and were interpreted using an OCR system 

once they were of an adequate size. The authors 

reported a detection rate of 88.9% and a false detection 

rate of 9.2%, based on a data set of 22 video 

sequences, each around 30 s long.Reina et al. [16] 

segmented regions of interest based on color 

information, by applying a threshold to the 

chrominance and luminance channels in the Lab color 

space. Rectangular regions were found by comparing 

the fast Fourier transform (FFT) signature of each blob 

to the FFT signature of a rectangular-shaped reference. 

The four points representing the corners of the 

rectangular region were then found by taking the peaks 

of the FFT signature; using these points, the regions 

were rotated in an attempt to vertically align text 

characters. This is again an insufficient approach to 

deal with the perspective recovery of the text panel 

from the vehicle viewpoint, and the perspective 

correction in Section IV-A establishes a more robust 

solution. No quantitative results were provided by the 

authors. 

 

The method presented by González et al. made use of 

MSERs for the detection of both traffic signs and text 

characters [17]. White and blue traffic panels were 

detected in each frame, using a combination of color 

segmentation and bag of visual words. These regions 

were then classified using both support vector 

machines and Naïve Bayes classifiers. The method 

was applied to single images, with no use of temporal 

information, and the emphasis placed on the 

geolocalization of traffic signs using Global 

Positioning System information. The height of the text 

itself was used to approximate the real-world size, and 

hence distance from the camera to the traffic signs. All 

results were based on 10 763 images taken from 

Google Street View. The authors provided individual 

detection and recognition rates for words, numbers, 

and symbols at short, medium, and long distances.  

These rates ranged between 13.09% and 90.18% for 

detection and between 8.51% and 87.50% for 

recognition. 

 

The methods in [15]–[17] suffer from several 

limitations, which are improved upon by our proposed 

method, where assumptions made for the detection of 

text-based traffic signs are general enough to ensure a 

high recall rate. Our proposed method uses structural 

and temporal information to eliminate the additional 

FPs. Results are provided in Section V-A to vali-date 

this claim. In addition, our method offers 

improvements on the raw OCR approach, which was 

used in works such as [15], by using perspective 

recovery and temporal fusion methods. The 

performance of this approach is validated in Section 

V-B. 

 

While use of temporal information in the context of 

symbol-based traffic sign detection has been explored 

before [21], the work described in this paper expands 

on the idea, by also incorporating structural 

information from the scene. 

 

Other example works that have considered text 

detection with a mobile sensor are those that rely on 

wearable devices, e.g., Goto and Tanaka [22] and 

Merino-Gracia et al. [19], and those applied to mobile 

robotics in [23]–[25].Several data sets have been 

proposed for the validation of traffic sign recognition 

systems, including the German traffic sign detection 

benchmark [26], the German traffic sign recognition 

benchmark [27], and the Belgian traffic sign data set 

[28]. It should be noted that the focus of these data sets 

is on the detection of symbol-based traffic signs, and 

they are therefore not applicable to the validation of 

our method, which focuses on text. The traffic text 

sign data that we used were obtained from Jaguar Land 

Rover Research, and these are available to other 

researchers at http://www.bris.ac.uk/vi-lab/ 

projects/roadsign/index.html. These data were 

captured with a camera, for which the full calibration 

parameters are known. 
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Fig. 3. Illustration of search regions projected into the 

2-D image. 

 

III. DETECTION OF TEXT-BASED TRAFFIC 

SIGNS 

The first stage of the proposed system detects 

candidates for text-based traffic signs. This consists of 

three phases: de-termination of search regions (regions 

of interest where the text sign is expected to be found), 

detection of all possible candidates within these 

regions, and reduction of candidates using contextual 

constraints. 

 

Search regions of interest for traffic signs are found 

within the image, by first locating the sides of the road 

in the image and then defining 3-D search boxes, 

which are projected back onto the original 2-D frame. 

These search regions are shown in Fig. 3, where the 

orange region is for traffic signs on either side of the 

road, and the blue box is for overhead gantries. 

 

A. Finding Sides of Road and VP 

In order to determine search regions for traffic signs in 

each frame, the sides of the road and the road VP must 

be detected. Our approach to VP detection is 

traditional and popularly used in other works, e.g., 

[29]. First, the Canny edge detector is used to detect 

edges in the image, which is followed by the Hough 

transform to locate straight lines. The total number of 

Hough lines is then reduced by eliminating lines that 

are too short, that do not approximately pass through 

the center of the frame, or (for the purposes of our 

application) that appear near the top of the image; an 

example frame is shown in Fig. 5. An “accumulator” 

of line intersections is then created from the 

intersections between the remaining Hough lines, the 

peak of which is taken to be the VP of the road. The 

parameters for Canny and Hough were determined 

empirically on a subset of our data set and fixed 

throughout our experiments. 

 

Once the VP is found, the camera yaw γ and pitch θ 

can be computed as 

 
where f is the camera focal length, and C is the 

camera’s center of projection. Using γ and θ, an 

inverse perspective mapping (IPM) can be performed 

on both the original frame and the detected Hough 

lines using 

 
where u and v represent coordinates in the original 

frame, m and n are the dimensions of the original 

frame, αu and αv are the angular aperture, and x and z 

represent the coordinates in the IPM image. The values 

h, l, and d represent the position of the camera with 

respect to the ground plane, as shown in Fig. 4. These 

values can be estimated and adjusted, in order to shift 

and scale the IPM image. 

 

From the reduced set of Hough lines, it is possible to 

approx-imate the sides of the road in the IPM image. If 

we assume that the camera is located on the center of 

the vehicle facing forward and that the vehicle is in the 

middle of the lane, it follows that the center of the 

current lane will be in the center of the IPM image. An 

example of the IPM image and transformed Hough 
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lines is shown in Fig. 5.The set of IPM Hough lines are 

then further reduced by eliminating lines that are not 

approximately vertical and lines that are below a 

certain length. This set of lines is then divided into two 

groups, for the left- and right-hand sides of the image.  

 

The mean of all lines, weighted by line length, is then 

calculated for each side of the image. These average 

lines are taken as approximations of the sides of the 

road. Estimates for the VP and sides of the road are 

detected in every frame, and they are then tracked 

throughout subsequent frames using the Kalman filter, 

following the work in [29]. 

 

B. Defining Search Regions Within the Original 

Frame 

Once the sides of the road are detected, the size and 

location of the search regions can be defined. Three 

search regions are used, i.e., one to the left-hand side 

of the road, one to the right, and one above. The 

dimensions of these regions are determined 

empirically through analysis of the validation data set 

and kept constant throughout our experiments. The top 

search region is defined to be the width of the road, 

given that overhead gantries, which appear in this 

region, never extend beyond the sides of the road.  

 

Therefore, the width of this region is determined 

dynamically based on the detected positions for the 

sides of the road. The dimensions and height of the 

roadside regions are fixed, but their horizontal 

positions change dynamically to position them by 

either side of the road. 

 
Fig. 4. Camera position and captured frame. 

 
Fig. 5. Output of various stages of algorithm to define 

search regions. 

 

The real-world dimensions of these regions can be 

roughly estimated, by assuming that the distance 

between the overhead gantry and the ground is 

approximately 5.1 m, i.e., the mini-mum legal 

unmarked gantry height in the U.K., and using this as a 

reference. These dimensions are stated in Table 

I.These 3-D regions are then projected back into the 

original 2-D frame, as shown in Fig. 5, with the search 

regions for signs by the sides of the road in orange and 

the search region for overhead gantries in blue. 
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C. Detection of Text Traffic Sign Candidates 

The next stage of the algorithm involves the detection 

of candidates for text-based traffic signs within our 

defined scene search regions. We follow from our 

previous work on the detection of symbol-based traffic 

signs [4] and detect text traffic sign candidates using 

both MSER and HSV color thresholding.  

 

These two kinds of region detector are used, in order to 

gain as high a recall as possible and ensure that all 

possible traffic signs are detected in all 

conditions.MSERs are defined to be regions that 

maintain their shape approximately through several 

image threshold levels.  

 

This region detector is robust to lighting and contrast 

variations and detects high-contrast regions, which 

make it suitable for the detection of traffic signs. An 

example frame with detected MSERs is shown in Fig. 

6.Additional traffic text sign candidates are detected 

using HSV thresholding. Each frame is first 

transformed into the HSV color space, before a 

threshold is applied to both hue and saturation 

channels. The value channel is ignored to help the 

system remain invariant to changes in brightness.  

 

Threshold values are determined using the template 

images provided in the U.K. Department of Transport 

Traffic Sign Manual [30]. These values are provided in 

Table II and are also illustrated in Fig. 7, for green, 

blue, and brown traffic signs. 

 

They remain the same for all our experiments. Two 

sets of CCs are thus found by HSV thresholding to 

detect candidate regions for blue and green traffic 

signs. Example candidate regions are shown in Fig. 6. 

 

D. Reduction of Candidate Regions Based on 

Contextual Constraints 

Next, we reduce the total number of candidates, by 

using both temporal and contextual information. 

Assuming that the 

 
ORIGENALFRAME 

 
DETECTED HSV THRESHOLD REGION 

Fig. 6. Examples of MSERs and HSV-thresholded 

regions. 

 

vehicle is moving forward and that the traffic sign 

appears within the defined search regions, we can 

expect the motion of tracked regions within the frame 

to be as illustrated by the green arrows in Fig. 8. 

Temporal information about candidate regions is then 

easily gained by matching each candidate between 

frames using its size, aspect ratio, and location 

features. It is assumed that between consecutive 

frames, the Euclidean distance between matching 

regions will remain small, despite their temporal 
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motion within the frame. Based on this assumption, 

each traffic sign candidate from the current frame is 

compared with each candidate from the previous 

frame. A match is made between the regions with the 

smallest Euclidean distance, given that this distance is 

below a defined threshold and that their aspect ratios 

are suitably similar. If no match is found, the detected 

candidate is treated as a new traffic sign. 

 

For a pinhole camera model, it is given that candidates 

will grow in size through consecutive frames. This is 

shown in Fig. 9, where C represents the camera center, 

T1 and T2 represent a traffic sign at different distances 

with respect to the camera, and T1 and T2 represent 

the 2-D projection of T1 and T2 on the image plane. 

As the camera moves forward, the traffic sign in its 

view will move away from the VP in the image plane 

and increase in size. Any tracked candidates that 

violate these conditions are assumed to be FPs and are 

rejected. 

 

The constraints applied to the region size vary based 

on the location of the region within the frame. The 

maximum and min-imum values for region width and 

height increase, the further the region is from the VP. 

Overhead gantries tend to be far wider than traffic 

signs found by the side of the road; therefore, the 

maximum and minimum values for aspect ratio and 

width depend on which search region the traffic sign is 

detected in. The maximum sizes of candidate traffic 

signs are represented by the size of the 3-D search 

boxes, where the maximum size of roadside candidates 

depends on their horizontal distance from the VP, and 

the maximum size of gantry candidates depends on 

their vertical distance from the VP. 

 
Fig. 7. Hue against saturation, with values for color 

traffic signs marked. 

 
Fig. 8. Motion of traffic sign with respect to camera. 

 
Fig. 9. Pinhole camera model representing motion of 

traffic sign with respect to the camera. 

 

IV. RECOGNITION OF TEXT 

The second stage of the system recognizes text 

contained within the detected candidate regions. To 

increase the chances of OCR in recognizing our noisy 

text regions, we first apply an approximate perspective 

transform to the rectangular candidate regions to 

vertically align them and their text characters. Indi-

vidual text characters are then segmented, formed into 

words, and then sent to OCR. Results from several 

instances of each traffic sign are then combined, in 

order to further improve recognition. These steps are 

detailed next. 

 

A. Correction of Detected Candidate Regions 

Before text is read from the detected region, an 

approximate perspective transform is applied to 

vertically align the text characters and reduce 

perspective distortion. The correction is performed by 

first fitting a quadrilateral to the CC representing the 

traffic sign; example traffic sign shapes are shown in 
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Fig. 10. The method is required to be robust to noisy 

rectangular candi-dates, such as those in Fig. 11. 

 

First, the CC is filtered down to just the points 

representing edge pixels, and the well-known random 

sampling consensus (RANSAC) algorithm is then 

applied to estimate parameters for lines representing 

the top and bottom edges [31]. It is assumed that either 

the left or right side of the CC can be approximately 

fitted to a single straight line, if not both sides. 

RANSAC is again applied to fit a straight line to both 

the leftmost pixels and rightmost pixels, ignoring any 

points associated with the fitted top and bottom lines. 

The line that best fits its edge pixels is then selected, 

and the other is rejected and replaced with a line of 

equal gradient, intersecting the outer most pixel. For 

example, in the bottom left image in Fig. 12, the right-

hand side would be selected and the other rejected. 

 

The left and right sides of the quadrilateral 

representing the candidate are assumed to be parallel, 

as rotation around the x-axis is minimal. The 

quadrilateral representing the region is then found 

from the points at which these four lines intersect. 

Each stage of this method is shown in Fig. 12.A 

homography H can be calculated from this set of 

points (x) and a set of points representing a regular 

rectangle x (see)  

 
Fig. 10. example traffic sign shapes 

 
Fig. 11. Example noisy traffic sign candidates shown 

with their corresponding HSV threshold CCs. 

 
Fig. 12. Stages of quadrilateral detection, showing (top 

left) original CC, (top center) edge image, (top right) 

fitted horizontal line, (bottom left) fitted vertical lines, 

(bottom center) corrected vertical lines, and (bottom 

right) detected quadrilateral. 

 
Fig. 13. Approximate perspective transform using 

homography H. 

 
Fig. 14. Example detected regions with quadrilaterals 

and resulting corrected regions. 

 

Fig. 13) [32]. The dimensions of the corrected 

rectangle x_ are defined as 

 
where w_ and h_ represent the width and height of the 

corrected  region, and P1, P2, P3, and P4 are points 

that represent the corners of the detected 
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quadrilateral.Perspective mapping can now be 

performed using homography  H, which will cause text 

characters to be vertically aligned.  Example results of 

this transformation are shown in Fig. 14. 

 

B. Detection of Text Lines 

The next stage of the algorithm locates lines of text 

within the detected candidate regions. This allows the 

total number of CCs to be reduced, removing 

noncharacter CCs and hence improving the chances for 

higher OCR accuracy. Text characters are first located 

as MSERs within the region, which are then reduced 

based on thresholds applied to features of the 

candidate characters and their bounding boxes (BBs). 

These thresholds were determined empirically based 

on a validation data set, and these are recorded in 

Table III. All remaining character regions are then 

grouped into text lines. As the region has been 

transformed with the approximate perspective 

transform, the text lines are assumed to be vertically 

aligned. Each character is compared with other 

characters and labeled based on simple perceptual 

similarity rules, i.e., similarity of 

 
Fig. 16. Line detection in two passes, showing (top) 

detected text line after first pass and (bottom) detected 

text line after second pass. 

component heights, vertical distance, horizontal 

distance, and ratio of component areas. Fig. 15 shows 

the detected MSER components and initially detected 

text lines. Once text lines are detected, a second pass 

removes unlikely  characters from each line. This stage 

is necessary because symbols and other noncharacter 

components can get grouped  with text characters, 

causing OCR errors. For each text line,  the median 

character height is found and then used to define  a 

stricter set of size constraints. For example, as shown 

in Fig. 16, the “arrow” symbol has been incorrectly 

grouped as a text character in the first pass but is then 

removed in the second pass. 

 

C. OCR for Individual Candidates 

The set of detected text lines (in grayscale) are passed 

on to the open-source OCR engine  Tesseract” [33] for 

recognition. Given that U.K. text-based traffic signs 

contain only two typefaces (see Fig. 17), i.e., 

motorway and transport, the OCR engine was retrained 

using only these typefaces [34]. Tesseract was also 

trained on other symbols, which may appear to avoid 

their misclassification as characters, e.g., an “airport” 

symbol may be incorrectly classified as a letter “X.” 

 

D. Temporal Fusing of OCR Results 

To improve the accuracy of OCR, results are combined 

across several frames. Individual words are compared 

from frame to frame based on size, with word BBs 

normalized by the region size. The results of the ten 

most recent detections 

 
Fig. 17. U.K. traffic sign typefaces, showing (top) 

transport typeface and (bottom) motorway typeface. 
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are combined. A histogram of OCR results is created 

for each tracked word, with each word weighted by the 

recognition confidence rate returned by the OCR. At 

each frame, the result in the histogram of words, with 

the highest value, is taken to be the word for that 

frame. If the word is only recognized in a single frame, 

then it is ignored. 

 

An example of our OCR result fusion method is shown 

in Table IV, with text read from the traffic sign shown 

in Fig. 18. It is worth noting in this example that, 

despite no single frame producing a perfectly accurate 

OCR result, the fused result is entirely correct. In 

addition to combining OCR results for exactly 

matching words, fragments of words are also 

combined. Occasionally, sections of words become 

temporarily unreadable due to occlusion or blurring. 

This is overcome by attempting to match together 

fragments of words, which overlap over successive 

frames. 

 

If two words are found to overlap and have a similar 

height relative to the region size, an attempt is made to 

match the two words together. The two word 

fragments are overlapped iteratively, until a match is 

found between more than two of the characters, 

whereupon a new word is created from a combination 

of the existing words. An example of combined words 

is shown in Fig. 19. 

 

EXPERIMENTAL RESULTS 

Video: 
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Real time: 

 
 

VI. CONCLUSION 

A novel system for the automatic detection and 

recognition of text in traffic signs based on MSERs 

and HSV thresholding has been proposed. The search 

area for traffic signs was reduced using structural 

information from the scene, which aided in reducing 

the total number of FPs. Perspective rectification and 

temporal fusion of candidate regions of text were used 

to improve OCR results. Both the detection and 

recognition stages of the system were validated 

through comparative analysis, achieving the Fmeasure 

of 0.93 for detection, 0.89 for recognition, and 0.87 for 

the entire system. 
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