

 Volume No: 7(2020) Issue No: 6(June)
 www.ijmetmr.com Page 44

Cost Minimization Algorithms for Data Center Management

1Gotiwada Kiran Mai, M.tech scholar, Department Computer Science and Engineering,

Sarada Institute of Science, Technology and Management, Srikakulam 532404
2Mr. S.Kalyan, M. Tech., Asst. Professor, Department Computer Science and Engineering,

Sarada Institute of Science, Technology and Management, Srikakulam 532404

ABSTRACT

Due to the increasing usage of cloud

computing applications, it is important to

minimize energy cost consumed by a data

center, and simultaneously, to improve quality

of service via data center management. One

promising approach is to switch some servers

in a data center to the idle mode for saving

energy while to keep a suitable number of

servers in the active mode for providing timely

service. In this paper, we design both online

and offline algorithms for this problem. For

the offline algorithm, we formulate data center

management as a cost minimization problem

by considering energy cost, delay cost (to

measure service quality), and switching cost

(to change servers’ active/idle mode). Then,

we analyse certain properties of an optimal

solution which lead to a dynamic

programming based algorithm. Moreover, by

revising the solution procedure, we

successfully eliminate the recursive procedure

and achieve an optimal offline algorithm with

a polynomial complexity. For the online

algorithm, we design it by considering the

worst case scenario for future workload. In

simulation, we show this online algorithm can

always provide near-optimal solutions.

Key Words—Data center management, offline

algorithm, dynamic programming, and online

algorithm.

1. INTRODUCTION

Recent years, many researchers devote

themselves into the area of data center

administration. The goals of data center

management may include minimalizing energy

cost and improving quality of service. Energy

cost is a major part of a data centre’s budget

which should be minimized to decrease

service provider’s cost, and more importantly,

to keep our Earth green. One method to

minimize energy cost is to switch some

servers from active mode to idle mode

whenever possible. These switching

conclusions are made based on environment of

the servers, such as network state or storage

state. For the meantime, we want to achieve

good service quality, which can be measured

by the average delay of serves responding

time. For this purpose, there should be enough

active servers in order to process tasks

originated by clients in time. To achieve both

goals of data center management, we should

maintain a suitable number of active servers

and then distribute jobs to these active servers.

Research efforts on data center management

can be classified as inter-center or intra-center

management.

Cite this Article as: Gotiwada Kiran Mai & S.Kalyan "
Cost Minimization Algorithms for Data Center

Management", International Journal & Magazine of

Engineering, Technology, Management and Research

(IJMETMR), ISSN 2348-4845, Volume 7 Issue 6, June

2020, Page 44 -58.

 Volume No: 7(2020) Issue No: 6(June)
 www.ijmetmr.com Page 45

Work load among servers within a data center.

In this paper, we focus on intra-center

management and consider dynamic workload

over a period. In the minimization problem,

the cost includes energy cost, delay cost and

swapping cost. Energy cost at an active server

can be modelled as a function of its assigned

workload, or a function of the percentage of its

processing capability used to finish the

assigned workload. Delay cost at an active

server can be used to measure the quality of

service, which is also a function of assigned

workload. We call the grouping of these two

costs as the operating cost. Switching cost is

the cost spent when changing a server from

active mode to idle mode or reversely. In the

cost minimization problem, we aim to

optimally adjusting servers’ status and

transmitting workload to active servers.

2.LITERATURE SURVEY

Commentary : Cloud computing – A security

problem or solution? The move to cloud

computing is the next stage of an unstoppable

trend in the breakdown of the enterprise

perimeter, both technically and

organizationally. This new paradigm presents

a number of security challenges that still need

to be resolved but sufficient change in the IT

environment has already happened - so that

most organizations are working in a

transitional state where security exploits are

happening across the enterprise boundary. In

this situation, the compartmentalization

introduced by migrating to cloud services

could result in much improved security.

Modelling Strategic Relationships for Process

Reengineering Existing models for describing

a process such as a business process or a

software development process tend to focus on

the what or the show of the process

For example a health insurance claim process

would typically be described in terms of

several steps for assessing and approving a

claim in trying to improve or redesign a

process however one also needs to understand

the way for example why do physicians

submit treatment plans to insurance companies

before giving treatment? and why do claims

managers seek medical opinions when

assessing treatment plans An understanding of

the motivations and interests of process

participants is often crucial to the successful

redesign of processes.

3 REQUIREMENT ANALYSES

A Software Requirements Specification (SRS)

is a complete description of the behavior of the

system to be developed. It includes a set of use

cases that describe all the interactions the

users will have with the software.

Functional Requirements:

In software engineering, a functional

requirement defines a function of a software

system or its component. A function is

described as a set of inputs, the behavior, and

outputs. Functional requirements may be

calculations, technical details, data

manipulation and processing and other

specific functionality that define what a

system is supposed to accomplish. Behavioral

requirements describing all the cases where

the system uses the functional requirements

are captured in use cases. Functional

requirements are supported by non-functional

requirements (also known as quality

requirements), which impose constraints on

 Volume No: 7(2020) Issue No: 6(June)
 www.ijmetmr.com Page 46

the design or implementation (such as

performance requirements, security, or

reliability)

Non-Functional Requirements

Non-functional requirements are often called

qualities of a system. Other terms for non-

functional requirements are "constraints",

"quality attributes", "quality goals" and

"quality of service requirements, “and "non-

behavioral requirements. Qualities, that is,

nonfunctional requirements, can be divided

into two main categories: 1. Execution

qualities, such as security and usability, which

are observable at run time. 2. Evolution

qualities, such as testability, maintainability,

extensibility, and scalability, which are

embodied in the static structure of the software

system.

Hard ware and software Requirements

The following sub-sections discuss the various

aspects of hardware requirements. Hardware

Requirements for Present Project:

 • System : Pentium IV 2.4 GHz.

• Hard Disk : 500 GB.

 • Ram : 4 GB

Software Requirements for Present Project:

Operating system : Windows XP / 7

Coding Language : Java (Jdk 1.7)

Web Technology : Servlet, JSP

Web Server : Tomcat 6.0

IDE : Eclipse Galileo

Database : My-SQL 5.0

UGI for DB : SQLyog

JDBC Connection : Type 4 Driver

4 SYSTEM DESIGN

SYSTEM MODEL

Figure 1 SYSTEM MODEL

An example of the distributed cloud is shown

in Fig. 1. Each user sends its requests to its

nearby web portal, and the requests at each

web portal are then allocated to different data

centers. Associated with each request, there is

an average tolerant delay requirement which is

the negotiated SLA between the user and the

cloud service provider. Such a delay usually

consists of the network latency incurred on the

links between web-portals and data centers

and the average delay waiting for being

processed.

ELECTRICITY COST MODEL

The electricity cost of a data center DC during

each time slot t is determined by the amount of

power it consumed and the local electricity

price during that time period. Let be the unit-

energy electricity price at the location of DC

and the total energy consumption of DC in the

time duration of time slot t, if the load among

 Volume No: 7(2020) Issue No: 6(June)
 www.ijmetmr.com Page 47

the servers at DC is well balanced. Thus, is

proportional to the amount of energy

consumption per request in data center DC.

Let be the amount of average energy

consumed per request with the average delay

requirement DC, which is a constant.

DESIGN GOALS

In order to achieve practicality, both security

and efficiency are considered in the proposed

scheme. To be more specific, design goals of

the proposed scheme are described as follows:

• Efficiency: Computational costs should be as

low as possible at both the database owner

side and the user side. To gain high efficiency,

most biometric identification operations

should be executed in the cloud.

• Security: During the identification process,

the privacy of biometric data should be

protected.

5. LANGUAGE SPECIFICATIONS

 Java Technology

Java Architecture:

Java's architecture arises out of four distinct

but interrelated technologies:

The Java programming language

The Java class file format

The Java Application Programming Interface

The Java virtual machine

When you write and run a Java program, you

are tapping the power of these four

technologies.

Figure 2 Java Architecture

Java Programming Environment

Together, the Java virtual machine and Java

API form a “platform” for which all Java

programs are compiled. In addition to being

called the Java runtime system, the

combination of the Java virtual machine and

Java API is called the Java Platform (or,

starting with version 1.2, the Java 2 Platform).

Java programs can run on many kinds of

computers because the Java Platform can itself

be implemented in software. As you can see in

Figure 1- 2, a Java program can run anywhere

the Java Platform is present.

Figure 3 The Java Virtual Machine

Figure 4 The Java Virtual Machine 2

 Volume No: 7(2020) Issue No: 6(June)
 www.ijmetmr.com Page 48

Features of Java:

Platform Independence

The Write-Once-Run-Anywhere ideal has not

been achieved platforms usually required, but

closer than with other languages.

Object-Oriented: Object-oriented throughout -

no coding outside of class definitions,

including main ().

An extensive class library is available in the

core language packages.

Compiler/Interpreter Combo:

Code is compiled to byte codes that are

interpreted by Java virtual machines (JVM).

This provides portability to any machine for

which a virtual machine has been written.

The two steps of compilation and

interpretation allow for extensive code

checking

and improved security.

Robust :

Exception handling built-in, strong type

checking (that is, all data must be declared an

explicit type), local variables must be

initialized.

Security

No memory pointers

A program runs inside the virtual machine

sandbox. Array index limit checking

Automatic Memory Management:

Automatic garbage collection

Memory management handled by JVM.

Limitations of C & C++ eliminated:

No memory pointers No preprocessor

Array index limit checking

6. SYSTEM IMPLEMENTATION

Figure 5 Flow Diagram

Figure 6 Cloud assignment algorithms

Java Code

/**

* A simple example showing how to create a

datacenter with one host and run one

* cloudlet on it.

*/

public class pso_example2 {

static FileOutputStream out;

static PrintStream ps;

static ArrayList<Vm> vmlist;

/**

* Creates main() to run this example.

*

* @param args

* the args

* @throws IOException

*/

 Volume No: 7(2020) Issue No: 6(June)
 www.ijmetmr.com Page 49

public static void main(String[] args) throws

IOException {

try {

out = new FileOutputStream("Simulation

Files/simulation_output.txt");

} catch (FileNotFoundException e) { // TODO

Auto-generated catch block

e.printStackTrace();

}

ps = new PrintStream(out);

32

for (int i = 0; i < 100; i++) {

vmlist = new ArrayList<Vm>();

initSimulation();

System.out.println(i+1);

}

ps.close();

}

private static void initSimulation() {

Log.printLine("Starting CloudSim simulation

Example using PSO...");

try {

// <<< [1]: Initialize the CloudSim package. It

should be called

// before creating any entities. >>>

int num_user = 1; // number of cloud users

Calendar calendar = Calendar.getInstance(); //

get calendar using

// current time zone

boolean trace_flag = false; // mean trace

events

CloudSim.init(num_user, calendar,

trace_flag); // Initialize the

// CloudSim library

// <<< [2]: Create Datacenters >>>

Datacenter datacenter1 =

createDatacenter("Datacenter_1");

33

// <<< [3]: Create Cloud Broker and name it

Broker1 >>>

DatacenterBroker broker = createBroker(1);

int brokerId = broker.getId(); // gets the id of

the created broker

// <<< [4]: Create 5 virtual machines that uses

time shared

// scheduling >>>

addVMs(4, brokerId, true, 6000);//0-3

addVMs(6, brokerId, true, 12000);//4-9

// <<< [5]: submit vm list to the broker >>>

broker.submitVmList(vmlist);

// <<< [6]: Read the workload file and create

Cloudlets from it

List<Cloudlet> cloudletList =

createCloudLets();

// <<< [7]: assign specific VMs to run specific

cloudlets

// --

broker.UsePSO();

for (Cloudlet cloudlet : cloudletList) {

// set all cloudlets to be managed by one

broker.

cloudlet.setUserId(brokerId);

}

// --

// <<< [8]: submit cloudlet list to the broker

>>>

broker.submitCloudletList(cloudletList);

34

// <<< [9]: Starts the simulation >>>

// start the simulation

CloudSim.startSimulation();

// stop the simulation

CloudSim.stopSimulation();

// <<< [10]: Print results when simulation is

over

 Volume No: 7(2020) Issue No: 6(June)
 www.ijmetmr.com Page 50

// retrieve all recieved cloudlet list

List<Cloudlet> newList =

broker.getCloudletReceivedList();

// print the list

printCloudletList(newList);

// Print the debt of each user to each datacenter

// datacenter1.printDebts();

Log.printLine("CloudSimExample finished!");

} catch (Exception e) {

e.printStackTrace();

Log.printLine("Unwanted errors happen");

}

}

/**

* Creates the datacenter.

*

* desc: Datacenters are the resource providers

in CloudSim. We need at

35

* least one of them to run a CloudSim

simulation

*

* @param name

* the name of the data center

*

* @return the datacenter

*/

private static Datacenter

createDatacenter(String name) {

// Here are the steps needed to create a

PowerDatacenter:

// 1. We need to create a list to store our

machine

List<Host> hostList = new

ArrayList<Host>();

// 2. create hosts, where Every Machine

contains one or more PEs or

// CPUs/Cores

// (((Host 1)))---------------------------

List<Pe> Host_1_peList = new

ArrayList<Pe>();

// get the mips value of the selected processor

int Host_1_mips =

Processors.Intel.Core_2_Extreme_X6800.mip

s;

// get processor's number of cores

int Host_1_cores =

Processors.Intel.Core_2_Extreme_X6800.core

s;

// 3. Create PEs and add these into a list.

for (int i = 0; i < Host_1_cores; i++) {

// mips/cores => MIPS value is cumulative for

all cores so we divide

// the MIPS value among all of the cores

Host_1_peList.add(new Pe(i, new

PeProvisionerSimple(Host_1_mips

36

/ Host_1_cores))); // need to store Pe id and

MIPS

Rating

}

// 4. Create Host with its id and list of PEs and

add them to the list

// of machines

int host_1_ID = 1;

int host_1_ram = 4096; // host memory (MB)

long host_1_storage = 1048576; // host storage

in MBs

int host_1_bw = 10240; // bandwidth in MB/s

hostList.add(new Host(host_1_ID, new

RamProvisionerSimple(host_1_ram),

new BwProvisionerSimple(host_1_bw),

host_1_storage,

//Host_1_peList, new

VmSchedulerTimeShared(Host_1_peList)));

Host_1_peList, new

VmSchedulerTimeSharedOverSubscription(H

ost_1_peList)));

 Volume No: 7(2020) Issue No: 6(June)
 www.ijmetmr.com Page 51

// (((/Host 1)))---------------------------

// (((Host 2)))---------------------------

List<Pe> Host_2_peList = new

ArrayList<Pe>();

// get the mips value of the selected processor

int Host_2_mips =

Processors.Intel.Core_2_Extreme_QX6700.mi

ps;

// get processor's number of cores

int Host_2_cores =

Processors.Intel.Core_2_Extreme_QX6700.co

res;

// 3. Create PEs and add these into a list.

for (int i = 0; i < Host_2_cores; i++) {

37

// mips/cores => MIPS value is cumulative for

all cores so we divide

// the MIPS value among all of the cores

Host_2_peList.add(new Pe(i, new

PeProvisionerSimple(Host_2_mips

/ Host_2_cores))); // need to store Pe id and

MIPS

Rating

}

// 4. Create Host with its id and list of PEs and

add them to the list

// of machines

int host_2_id = 2;

int host_2_ram = 4096; // host memory (MB)

long host_2_storage = 1048576; // host storage

in MBs

int host_2_bw = 10240; // bandwidth in MB/s

hostList.add(new Host(host_2_id, new

RamProvisionerSimple(host_2_ram),

new BwProvisionerSimple(host_2_bw),

host_2_storage,

//Host_2_peList, new

VmSchedulerTimeShared(Host_2_peList)));

Host_2_peList, new

VmSchedulerTimeSharedOverSubscription(H

ost_2_peList)));

// (((/Host 2)))---------------------------

// 5. Create a DatacenterCharacteristics object

that stores the

// properties of a data center: architecture, OS,

list of

// Machines, allocation policy: time- or space-

shared, time zone

// and its price (G$/Pe time unit).

String arch = "x86"; // system architecture

String os = "Linux"; // operating system

String vmm = "Xen";

double time_zone = 10.0; // time zone this

resource located

38

double cost = 3.0; // the cost of using

processing in this resource

double costPerMem = 0.05; // the cost of using

memory in this resource

double costPerStorage = 0.001; // the cost of

using storage in this

// resource

double costPerBw = 0.0; // the cost of using

bw in this resource

// we are not adding SAN devices by now

LinkedList<Storage> storageList = new

LinkedList<Storage>();

DatacenterCharacteristics characteristics =

new DatacenterCharacteristics(

arch, os, vmm, hostList, time_zone, cost,

costPerMem,

costPerStorage, costPerBw);

// 6. Finally, we need to create a

PowerDatacenter object.

Datacenter datacenter = null;

try {

datacenter = new Datacenter(name,

characteristics,

 Volume No: 7(2020) Issue No: 6(June)
 www.ijmetmr.com Page 52

new VmAllocationPolicySimple(hostList),

storageList,

0);

} catch (Exception e) {

e.printStackTrace();

}

return datacenter;

}

/**

* Creates the broker.

*

* @param id

* : the broker id

39

*

* @return the datacenter broker

*/

private static Data center Broker create

Broker(int id) {

DatacenterBroker broker = null;

try {

broker = new DatacenterBroker("Broker" +

id);

} catch (Exception e) {

e.printStackTrace();

return null;

}

return broker;

}

/**

* Creates the virtual machines.

*

* @param VMNr

* : the number of virtual machines to create

brokerId: the id of

* the broker created timeSharedScheduling: to

choose between the

* time shared or space shared shceduling

algorithms

*

* @return list of virtual machines

*

*/

private static void addVMs(int VMNr, int

brokerId, boolean timeSharedScheduling,

int mips) {

// VM description

//int mips =

Processors.Intel.Pentium_4_Extreme_Edition.

mips;

//int mips =

Processors.AMD.Athlon_FX_57.mips;

40

long size = 10240; // image size (MB)

int ram = 512; // vm memory (MB)

long bw = 1024; // MB/s

int pesNumber = 1; // number of cpus

String vmm = "Xen"; // VMM name

for (int i = 0; i < VMNr; i++) {

Vm vm;

int VM_ID = vmlist.size();

if (timeSharedScheduling) {

// create VM that uses time shared scheduling

to schedule

Cloudlets

vm = new Vm(VM_ID, brokerId, mips,

pesNumber, ram, bw,

size, vmm,

new CloudletSchedulerTimeShared());

}

else {

// create VM that uses space shared scheduling

to schedule

Cloudlets

vm = new Vm(VM_ID, brokerId, mips,

pesNumber, ram, bw,

size, vmm,

new CloudletSchedulerSpaceShared());

 Volume No: 7(2020) Issue No: 6(June)
 www.ijmetmr.com Page 53

}

// add the VM to the vmList

vmlist.add(vm);

}

41

}

/**

* generate cloudlets from the workload file

*

* @return list of cloudlets

*

*/

private static List<Cloudlet>

createCloudLets()

throws FileNotFoundException {

/** The cloudlet list. */

List<Cloudlet> cloudletList;

// Read Cloudlets from workload file in the

swf format

WorkloadFileReader workloadFileReader =

new WorkloadFileReader(

"Simulation Files/HPC2N-2002-2.1-cln.swf",

1);

// generate cloudlets from workload file

cloudletList =

workloadFileReader.generateWorkload();

return cloudletList;

}

/**

* get all user ids in case we want to consider

the user id as a parameter

* and create a broker for every user

*

* @param cloudletList

*

* @return list of userIDs

42

*

*/

@SuppressWarnings("unused")

private static ArrayList<Integer>

getUsersIDs(List<Cloudlet> cloudletList) {

ArrayList<Integer> usersIDs = new

ArrayList<Integer>();

ArrayList<Integer> usersLists = new

ArrayList<Integer>();

for (Cloudlet cloudlet : cloudletList) {

usersLists.add(cloudlet.getUserId());

}

HashSet<Integer> uniqueValues = new

HashSet<Integer>(usersLists);

for (int value : uniqueValues) {

usersIDs.add(value);

}

return usersIDs;

}

/**

* Prints the Cloudlet objects.

*

* @param list

* list of Cloudlets

* @throws IOException

*/

private static void

printCloudletList(List<Cloudlet> list) throws

IOException {

int size = list.size();

Cloudlet cloudlet;

String indent = "\t";

Log.printLine();

Log.printLine("========== OUTPUT

==========");

Log.printLine("Cloudlet_ID" + indent +

"STATUS" + indent

+ "DataCenter_ID" + indent + "VM_ID" +

indent + "Time" +

indent

 Volume No: 7(2020) Issue No: 6(June)
 www.ijmetmr.com Page 54

+ "Start_Time" + indent + "Finish_Time");

DecimalFormat dft = new

DecimalFormat("###.##");

for (int i = 0; i < size; i++) {

cloudlet = list.get(i);

Log.print(cloudlet.getCloudletId() + indent);

if (cloudlet.getCloudletStatus() ==

Cloudlet.SUCCESS) {

Log.print("SUCCESS" + indent);

Log.printLine(cloudlet.getResourceId() +

indent

+ cloudlet.getVmId() + indent

+ dft.format(cloudlet.getActualCPUTime()) +

indent

+ dft.format(cloudlet.getExecStartTime()) +

indent

+ dft.format(cloudlet.getFinishTime()));

}

}

ps.println(list.get(size-1).getFinishTime());

}

}

7 CHAPTER TESTING

Software Test Life Cycle

Figure 7 Testing Lifecycle

Test Environment Setup:

Test environment decides the software and

hardware conditions under which a work

product is tested. Test environment set-up is

one of the critical aspects of testing process

and can be done in parallel with Test Case

Development Stage. Test team may not be

involved in this activity if the customer team

provides the test environment in which case

the test team is required to do a readiness

check (smoke testing) of the given

environment.

Activities:

 Understand the required architecture,

environment set-up and hardware and software

requirement list for the Test Environment.

 Setup test Environment and test data

 Perform smoke test on the build

Test Execution

During this phase test team will carry out the

testing based on the test plans and the test

cases prepared. Bugs will be reported back to

the development team for correction and

retesting will be performed.

Activities:

 Execute tests as per plan

 Document test results, and log defects for

failed cases Map defects to

test cases in RTM

 Retest the defect fixes

 Track the defects to closure

 Volume No: 7(2020) Issue No: 6(June)
 www.ijmetmr.com Page 55

White Box Testing:

White box testing is when the tester has access

to the internal data structures and algorithms

including the code that implement these.

 The following types of white box testing

exist:

 API testing (application programming

interface) - testing of the application

using public and private APIs

 Code coverage - creating tests to satisfy

some criteria of code coverage (e.g., the test

designer can create tests to cause all

statements in the program to be executed at

least once)

 Fault injection methods - improving the

coverage of a test by introducing faults to test

code paths

 Mutation testing methods

 Static testing - White box testing includes

all static testing

Black box testing:

Black box testing treats the software as a

"black box"—without any knowledge of

internal implementation. Black box testing

methods include: equivalence partitioning,

boundary value analysis, all-pairs testing, fuzz

testing, model-based testing, traceability

matrix, exploratory testing and specification-

based testing.

Grey box testing:

Grey box testing (American spelling: gray box

testing) involves having knowledge of internal

data structures and algorithms for purposes of

designing the test cases, but testing at the user,

or black-box level. Manipulating input data

and formatting output do not qualify as

greybox, because the input and output are

clearly outside of the "black-box" that we are

calling the system under test. This distinction

is particularly important when conducting

integration testing between two modules of

code written by two different developers,

where only the interfaces are exposed for test.

However, modifying a data repository does

qualify as grey box, as the user would not

normally be able to change the data outside of

the system under test. Grey box testing may

also include reverse engineering to determine,

for instance, boundary values or error.

8. RESULTS

Login Portal and adding User and adding

files to DATA CENTER:

Steps to adding user to Data Center:

Step:1

Figure 8 Adding user to Data Center Step 1

Step:2

Figure 9 Adding user to Data Center Step 2

 Volume No: 7(2020) Issue No: 6(June)
 www.ijmetmr.com Page 56

Step:3

Figure 10 Adding user to Data Center Step

3

Steps to adding files to DATA CENTER

Step:1

Figure 11 Adding files to DATA CENTER

Step 1

Step:2

Figure 12:Adding files to DATA CENTER

Step 2

Step:3

Figure 13 Adding files to DATA CENTER

Step 3

Step:4

Figure 14 Adding files to DATA CENTER

Step 4

Step:5

Figure 15 Adding files to DATA CENTER

Step 5

 Volume No: 7(2020) Issue No: 6(June)
 www.ijmetmr.com Page 57

Step:6

Figure 16 Adding files to DATA CENTER

Step 6

Step:7

Figure 17 Adding files to DATA CENTER

Step 7

9. CONCLUSION

In this paper, we studied the operational cost

minimization problem in a distributed cloud

computing environment that not only provides

fair rate allocations among web portals but

also meets multi-level user SLA requirements,

by exploiting time varying electricity prices

and user request rates, for which we first

proposed an adaptive operational cost

optimization framework. We then devised fast,

scalable approximation algorithm with a

provable approximation ratio for the problem.

We finally conducted extensive experiments

by simulations to evaluate the performance of

the proposed algorithm, using real-life

electricity price data traces. Experimental

results demonstrate that the proposed

algorithm is very promising, and the solution

obtained is fractional of the optimum.

10. References

1. Beloglazov, R. Buyya, Y. C. Lee, A.

Zomaya, "A taxonomy and survey of

energy-efficient data centers and cloud

computing systems", Elsevier Adv.

Comput., vol. 82, pp. 47-111, 2011.

2. Gandhi, V. Gupta, M. Harchol-Balter, A.

Kozuch, "Optimality analysis of energy-

performance trade-off for server farm

management", Elsevier Perform. Eval.,

vol. 67, pp. 1155-1171, Nov. 2010.

3. L. A. Barroso, U. Hölzle, "The case for

energy-proportional computing", IEEE

Comput., vol. 40, no. 12, pp. 33-37, Dec.

2007.

4. G. Chen, W. He, J. Liu, S. Nath, L. Rigas,

L. Xiao, F. Zhao, "Energy-aware server

provisioning and load dispatching for

connection-intensive internet services",

Proc. USENIX NSDI, vol. 8, pp. 337-350,

Apr. 2008.

5. H. Amur, J. Cipar, V. Gupta, G. R.

Ganger, M. A. Kozuch, K. Schwan,

"Robust and Flexible power-proportional

storage", Proc. 1st ACM Symp. Cloud

Comput., pp. 217-228, 2010. Access at

ACM

6. M. R. Garey, D. S. Johnson, Computers

and Intractability: A Guide to the Theory

of NP-completeness, New York, NY,

USA:Freeman, 1979. 56

7. B. Guenter, N. Jain, C. Williams,

"Managing cost performance and

 Volume No: 7(2020) Issue No: 6(June)
 www.ijmetmr.com Page 58

reliability tradeoffs for energy-aware

server provisioning", Proc. IEEE

INFOCOM, pp. 1332-1340, Apr. 2011.

8. Y. Guo, Y. Fang, "Electricity cost saving

strategy in data centers by using energy

storage", IEEE Trans. Parallel Distrib.

Syst., vol. 24, no. 6, pp. 1149-1160.

9. J. Li, K. Shuang, S. Su, Q. Huang, P. Xu,

X. Cheng, J. Wang, "Reducing

operational costs through consolidation

with resource prediction in the cloud",

Proc. IEEE/ACM CCGrid, pp. 793-798,

May 2012.

