

 Page 315

Design And Implementation of Efficient FSM For AHB Master And

Arbiter

K. Manikanta Sai Kishore,

M.Tech Student,

GITAM University, Hyderabad

Mr. M. Naresh Kumar, M. Tech (JNTUK),

Assistant Professor,

GITAM University Hyderabad

ABSTRACT

Due to Moore’s law more and more amount of logic is being

placed onto a single silicon die and it is driving the

development of highly integrated SoC designs. So this high

computational power must be matched with interconnect

fabric which can handle it. There are many interconnect

buses that are widely used in the industry like AMBA,

Wishbone, Core Connect, Avalon etc. AMBA is most

proffered among all of them because it has a hierarchy of

buses with AHB (Advance high performance bus) can be

connected to high performance peripherals and APB

(Advance Peripheral Bus) that can be connected to low

performance peripherals. Nowadays in industry

development of Silicon on Chip (SOC) devices with

reusable IP cores are given higher priority, the major

challenge faced here is to ensure proper lossless

communication between these IP cores in SOC device, this

can be ensured with the help of standard communication

protocols such as AMBA from ARM Ltd. In this paper we

design and synthesize efficient Finite State Machine (FSM)

for master and arbiter interface in AMBA AHB.

INTRODUCTION

Advanced Microcontroller Bus Architecture

(AMBA)is a protocol that is used as an open standard, on-

chip interconnect specification for the connection and

management of functional blocks in a system-on-chip (SoC)

[1] AMBA assists the progress of right-first-time

development of multiprocessor designs with large number of

controllers &peripherals

[2] The Advanced Microcontroller Bus Architecture

(AMBA) has the ability to re-use designs and here it means

it has the ability to re-use IP. IP re-use in today’s technology

is an important factor in reducing the development costs and

timescales for System-on-chip (SoC)

[3] AMBA is a standard interface specification that makes

sure of the compatibility between IP components provided

by different design teams or vendors.

The worldwide reception of AMBA specifications all over

the semiconductor industry has driven a comprehensive

market in third party IP products and tools to support the

development of AMBA based systems.

OVERVIEW OF AMBA BUSES

There are three different buses defined within the AMBA

2.0 specification –

Advanced High Performance Bus (AHB),

Advanced System Bus (ASB), and

Advance Peripheral Bus (APB).

This paper mainly deals with AMBA AHB and particularly

AHB master and arbiter.

Advanced High-performance Bus (AHB)

The AMBA AHB is for high-performance, high

clock frequency system modules. The AHB acts as the high-

performance system backbone bus. AHB supports the

efficient connection of processors, on-chip memories and

off-chip external memory interfaces with low-power

peripheral macro cell functions. AHB is also specified to

ensure ease of use in an efficient design flow using synthesis

and automated test techniques.

Advanced System Bus (ASB)

The AMBA ASB is for high-performance system

modules. AMBA ASB is an alternative system bus suitable

for use where the high-performance features of AHB are not

required. ASB also supports the efficient connection of

processors, on-chip memories and off-chip external memory

interfaces with low-power peripheral macro cell functions.

Advanced Peripheral Bus (APB)

The AMBA APB is for low-power peripherals.

AMBA APB is optimized for minimal power consumption

and reduced interface complexity to support peripheral

functions. APB can be used in conjunction with either

version of the system bus.

Objectives of the AMBA specification

 Page 316

The AMBA specification has been derived to satisfy four

key requirements:

 To facilitate the right-first-time development of

embedded microcontroller products with one or

more CPUs or signal processors

 To be technology-independent and ensure that

highly reusable peripheral and system macro cells

can be migrated across a diverse range of IC

processes and be appropriate for full-custom,

standard cell and gate array technologies

 To encourage modular system design to improve

processor independence, providing a development

road-map for advanced cached CPU cores and the

development of peripheral libraries

 To minimize the silicon infrastructure required to

support efficient on-chip and off-chip

communication for both operation and

manufacturing test.

A typical AMBA-based microcontroller

An AMBA-based microcontroller typically consists

of a high-performance system backbone bus (AMBA AHB

or AMBA ASB), able to sustain the external memory

bandwidth, on which the CPU, on-chip memory and other

Direct Memory Access(DMA) devices reside. This bus

provides a high-bandwidth interface between the elements

that are involved in the majority of transfers. Also located

on the high performance bus is a bridge to the lower

bandwidth APB, where most of the peripheral devices in the

system are located.

Figure1: AMBA based Microcontroller

AHB INTERCONNECTION

AHB is a new generation of AMBA bus which is

intended to address the requirements of high performance

synthesizable designs. It is a high performance system bus

that supports multiple busmasters and provides high-

bandwidth operation. AMBA AHB implements the features

required for high-performance, high clock frequency

systems including:

 Burst transfers

 Single-cycle bus master handover

 Wider data bus configurations (64/128, up to1024

bits).

 SEQ, NON-SEQ, BUSY IDLE transfer types

 Address decoding

 Page 317

Figure2: AHB Interconnection Diagram

An AMBA AHB design is having following components:

AMBA AHB MASTER:

An AMBA AHB bus master is able to initiate read

and write operations by making use of an address and

control information. Only one bus master at a time is

allowed to actively use the bus.

AMBA AHB SLAVE:

An AMBA AHB bus slave responds to read and

write operation initialized by master within a given address

space range. The bus slave signals back to active master

about the success, failure or waiting of the data transfer.

AMBA AHB ARBITER:

An AMBA AHB bus arbiter gives an assurance

that only one bus master at a time is allowed to initiate the

data transfers.Even though the arbitration scheme is fixed,

any arbitration scheme can be used like Round Robin, Fair

Chance etc. depending on the application requirement.

AMBA AHB DECODER:

The AMBA AHB decoder is used to decode the

address of each transfer and provide a select signal for the

slave that is involved in the transfer. A single centralized

decoder is required in all AHB implementations.

Figure 2 shows the working principle of AHB Bus.

Before starting the AMBA AHB transfer, the bus master

must have to be granted access to the bus. In this process

first of all master asserts a request signal to an arbiter. Now

the arbiter will indicate when the master will get the grant of

the bus. This decision of granting the access to bus is

achieved using some arbitration mechanism like priority

based or round robin mechanism etc. A granted bus master

then starts the AHB transfer by first driving an address and

control signals. These address and control signals provide

information about an address, direction and width of the

transfer, burst transfer information if the transfer forms the

part of the burst

AHB MASTER INTERFACE

The AHB bus master is the part which initiates the

read or write transfers, it can be said as the most complex

part in the AMBA AHB system. It is the module in AMBA

 Page 318

AHB that tarts the transfer by sending a request signal

hbusreq to the arbiter module to grant access of the bus.

Figure shows the schematic of AHB master developed for

this paper. The bus master waits for the hgrantx signal to be

active high, as soon as the bus master gets the hgrantx

signal, AHB master takes the appropriate action according

to the Transfer response signals, and sends the required

address, control and data signals to the slave and arbiter.

AHB master is responsible for sending the address and

control signal to the slave device weather the operation is

read or write. The AHB master output depends upon the

hready and hresp [1:0] provided by the slave device. The

hrdata carries the read data signal from the slave device and

hwdata carries the data to be written to the slave device by

the master device. hwrite signal tells weather the read

operation is being carried or the write operation is taking

place. The data width and the address width are of 32 bit in

size. The hsize [2:0] tells the size of the transfer, and the

type of data transfer is given by the htrans [1:0] signal. The

hburst [2:0] signal gives the information about the burst

transfer, i.e. single type, increment by 4, increment by 8,

increment by 16.

Figure3: AHB Master Interconnection Diagram

 Page 319

FINITE STATE MACHINE OF AHB MASTER

Figure 4: FSM of AHB Master

The following section contains the brief description of every

state in the diagram.

IDLE STATE: Initially when the system is on the master

will be in its IDLESTATE; the master will remain in its idle

state until the busreq input from test bench is not made high.

Here the idea is, for starting a transfer the master sends a bus

request signal hbusreq to the arbiter and moves on to the

next state BUSREQUESTSTATE.

BUS REQUEST STATE: In this state the master waits for

the hgrant signal from the arbiter for the hbusreq signal sent

from the previous state. If the hgrant signal is not given by

the arbiter it waits in the same state, if the hgrant signal is

obtained it then jumps to NSEQWR or NSEQRD states

according to the input write given through the test bench. If

the write signal is 1 then write mode is activated and master

will generate the output hwrite as 1. At this state the address

and control signals are also given to the master through the

test bench. The address signal is addr, and the control

signals being size, trans, burst, lock. The hready signal and

hresp signal from the slave is also checked in this state.

NSEQWR: This state is the new sequence write state. In

this state the master will check the control signals trans,

size, burst. If the burst of the transfer is 00 which indicates

single, the transfer is of single burst and the state will

change to WRWAIT state. The trans signal value for the

start of each transfer is 00 which indicates non sequential. If

the burst signal is incr4, incr8, incr16 the next state will be

SEQWR. In general we can say that at this state the master

interface will check whether it need to transfer a single

transfer or a sequential incrementing transfer.

SEQWR: This state is the sequential write state. The master

comes to this state from NSEQWR state if the burst is

incrementing burst. The master will be in this state until it

finishes the number of burst to be transferred. For achieving

this a counter is generated inside the state which counts the

number of burst sent by the master when the count reaches

burst-1 value the master changes to WRWAIT state. After

sending each burst the master checks the hresp and hready

signal from the slave, if hresp signal is 00 it means the

transfer was successful and next transfer can be sent. If the

hresp from the slave module is 01, 10 or 11 it means the

transfer didn’t happen successfully and different routines

 Page 320

need to befollowed for each hresp signal. Throughout this

state while the transfer is being performed the hready signal

from the slave interface will be 0, indication transfer is

taking place right now.

WRWAIT: This state is named write wait state, as the name

suggests here after completion of transfer of burst the master

waits until the hready signal from the slave becomes 1. If

the hreadysignal still remains 0 in this state that means the

slave has not finished the transfer and requesting some time

for wait, once the hready is made high it means that the

transfer has been completed.

LASTWR: This state is the last write state; here in this the

master can come from any other state during a write

transfer. the master go into LASTWR state whenever the

hgrant signal from the arbiter goes to 0, i.e. it literally means

that the master has lost the control over the bus for some

reason, so in order to store the current activity of master, the

master moves in to LASTWR state, when the hgrant to the

particular master becomes 1, the master moves back to the

state from which it went to LASTWR state in the first place.

NSEQRD:This state is the new sequence read state. In this

state the master will check the control signals trans, size,

burst. If the burst of the transfer is 00 which indicates single,

the transfer is of single burst and the state will change to

RDWAIT state. The trans signal value for the start of each

transfer is 00 which indicates non sequential. If the burst

signal is incr4, incr8, incr16 the next state will be SEQRD.

In general we can say that at this state the master interface

will check whether it need to transfer a single transfer or a

sequential incrementing transfer.

SEQRD:This state is sequential read state. The master

comes to this state from NSEQRD state if the burst is not

single. The master will be in this state until it finishes the

number of burst to be transferred. For achieving this a

counter is generated inside the state which counts the

number of burst sent by the master when the count reaches

burst-1 value the master changes to RDWAIT state. After

sending each burst the master checks the hresp and hready

signal from the slave, if hresp signal is 00 it means the

transfer was successful and next transfer can be sent. If the

hresp from the slave module is 01, 10 or 11 it means the

transfer didn’t happen successfully and different routines

need to be followed for each hresp signal.

RDWAIT: This state is named read wait state; the logic

behind this state is that when the master has finished

sending all the burst transfers it waits for the hready signal

from the slave module to change from 0-1, indicating the

completion of a read transfer.

LASTRD: This state is named last read state; the

uniqueness of this state is the master can come in to this

state from any other state during a read transfer. the master

go into LASTRD state whenever the hgrant signal from the

arbiter goes to 0, i.e. it literally means that the master has

lost the control over the bus for some reason, so in order to

store the current activity of master, the master moves in to

LASTRD state, when the hgrant to the particular master

becomes 1, the master moves back to the state from which it

went to LASTRD state in the first place.

AHB ARBITER

The arbitration mechanism is used to ensure that

only one master has access to the bus at any one time. The

arbiter performs this function by observing a number of

different requests to use the bus and deciding which is

currently the highest priority master requesting the bus. The

arbiter also receives requests from slaves that wish to

complete SPLIT transfers.

 Any slaves which are not capable of performing

SPLIT transfers do not need to be aware of the arbitration

process, except that they need to observe the fact that a burst

of transfers may not complete if the ownership of the bus is

changed.

Figure 5: Functional Diagram of AHB Arbiter

 With the reconfigurable functionality, it can assign

any arbitration scheme among four which are designed,

depending onthe requirement of IP cores. First of all, any

 Page 321

master among the four can request for an access of the bus.

Then dependingon the requirement of an application, we can

choose any arbitration scheme using input signal

ARBITRATION [1:0].Now, as per the selected arbitration

scheme, grant signal will be generated to any particular

master and hence master willget bus access. Choice of the

arbitration algorithm can selected as follows.

ARBITRATION [1:0] Arbitration

Selection

Algorithm

00 High Priority

Algorithm

01 Fair Chance

Algorithm

10 Random Access

Algorithm

11 Round Robin

Algorithm

Table 1: Selection of Arbitration Algorithm

FINITE STATE MACHINE FOR AHB ARBITER

 Master asserts request to an arbiter and

arbitergrants access to the bus master based on any

particular arbitration scheme. Arbiter gives an assurance of

granting requestto only one bus master at a time.

 The following section contains the brief description

of every state in the diagram.

IDLE:

 FSM of AHB arbiter starts with IDLE state and this

is the default state in the state machine. When reset signal

HRESETnis active, master has finished the transaction or

master has lost the grant in the middle of the transaction

anyhow, at thattime arbiter will stay in this state. When

master wants to perform any transaction, the master asserts

request signal to anarbiter and then arbiter will move into

next state i.e. ARBITRATION state to choose arbitration

scheme, else arbiter willwait in this state until it gets any

request or requests.

Figure 6: FSM of AHB Arbiter

ARBITRATION:

 When an arbiter will get any request or requests i.e.

HBUSREQx is active, it will move to this state from IDLE

state. Inthis state depending on the application requirement

any particular arbitration scheme can be chosen among the

four withthe help of a signal ARBITRATION [1:0].

Proposed arbitration schemes are High Priority, Fair-

Chance, Random Accessand Round Robin. Now, as per the

selected arbitration schemearbiter will move into next state

i.e. suppose, if “ARBITRATION = 01” an arbiter will move

to Fair-chance state to grantan access.

ROUND ROBIN:

 When arbitration scheme selection signal

“ARBITRATION = 11”, arbiter enters into this state. In

order to processrequests fairly, a Round Robin algorithm

employs time sharing, giving each master a time slot and

interrupting themaster if it is unable to complete the

transaction within prescribed time slots.

 The time slots are assigned to masters based on the

number of beat burst operation i.e. HBURST [2:0]. There is

4-beat, 8-beat or 16-beat burst operations either

incrementing or wrapping. If 4-beat burst operation, 4 time

slots to complete thetransaction and so on. After granting

access to any particular master arbiter will move to the

 Page 322

HMASTER state to generate the master number which has

granted the access.

HMASTER:

 An arbiter enters into this state, when any particular

master has granted bus access. In this state arbiter generates

master number who has just granted access. There are

maximum 16 masters supported by AMBA 2.0 specification

and accordingly HMASTER [3:0] can generate up to 16

numbers. Numbers for Master_0, Master_1, Master_2 and

Master_3are assigned to 0000, 0001, 0010 and 0011

respectively. Now, after generating the master number an

arbiter moves to the MASTER OPERATION state where

master starts its read and write operation.

MASTER OPERATION:

 After accessing the grant, master starts read and

write data operations in this state with the help of address

and control information. If master lost grant in the middle, it

has to again assert the request to have an access of the bus.

After completion of data transfer or anyhow if master lost its

grant, an arbiter moves to an IDLE state and the cycle starts

again.

SIMULATION RESULTS

Figure 7: Simulation Waveform of AHB Master for

Read and Write Operations

Figure 8: Simulation waveform of AHB Arbiter using

Round robin Algorithm

CONCLUSION

The AHB master interface and arbiter interface are

designed using the finite state machines in Verilog hardware

description language and the design is simulate with the help

of Questa Sim. The completed AMBA AHB system is then

checked for proper lossless communication between master

and slave interface.

REFERENCES

[1] AMBA specification, version 2.0

[2]“AHB Example AMBA System”, Technical Reference

Manual, ARM Inc.

[3]BhaumikVaidya, Anupamdevani “Design of an efficient

finite state machine for the implementation of AMBA AHB

Master”,2013

[4] PriyankaGandhani, Charu Patel “Moving from AMBA

AHB to AXI Bus in SoC Designs: A Comparative Study”,

2011

[5] P.Harishankar, Mr. ChusenDuari, Mr. Ajay Sharma,

“Design and synthesis of efficient FSM for master and slave

interfaces in AMBA AHB”, IJEDR 2014

[6]Pravin S. Shete, Dr. ShrutiOza“Design of an AMBA

AHB reconfigurable Arbiter for On-chip Bus Architecture”,

IJAIEM 2014

	Table 1: Selection of Arbitration Algorithm
	FINITE STATE MACHINE FOR AHB ARBITER

