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An effective appearance model is of prime importance 
for the success of a tracking algorithm that has attract-
ed much attention in recent years [2]–[15]. Numerous 
effective representation schemes have been proposed 
for robust object tracking in recent years. One com-
monly adopted approach is to learn a low-dimensional 
subspace, which can adapt online to object appear-
ance change. Since this approach is data-dependent, 
the computational complexity is likely to increase 
significantly because it needs eigen-decompositions. 
Moreover, the noisy or misaligned samples are likely 
to degrade the subspace basis, thereby causing these 
algorithms to drift away the target objects gradually. 
Another successful approach is to extract discrimina-
tive features from a high-dimensional space.Since ob-
ject tracking can be posed as a binary classification 
task which separates object from its local background, 
a discriminative appearance model plays an important 
role for its success. Online boosting methods [6], [10] 
have been proposed to extract discriminative features 
for object tracking. Alternatively, high-dimensional fea-
tures can be projected to a lowdimensional space from 
which a classifier can be constructed. The compressive 
sensing (CS) theory, shows that if the dimension of the 
feature space is sufficiently high, these features can be 
projected to a randomly chosen low-dimensional space 
which contains enough information to reconstruct the 
original high-dimensional features. The dimensionality 
reduction method via random projection (RP) ,is data-
independent, non-adaptive and information-preserv-
ing. In this paper, we propose an effective and efficient 
tracking algorithm with an appearance model based on 
features extracted in the compressed domain [1]. The 
main components of the proposed compressive track-
ing algorithm are shown by Figure 1. . We use a very 
sparse measurement matrix that asymptotically satis-
fies the restricted isometry property (RIP) in compres-
sive sensing theory, thereby facilitating efficient projec-
tion from the image feature space to a low-dimensional 
compressed subspace.For tracking, the positive and 
negative samples are projected (i.e., compressed) with 
the same sparse measurement matrix
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The restricted isometry property ,in compressive sens-
ing shows the above results. This property is achieved 
with high probability for some types of random matrix 
R whose entries are identically and independently sam-
pled from a standard normal distribution, symmetric 
Bernoulli distribution or Fourier matrix. Furthermore, 
the above result can be directly obtained from the 
Johnson-Lindenstrauss (JL) lemma.

2.2 Very sparse random measurement ma-
trix:

A typical measurement matrix satisfying the restrict-
ed isometry property is the random Gaussian matrix  
where  (i.e., zero mean and unit variance), as used in 
recent work [11]. However, as the matrix is dense, the 
memory and computational loads are very expensive 
when m is large. In this paper, we adopt a very sparse 
randommeasurement matrix with entries defined as

III.PROPOSED ALGORITHM:

In this section, we present the proposed compressive 
tracking algorithm in details. The tracking problem 
is formulated as a detection task and the main steps 
of the proposed algorithm are shown in Figure 1. We 
assume that the tracking window in the first frame is 
given by a detector or manual label. 

At each frame, we sample some positive samples 
near the current target location and negative samples 
away from the object center to update the classifier. 
To predict the object location in the next frame, we 
draw some samples around the current target location 
and determine the one with the maximal classification 
score.

and discriminated by a simple naive Bayes classifier 
learned online. The proposed compressive tracking 
algorithm runs at real-time and performs favorably 
against state-of-the-art trackers on challenging se-
quences in terms of efficiency, accuracy and robust-
ness.

Fig. 1: Main components of the proposed compressive 
tracking algorithm.

II.PRELIMINARIES:

We present some preliminaries of compressive sensing 
which are used in the proposed tracking algorithm.

2.1 Random projection and compressive sens-
ing:

In random projection, a random matrix  whose rows 
have unit length projects data from the high-dimension-
al feature space  to a lower-dimensional space  where 
n <<m. Each projection v is essentially equivalent to a 
compressive measurement in the compressive sens-
ing encoding stage. The compressive sensing theory 
,states that if a signal is K-sparse (i.e., the signal is a 
linear combination of only K basis), it is possible to near 
perfectly reconstruct the signal from a small number 
of random measurements. The encoder in compressive 
sensing (using (1)) correlates signal with noise (using 
random matrix R) , thereby it is a universal encoding 
which requires no prior knowledge of the signal struc-
ture. In this paper, we adopt this encoder to construct 
the appearance model for visual tracking. 

Ideally, we expect R provides a stable embedding that 
approximately preserves the salient information in any 
K- sparse signal when projecting from  to . A necessary 
and sufficient condition for this stable embedding is 
that it approximately preserves distances between any 
pairs of K-sparse signals that share the same K basis. 
That is, for any two K-sparse vectors x1 and x2 sharing 
the same K basis,
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3.2 Analysis of compressive features:

3.2.1 Relationship to the Haar-like features:

Each element vi in the low-dimensional feature   is a 
linear combination of spatially distributed rectangle 
features at different scales. Since the coefficients in 
the measurement matrix can be positive or negative 
(via (7)), the compressive features compute the rela-
tive intensity difference in a way similar to the gener-
alized Haar-like features [10]. The Haar-like features 
have been widely used for object detection with dem-
onstrated success [10]. The basic types of these Haar-
like features are typically designed for different tasks. 
There often exist a very large number of Haar-like fea-
tures which make the computational load very heavy. 

This problem is alleviated by boosting algorithms for 
selecting important features. Recently, Babenko et al. 
[10] adopt the generalized Haar-like features where 
each one is a linear combination of randomly gener-
ated rectangle features, and use online boosting to 
select a small set of them for object tracking. In this 
work, the large set of Haar-like features are compres-
sively sensed with a very sparse measurement matrix. 
The compressive sensing theories ensure that the ex-
tracted features of our algorithm preserve almost all 
the information of the original image, and hence is 
able to correctly classify any test image because the 
dimension of the feature space is sufficiently large (106 
to1010). Therefore, the projected features can be clas-
sified in the compressed domain efficiently and effec-
tively without the curse of dimensionality.

3.2.2 Scale invariant property:

It is easy to show that the low-dimensional feature v 
is scale invariant. As shown in Figure 2, each feature in 
v is a linear combination of some rectangle filters con-
volving the input image at different positions. There-
fore, without loss of

3.1 Image representation:

To account for large scale change of object appearance, 
a multiscale image representation is often formed by 
convolving the input image with a Gaussian filter of dif-
ferent spatial variances. The Gaussian filters in practice 
have to be truncated which can be replaced by rect-
angle filters. Bay et al. show that this replacement does 
not affect the performance of the interest point detec-
tors but can significantly speed up the detectors via in-
tegral image method. For each sample , its multiscale 
representation is constructed by convolving Z with a 
set of rectangle filters at multiple scales  defined by

where w and h are the width and height of a rectangle 
filter, respectively. Then, we represent each filtered 
image as a column vector in  and concatenate these 
vectors as a very high-dimensional multiscale image 
feature vector where .The dimensionality m is typically 
in the order of   to . We adopt a sparse random matrix 
R in (7) to project x onto a vector in a low-dimensional 
space. The random matrix R needs to be computed 
only once offline and remains fixed throughout the 
tracking process. For the

Fig. 2: Graphical representation of compressing a high-
dimensional vector x to a low-dimensional vector v. In 
the matrix R, dark, gray and white rectangles represent 
negative, positive, and zero entries, respectively. The 
blue arrows illustrate that one of nonzero entries of 
one row of R sensing an element in x is equivalent to a 
rectangle filter convolving the intensity at a fixed posi-
tion of an input image.sparse matrix R in (7), the com-
putational load is very light. As shown in Figure 2, we 
only need to store the nonzero entries in R and the po-
sitions of rectangle filters in an input image correspond-
ing to the nonzero entries in each row of R. Then, v can 
be efficiently computed by using R to sparsely measure 
the rectangular features which can be efficiently com-
puted using the integral image method.
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the above result can be directly obtained from the 
Johnson-Lindenstrauss (JL) lemma.
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recent work [11]. However, as the matrix is dense, the 
memory and computational loads are very expensive 
when m is large. In this paper, we adopt a very sparse 
randommeasurement matrix with entries defined as
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is formulated as a detection task and the main steps 
of the proposed algorithm are shown in Figure 1. We 
assume that the tracking window in the first frame is 
given by a detector or manual label. 

At each frame, we sample some positive samples 
near the current target location and negative samples 
away from the object center to update the classifier. 
To predict the object location in the next frame, we 
draw some samples around the current target location 
and determine the one with the maximal classification 
score.

and discriminated by a simple naive Bayes classifier 
learned online. The proposed compressive tracking 
algorithm runs at real-time and performs favorably 
against state-of-the-art trackers on challenging se-
quences in terms of efficiency, accuracy and robust-
ness.

Fig. 1: Main components of the proposed compressive 
tracking algorithm.
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which are used in the proposed tracking algorithm.
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In random projection, a random matrix  whose rows 
have unit length projects data from the high-dimension-
al feature space  to a lower-dimensional space  where 
n <<m. Each projection v is essentially equivalent to a 
compressive measurement in the compressive sens-
ing encoding stage. The compressive sensing theory 
,states that if a signal is K-sparse (i.e., the signal is a 
linear combination of only K basis), it is possible to near 
perfectly reconstruct the signal from a small number 
of random measurements. The encoder in compressive 
sensing (using (1)) correlates signal with noise (using 
random matrix R) , thereby it is a universal encoding 
which requires no prior knowledge of the signal struc-
ture. In this paper, we adopt this encoder to construct 
the appearance model for visual tracking. 

Ideally, we expect R provides a stable embedding that 
approximately preserves the salient information in any 
K- sparse signal when projecting from  to . A necessary 
and sufficient condition for this stable embedding is 
that it approximately preserves distances between any 
pairs of K-sparse signals that share the same K basis. 
That is, for any two K-sparse vectors x1 and x2 sharing 
the same K basis,
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(via (7)), the compressive features compute the rela-
tive intensity difference in a way similar to the gener-
alized Haar-like features [10]. The Haar-like features 
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where we assume uniform prior, p(y = 1) = p(y = 0), and   
is a binary variable which represents the sample label.

Fig. 5: Coarse-to-fine search for new object location. 
Left: object center location (denoted by red solid cir-
cle) at the t-th frame. Middle: coarse-grained search 
with a large radius and search step based on the pre-
vious object location. Right: fine-grained search with 
a small radius and search step based on the coarse 
grained search location (denoted by green solid circle). 
The final object location is denoted by blue solid circle. 
Diaconis and Freedman  show that random projections 
of high dimensional random vectors are almost always 
Gaussian. Thus, the conditional distributions and  in the 
classifier H(v) are assumed to be Gaussian distributed 
with four parameters  ,

Parameters  and  are updated with similar rules. The-
above equations can be easily derived by maximum 
likelihoodestimation . Figure 3 shows the probability 
distributionsfor three different features of the posi-
tive and negative samplescropped from a few frames 
of a sequence for clarity ofpresentation. It shows that 
a Gaussian distribution with onlineupdate using (11) 
is a good approximation of the features inthe pro-
jected space where samples can be easily separated.
Because the variables are assumed to be independent 
in ourclassifier, the n-dimensional multivariate prob-
lem is reducedto the n univariate estimation problem. 
Thus, it requires fewertraining samples to obtain accu-
rate estimation than estimatingthe covariance matrix 
in the multivariate estimation. Furthermore,several 
densely sampled positive samples surroundingthe cur-
rent tracking result are used to update the distribution-
parameters, which is able to obtain robust estimation 
evenwhen the tracking result has some drift.

Fig. 3: Illustration of scale invariant property of low-
dimensional features. From the left figure to the right 
one, the ratio is s. Red rectangle represents the j-th 
rectangle feature at position y.

Fig. 4: Probability distributions of three different fea-
tures in a lowdimensional space. The red stair repre-
sents the histogram of positive samples while the blue 
one represents the histogram of negative samples. The 
red and blue lines denote the corresponding estimat-
ed distributions by the proposed incremental update 
method.generality, we only need to show that the j-th 
rectangle feature   in the i-th feature   in v is scale invari-
ant. From Figure 3, we have

IV.Classifier construction and update:

We assume all elements in v are independently distrib-
uted and model them with a naive Bayes classifier,
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Our future work will focus on applications of the devel-
oped algorithm for object detection and recognition 
under heavy occlusion. In addition, we will explore ef-
ficient detection modules for persistent tracking.
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In addition, the usefulinformation from the former ac-
curate samples is also usedto update the parameter dis-
tributions, thereby facilitating theproposed algorithm 
to be robust to misaligned samples. Thus,our classifier 
performs robustly even when the misaligned orthe in-
sufficient numbers of training samples are used.

V.Experimental results::

The proposed algorithm is termed as fast compres-
sive tracker (FCT) with one fixed scale, and scaled FCT 
(SFCT), with multiple scales in order to distinguish 
from the compressive tracker (CT) proposed by our 
conference[1]. The FCT and SFCT methods demonstrate 
superior performance over the CT method in terms of 
accuracy and efficiency, which validates the effective-
ness of the scale invariant features and coarse-to-fine 
search strategy. Furthermore, the proposed algorithm 
is evaluated with other 15 state-of-the-art methods on 
20 challenging sequences among which 14 are publicly 
available and 6 are collected on our own.

Fig 6: Result for tracking using proposed method.

VI.Conclusion:

In this paper, we propose a simple yet robust tracking 
algorithm with an appearance model based on non-
adaptive random projections that preserve the struc-
ture of original image space. A very sparse measure-
ment matrix is adopted to efficiently compress features 
from the foreground targets and background ones. 

The tracking task is formulated as a binary classifica-
tion problem with online update in the compressed 
domain. Numerous experiments with state-ofthe- art 
algorithms on challenging sequences demonstrate 
that the proposed algorithm performs well in terms of 
accuracy, robustness, and speed.
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