
Page 28

May 2014

Volume No: 1(2014), Issue No: 5 (May) ISSN No: 2348-4845

INTERNATIONAL JOURNAL & MAGAZINE OF ENGINEERING, TECHNOLOGY, MANAGEMENT AND RESEARCH

A Monthly Peer Reviewed Open Access International e-Journal <http://www.yuvaengineers.com/Journal/>

Implementation of AODV Routing Protocol in

NS2: A comparison with DSDV routing protocol
N Dinesh Kumar, Associate Professor & Head - EIE,

Vignan Institute of Technology & Science, Deshmukhi, Andhra Pradesh, India–508284. dinuhai@yahoo.co.in

Anuj Saxena, Final year, Electronics and Instrumentation Engineering,
 VITS, Deshmukhi, Andhra Pradesh, India. saxena.anuj28@gmail.com

Arvind Sundararajan, Final year, Electronics and Instrumentation Engineering,
 VITS, Deshmukhi, Andhra Pradesh, India. asrajan93@gmail.com

N. Roop Kiran, Final year, Electronics and Instrumentation Engineering,
VITS, Deshmukhi, Andhra Pradesh, India. roop.kiran92@gmail.com

In view of the algorithm and the advantages that the AODV routing protocol presents in front of us, we attempt

to emulate the same in our project with the help of the software NETWORK SIMULATOR 2. In this paper the

AODV routing protocol is evaluated graphically with the help of a tool called NAM (Network Animator) and a

statistical analysis is drawn with the help of TRACEGRAPH for a network having 10 nodes. The same analysis

is done for the same network employing the DSDV routing protocol and its performance is compared with the

performance of the network employing the AODV routing protocol. This project is an attempt to acquire an

al-round perspective of the AODV protocol in comparison with the DSDV protocol.

Keywords: Analysis, AODV, comparisons, DSDV, NS-2, Tracegraph

Introduction

The limited resources in MANETs have made designing
of an effi cient and reliable routing strategy a very
challenging problem. An intelligent routing strategy is
required to effi ciently use the limited resources while
at the same time being adaptable to the changing
network conditions such as: network size, traffi c
density, network partitioning. In parallel with this, the
routing protocol may need to provide diff erent levels of
QoS to diff erent types of applications and users. AODV
routing protocol is one such protocol, classifi ed as a
reactive routing protocol, which caters to all the above
mentioned criterias.

 AODV ROUTING PROTOCOL

Ad hoc On-Demand Distance Vector (AODV)
Routing is a routing protocol for mobile ad
hoc networks (MANETs) and other wireless ad
hoc networks. It is jointly developed in Nokia

Research Center, University of California, Santa
Barbara and University of Cincinnati by C. Perkins, E.
Belding-Royer and S. Das.

In AODV, the network is silent until a connection is
needed. At that point the network node that needs a
connection broadcasts a request for connection. Other
AODV nodes forward this message, and record the
node that they heard it from, creating an explosion
of temporary routes back to the needy node. When a
node receives such a message and already has a route
to the desired node, it sends a message backwards
through a temporary route to the requesting node.
The needy node then begins using the route that has
the least number of hops through other nodes. Unused
entries in the routing tables are recycled after a time.
When a link fails, a routing error is passed back to a
transmitting node, and the process repeats.

Much of the complexity of the protocol is to lower the
number of messages to conserve the capacity of the

Page 29

May 2014

Volume No: 1(2014), Issue No: 5 (May) ISSN No: 2348-4845

INTERNATIONAL JOURNAL & MAGAZINE OF ENGINEERING, TECHNOLOGY, MANAGEMENT AND RESEARCH

A Monthly Peer Reviewed Open Access International e-Journal <http://www.yuvaengineers.com/Journal/>

network. For example, each request for a route has a
sequence number. Nodes use this sequence number so
that they do not repeat route requests that they have
already passed on. Another such feature is that the
route requests have a “time to live” number that limits
how many times they can be retransmitted. Another
such feature is that if a route request fails, another route
request may not be sent until twice as much time has
passed as the timeout of the previous route request.

The advantage of AODV is that it creates no extra
traffi c for communication along existing links. Also,
distance vector routing is simple, and doesn’t require
much memory or calculation. However AODV requires
more time to establish a connection, and the initial
communication to establish a route is heavier than
some other approaches.

 DSDV ROUTING PROTOCOL

Destination-Sequenced Distance-Vector Routing
(DSDV) is a table-driven routing scheme for ad hoc
mobile networks based on the Bellman–Ford algorithm.
It was developed by C. Perkins and P.Bhagwat in 1994.
The main contribution of the algorithm was to solve
the routing loop problem. Each entry in the routing table
contains a sequence number, the sequence numbers are
generally even if a link is present; else, an odd number is
used. The number is generated by the destination, and
the emitter needs to send out the next update with this
number. Routing information is distributed between
nodes by sending full dumps infrequently and smaller
incremental updates more frequently.

If a router receives new information, then it uses the
latest sequence number. If the sequence number is the
same as the one already in the table, the route with the
better metric is used. Stale entries are those entries
that have not been updated for a while. Such entries as
well as the routes using those nodes as next hops are
deleted.

DSDV requires a regular update of its routing tables,
which uses up battery power and a small amount of
bandwidth even when the network is idle.Whenever
the topology of the network changes, a new sequence
number is necessary before the network re-converges;
thus, DSDV is not suitable for highly dynamic networks.

(As in all distance-vector protocols, this does not
perturb traffi c in regions of the network that are not
concerned by the topology change.)

Wireless Simulation in NS-2

Software Structure and Mechanism in NS-2

The key to get to know ns-2 is it is a discrete event
network simulator. In ns-2 network physical activities
are translated to events, events are queued and
processed in the order of their scheduled occurrences.
And the simulation time progresses with the events
processed. And also the simulation “time” may not be
the real life time as we “inputted”.

But, why is ns-2 that useful, what kind of work can
be done by ns-2, it can model essential network
components, traffi c models and applications. Typically,
it can confi gure transport layer protocols, routing
protocols, interface queues, and also link layer
mechanisms. We can easily see that this software tool
in fact could provide us a whole view of the network
construction, meanwhile, it also maintain the fl exibility
for us to decide. Thus, just this one software can
help us simulate nearly all parts of the network. This
defi nitely will save us great amount of cost invested on
network constructing. The following Figure 1 shows a
layered structure which ns-2 can simulate for us.

Figure 1. NS-2 simulate layered structure of network

After the simulation fi nishes, ns-2 presents the detailed
information to the network layer by means of a trace
fi le which is a line by line account of all the events. This

Page 30

May 2014

Volume No: 1(2014), Issue No: 5 (May) ISSN No: 2348-4845

INTERNATIONAL JOURNAL & MAGAZINE OF ENGINEERING, TECHNOLOGY, MANAGEMENT AND RESEARCH

A Monthly Peer Reviewed Open Access International e-Journal <http://www.yuvaengineers.com/Journal/>

shows the signifi cance of an event driven mechanism
which records the events as they occur. These records
can then be traced to evaluate the performance of
critical things in the network such as routing protocol,
MAC layer load, etc.

 Figure 2. Data fl ow for 1 time simulation.

Figure 3. Layered Structure of NS2

Figure 2 shows, the data fl ow of one time simulation
in ns-2, the user inputs an OTcl source fi le, the
OTcl script does the work of initiating an event
scheduler, sets up the network topology using
the network objects and the plumbing functions
in the library, and tells traffi c sources when to start
and stop transmitting packets through the event
scheduler. And then, this OTcl script fi le is passed to ns-
2, in this view, we can treat ns-2 as Object-oriented Tcl
(OTcl) script interpreter that has a simulation event
scheduler and network component object libraries,
and network set up module libraries. And then the
detail network construction and traffi c simulation
will be actually done in ns-2. After a simulation is
fi nished, NS produces one or more text-based
output fi les that contain detailed simulation data,
and the data can be used for simulation analysis.

The fi gure 3 shows the ns-2 developer’s view, the
layered structure of ns. The event schedulers and the
network components are implemented in C++ and is

made available to the TCL script, thus the lowest level
of ns-2 is implemented in C++, and the TCL script is
placed at the top to make simulation easier. We see
the overview of the network on top of the TCL level.
This defi nes the simulation scenario. All these things
combined is the ns-2 software.

Requirements for running simulation inNS2

To successfully carry out one simulation, we must fi rst
tell ns-2 things it may need from us for one simulation.
So what we need is the follow three necessary items:

1)Appearance of the network: the whole topology
view of sensor network or mobile network, this
includes the position of nodes with (x, y, z)
coordinate, the node movement parameters, the
movement starting time, the movement is to what
direction, and the node movement speed with
pausing time between two supposed movement.

2) Internal of the network: Since the simulation is on
the network traffi c, so it is important we tell the ns2
about which nodes are the sources, how about the
connections, what kind of connection we want to
use.

3) Confi guration of the layered structure of each node
in the network, this includes the detail
confi guration of network components on sensor
node, and also we need to drive the simulation,
so we need to give out where to give out the
simulation results which is the trace fi le, and how to
organize a simulation process.

2.3. Writing TCL to run a simple wireless
simulation

In this section, we then will present step by step of
how to do all the things as needed by one simulation in
ns-2 with one tcl scripts sequence:

Step 1. Create an instance of the simulator:

Step.2. Setup trace support by opening fi le
”trace_bbtr.tr” and call the procedure trace-all

Step 3. Create a topology object that keeps track #
of all the nodes within boundary

Step 4. The topography is broken up into grids and the

Page 31

May 2014

Volume No: 1(2014), Issue No: 5 (May) ISSN No: 2348-4845

INTERNATIONAL JOURNAL & MAGAZINE OF ENGINEERING, TECHNOLOGY, MANAGEMENT AND RESEARCH

A Monthly Peer Reviewed Open Access International e-Journal <http://www.yuvaengineers.com/Journal/>

default value of grid resolution is 1. A diff erent value
can be passed as 3rd parameter to load_fl atgrid {}.

Step 5. Create the object God, “God (General
Operations Director) is the object that is used to store
global information about the state of the environment,
network or nodes. The procedure create-god is defi ned
in $NS2_HOME/tcl/mobility/com.tcl, which allows
only a single global instance of the God object to
be created during a simulation. God object is called
internally by MAC objects in nodes, so we must create
god in every cases.

Step 6. Before we can create node, we fi rst needs to
confi gure them. Node confi guration API may consist
of defi ning the type of addressing (fl at/hierarchical
etc), for example, the type of adhoc routing protocol,
Link Layer, MAC layer, IfQ etc.

Step 7. Create nodes and the random-motion for
nodes is disabled here, as we are going to provide
node position and movement (speed & direction)
directives next

Step 8. Give nodes positions to start with, Provide
initial (X,Y, for now Z=0) co-ordinates for node_(0)
and node_(1) and the rest of the nodes. Node0 has
a starting position of (5,2) while Node1 starts off at
location (390,385). The positions are assigned to all the
rest of the nodes.

Step 9. Setup node movement as the following
example, at time50.0s, node1 starts to move towards
the destination (x=25, y=20) at a speed of 15m/s.
This API is used to change direction and speed of
movement of nodes.

Step 10. Setup traffi c fl ow between the two nodes as
follows: TCP connections between node_ (0) and
node_(1)

Step 11. Defi ne stop time when the simulation ends
and tell nodes to reset which actually resets their
internal network components. In the following
case, at time 150.0s, the simulation shall stop. The
nodes are reset at that time and the “$ns_ halt” is
called at 150.0002s, a little later after resetting the
nodes. The procedure stop{} is called to fl ush out traces
and close the trace fi le.

Step 12. Finally the command to start the simulation

So, these 12 steps could fi nish one time simulation

Note: The above mentioned steps can be used to create
a wireless network for n number of nodes and the fl ow
of traffi c, the packet size, etc can be specifi ed by the
type of protocol used (tcp, udp, cbr).

These 12 steps into one tcl fi le and do the simulation.
However, there exist some problems on such
kind of use on typical network performance test
situations. Performance testing usually needs to be
scalable in the number of nodes and network
transmitting packets. Suppose for one network there
are hundreds of nodes, we need to set all of the
nodes’ positions and their movement, this a huge
amount of workload, also, suppose we need to setup
all the possible sources and destinations and even
connections, also is a huge workload, Furthermore,
even if we can set them, we cannot guarantee our
input is randomly selected, which is necessary for a
fair comparison.

Performance comparison on AODV &
DSDV

The parameters that are considered that makes
AODV routing protocol diff erent from its parent
protocol ie DSDV are:

• Throughput vs average RTT

• Cumulati ve sum of dropped packets

• Cumulati ve sum of the generated packets

• Jitt er

Throughput Analysis

Throughput or network throughput is the rate
of successful message delivery over a communication
channel. This data may be delivered over a physical or
logical link, or pass through a certain network node. The
throughput is usually measured in bits per second (bit/s
or bps), and sometimes in data packets per second or
data packets per time slot.

The round-trip delay time (RTD) or round-trip time
(RTT) is the length of time it takes for a signal to be sent

Page 32

May 2014

Volume No: 1(2014), Issue No: 5 (May) ISSN No: 2348-4845

INTERNATIONAL JOURNAL & MAGAZINE OF ENGINEERING, TECHNOLOGY, MANAGEMENT AND RESEARCH

A Monthly Peer Reviewed Open Access International e-Journal <http://www.yuvaengineers.com/Journal/>

plus the length of time it takes for an acknowledgment
of that signal to be received. This time delay therefore
consists of the propagation times between the two
points of a signal.

Throughput vs average RTT

Figure 4a: DSDV

Figure 4b: AODV

Throughput for entire simulation time.

Figure 4c: DSDV

Figure 4d: AODV

On observing the graphs fi gures 4c and 4d we can
see that the throughput of the AODV network is
constantly high during the simulation time whereas it
is lesser initially and pickups up in the case of DSDV,
this is because of the delay caused in searching for
the optimum route to the destination by verifying the
dynamic vector tables. The other fi gures 4a and 4b
show the continuity of the round trip time for the sent
packets with respect to the throughput.

Packet Analysis

Cumulative sum of dropped packets

Figure 5a: DSDV

Figure 5b: AODV

Page 33

May 2014

Volume No: 1(2014), Issue No: 5 (May) ISSN No: 2348-4845

INTERNATIONAL JOURNAL & MAGAZINE OF ENGINEERING, TECHNOLOGY, MANAGEMENT AND RESEARCH

A Monthly Peer Reviewed Open Access International e-Journal <http://www.yuvaengineers.com/Journal/>

Figure 6a: DSDV

Figure 6b:AODV

Jitter is defi ned as a variation in the delay of received
packets. At the sending side, packets are sent in a
continuous stream with the packets spaced evenly
apart. Due to network congestion, improper queuing,
or confi guration errors, this steady stream can become
lumpy, or the delay between each packet can vary
instead of remaining constant.

Conclusions

The results obtained from the performance analysis
made by using NS2 show that these two routing
protocols are very much similar in the basic approach
and vary slightly in a few metrics such as delay,
throughput. Considering the observations made from
the graphs suitable conclusion can be drawn which
inclines to the fact that AODV protocol is better suited
for dynamic networks than the DSDV protocol which
uses the traditional table driven approach which in
cases of large networks is slower.

The fi gures 5a, 5b, 5c, 5d form a part of the packet
analysis for the network running on DSDV and AODV
routing protocols respectively. The graphs 5a and 5b
compare the number of dropped packets in the entire
simulation time where it is observed that the number of
packets dropped in DSDV routing protocol are more and
there are no packets dropped in AODV routing protocol.
This shows that AODV routing protocol is effi cient than
DSDV routing protocol. The packets generated in AODV
increase at the outset of communication in AODV
whereas the generated packets only increase after a
delay in the case of DSDV.3.3. Cumulative Distribution
of Jitter

Cumulative sum of generated packets

Figure 5c: DSDV

Figure 5d: AODV

The fi gures 6a and 6b depict the cumulative distribution
of jitter over the simulation jitter (sec) for DSDV and
AODV respectively. Here we can observe that in both
the cases the jitter increases in an exponential manner
but the overall jitter stabilizes faster in DSDV when
compared to AODV.

Jitter Cumulative Distribution

Page 34

May 2014

Volume No: 1(2014), Issue No: 5 (May) ISSN No: 2348-4845

INTERNATIONAL JOURNAL & MAGAZINE OF ENGINEERING, TECHNOLOGY, MANAGEMENT AND RESEARCH

A Monthly Peer Reviewed Open Access International e-Journal <http://www.yuvaengineers.com/Journal/>

References

[1] The network simulator - ns-2. http://www. isi.
edu/nsnam/ns/.

[2] K. Fall and K. Varadhan (Eds.), 1999. ns notes and
documentation,

 http://wwwmash.cs.berkeley.edu/ns/.

[3] NS by Example, http://nile.wpi.edu/NS/

[4] Introduction to Shell Scripting. http://www.uwsg.
iu.edu/usail/concepts/shell-scripting.html

[5] Steve’s Bourne scripting tutorial. h t t p : / /
steveparker.org/sh/sh.shtml

[6] Shell Programming. http://www.linuxfocus.org/
English/September2001/article216.shtml

[7] NS-2 Trace Formats. http://k-lug.
org/~griswold/NS2/ns2-trace-formats.html

[8] Andrew S. Tanenbaum, Computer Networks,
Fourth Edition,

[9] http://www.cisco.com/c/en/us/support/docs/
voice/voice-quality/18902-jitter-packet-
voice.html

[10] Mehran Abolhasan, Tadeusz Wysocki, Eric
Dutkiewicz, A review of routing protocols for
Mobile Ad Hoc Networks

Paid inclusion involves a search engine company
charging fees for the inclusion of a website in their
results pages. Also known as sponsored listings, paid
inclusion products are provided by most search engine
companies, the most notable being Google.

The fee structure is both a fi lter against superfl uous
submissions and a revenue generator. Typically, the fee
covers an annual subscription for one web-page, which
will automatically be cataloged on a regular basis.
However, some companies are experimenting with
non-subscription based fee structures where purchased
listings are displayed permanently. A per-click fee may
also apply. Each search engine is diff erent. Some sites
allow only paid inclusion, although these have had
little success. More frequently, many search engines,
like Yahoo!, mix paid inclusion (per-page and per-click
fee) with results from web crawling. Others, like Google
(and as of 2006, Ask.com), do not let webmasters pay
to be in their search engine listing (advertisements are
shown separately and labeled as such).

Some detractors of paid inclusion allege that it causes
searches to return results based more on the economic

standing of the interests of a web site, and less on the
relevancy of that site to end-users.

Often the line between pay per click advertising and
paid inclusion is debatable. Some have lobbied for any
paid listings to be labeled as an advertisement, while
defenders insist they are not actually ads since the
webmasters do not control the content of the listing,
its ranking, or even whether it is shown to any users.
Another advantage of paid inclusion is that it allows
site owners to specify particular schedules for crawling
pages. In the general case, one has no control as to
when their page will be crawled or added to a search
engine index. Paid inclusion proves to be particularly
useful for cases where pages are dynamically generated
and frequently modifi ed.

Paid inclusion is a search engine marketing method in
itself, but also a tool of search engine optimization, since
experts and fi rms can test out diff erent approaches to
improving ranking, and see the results often within a
couple of days, instead of waiting weeks or months.
Knowledge gained this way can be used to optimize other
web pages, without paying the search engine company.

Paid Inclusion
in Search Engine Results

