
Page 35

May 2014

Volume No: 1(2014), Issue No: 5 (May) ISSN No: 2348-4845

INTERNATIONAL JOURNAL & MAGAZINE OF ENGINEERING, TECHNOLOGY, MANAGEMENT AND RESEARCH

A Monthly Peer Reviewed Open Access International e-Journal <http://www.yuvaengineers.com/Journal/>

1. INTRODUCTION
As software industry’s nature is “Do all most

anything”, it leads to one thing that makes complex.
Therefore good software is a big challenge; thereby
we can get it by good test process. Software testing is
indispensable in ensuring Software quality [54].

Testing is a process in which the defects are identifi ed,
isolated , subjected for rectifi cation and ensure that the
product is defect free in order to produce quality product
in the end .Hence customers satisfaction. In spite of this
recognition, software testing activities have been slow
to move from the end of the development life cycle and
into all phases of the development process.

Here lot of approaches are there in test process like
Inspect code, analyze cause for errors. Inspecting the
detail design and code is much better way to fi nd errors
than testing. Walkthroughs can catch sixty percentage
of errors. Generally, Walkthroughs and other form
of human inspection are good at catching surface
problems and style issues. Few humans are good at
reviewing even fi rst order semantic issues in a code
segment. It is far more cost eff ective to reduce the
aff ect of an error by preventing it than it is to fi nd and
fi x it.[53]

UNDERSTANDING THE TERMINOLOGY
AND TEST PLAN – A SURVEY ANALYSIS

Uday kumar J, Asst.prof, Jagadeeswara Rao G, Asst.prof. AITAM.

Quality is proportional to testing in software engineering. Quality is not only the justifi cation of requirements

but also the presence of values. In this new era of software engineering , test phase is ought to be viewed

as separate phase in software development lifecycle. At the same time we can’t separate these two words

“FIXING and FINDING”. Tester will fi nd the defect later developer will fi x it.

Inspection of code by a programmer itself turned as testing. So, how can we fi nd a thin layer between Fixing

and Finding? This paper attempted to address the understanding of terminology and difference among those

roles and phases along with good test plan.

In 1945, a moth became trapped between the points
of a relay in the Mark II Aiken Relay Calculator, causing
the computer to perform incorrectly; this was the fi rst
computer bug[2].

Today, new development models (e.g., progressive,
iterative, and agile methods) have emerged and been
proposed to tackle some of the criticisms of the SDLC
methodology [36].

In 1985,the Therac-25 radiation therapy device
malfunctioned and delivered lethal radiation doses. This
was due to a software bug. In 1988, more than 2,000
computers were infected by the fi rst computer worm,
which was made possible because of a buff er overfl ow
bug in the Berkeley Unix fi nger daemon program[30].

2. DEFECT VERSUS BUG

These days we people facing lot of failures in software
because of several reasons. Testers felt that their job
is to fi nd defects whereas programmers felt that they
have to build bug free application. Here a confl ict is
there between tester and developer and also defect vs.
bug.

Defect is defi ned as deviation from the requirement.
At the same time defect is a notation used by test
engineer. Whereas Bug is a defect which is accepted by

Page 36

May 2014

Volume No: 1(2014), Issue No: 5 (May) ISSN No: 2348-4845

INTERNATIONAL JOURNAL & MAGAZINE OF ENGINEERING, TECHNOLOGY, MANAGEMENT AND RESEARCH

A Monthly Peer Reviewed Open Access International e-Journal <http://www.yuvaengineers.com/Journal/>

developer. In this scenario we need to mention about
failure. Why because applications or systems can be
identifi ed in terms of failure or success. Over time, it
was recognized that the cost of fi nding an error after
the development process had been completed was
much more expensive than fi nding the error during the
development process itself [54][55][56][57].

3. BUG LIFE CYCLE:

 fi g1: Bug life cycle

1.Requirements 2.development 3.application
4.testing team 5.if defects 6.stop 7.new 8.if defect
really rectifi ed 9.reopen 10.closed 11.if it really a
defect 12.hold

13.reject 14.as per design 15.open 16.rectifi cation

17.fi xed

Status :

New: Whenever the defect is newly identifi ed for fi rst
time then the test engineer set the status as new.

Open: Whenever the developer accepts the defect then
set the status as Open.

Fixed: Whenever the developer rectifi ed the defect
then he will set the status as Fixed.

Diff ered: Whenever the developer accept the defect
but want to rectify it later then he will set the status as
Diff ered.

Closed and Re-open: Whenever the next build is released
the test engineer will check whether the defect is really
rectifi ed or not. If at all they feel really rectifi ed then
they will set the status as Closed. Otherwise Re-Open.

Hold: Whenever the developer is confused to accept
or refused then it will be Hold. Whenever the defect is
in hold status they will have one meeting on Defect. It
gives solution.

Rejected: Whenever the developer feels it is not at all
defect then he will set the status as rejected.

As per Design : Whenever the developer feels, the test
engineer raised defect without knowing about latest
request then he will set the status as per Design.

4.PRIORITY AND SEVERITY OF DEFECTS
Software bugs can cause a range of problems,

ranging from minor glitches to loss of life or signifi cant
material loss[30]. The use of incorrect intermediate
results due to undetected bugs has been known to lead
to catastrophes in mission critical or even safety critical
situations[6][7].Conventional testing is a sort of testing
in which testing engineers will check the developed
applications and its related parts are working on base of
requirements or not. Conventional testing starts from
coding phase to last phase comes under quality control.

Unconventional testing starts from initial phase and
continues for last phase comes under quality assurance.
Quality assurance people check each and every person
is doing his or her work according to company’s process
guidelines or not.

Priority describes the sequence in which defects need
to be rectifi ed. Priority classifi ed into four types

P1. Critical

P2. High

P3. Medium

P4: Low

Severity describes the seriousness of the defect.
Severity classifi ed into four types.

S1: Fatal

Page 37

May 2014

Volume No: 1(2014), Issue No: 5 (May) ISSN No: 2348-4845

INTERNATIONAL JOURNAL & MAGAZINE OF ENGINEERING, TECHNOLOGY, MANAGEMENT AND RESEARCH

A Monthly Peer Reviewed Open Access International e-Journal <http://www.yuvaengineers.com/Journal/>

S2: Major

S3: Minor

S4: Suggestion

Testing is a technology, as well as art. In some situations
we need to handle least severe with high priority and
high severe bug with least priority , always challenging.
Generally we use a process of debugging to fi nd and
remove the bugs from the program. Debugging is
a frequent, tedious, and time-consuming task for
software developers.[31,32]

5. STLC:

Royce [31] is widely recognized for introducing the
fi rst formal methodology for software development,
now known as the waterfall methodology. Royce’s
waterfall model introduced a sequential process that
emphasized systematic development and divided
software development processes into separate and
distinct phases, including requirements analysis,
program design, coding, testing, and operations.

 Software Testing Life Cycle contains Six phases.

1. Test planning

2. Test Development

3. Test Execution

4. Result analysis

5. Bug Tracking

6. Reporting

1. Test planning

Plan: Plan is strategic document which contains some
information that describes how to perform a task in a effective,
effi cient, optimized way.

Optimization: It is a process of utilizing the available resources
to the level best and getting maximum possible output.

Test Plan: It is a strategic document which contains some
information that describes how to perform testing on
application in an effective, effi cient, optimized way.

Test Lead will prepare test plan document.

 Contents of Test plan:

1.0 Introduction

 1.1. Objective:

 Purpose of this document will be clearly described here
in this section

 1.2. Reference document:
 The list of all the document referred by the test lead
while preparing test plan document will be listed out in this
section. For example SRS, Project plan .

2.0 .Coverage of testing:

 2.1. Features to be tested
 List all the features that are to be tested which are
within the scope will be listed out here in this section

 2.2. Features not to be tested:
 List all the features that are not planned for testing
will be listed out here in this section. It may contain out of
scope features , features that are planned to be incorporated in
feature, low risk features, features that are skipped based on
time constraints.

3.0.Test Strategy:
 It is a organization level term that is common for all projects
in the organization
Level of testing, types of testing , test design techniques,
confi guration management ,test metrics , terminology,
automation plan, list of automated tools are important aspects
in test strategy.

4.0.Basic criteria: It deals with acceptance and suspension
criteria .Acceptance criteria tells us when to stop testing on
that application, suspension criteria tells us when to suspend
testing on that application.

5.0.Test deliverables and Test Environment: The list of
all documents that are prepared and delivered, details of
environment that is about to be used for testing during the
test process will be listed out.

6.0.Resource Planning and Scheduling: Who has to do what?
Is clearly mentioned in this section. The starting dates and
ending dates of every task also mentioned here.

7.0.Risk and Assumptions :The list of all potential risks
and corresponding solution plans will mentioned here .For
example Employee may leave the organization in the middle
of the project. Contingency is bench strength. One more
example is if tester enable to test all the features within the
time then Contingency is priority based execution The list of
all assumptions that are to be made by test engineers will be
listed out here.

8.0.Approval Information: Who has approved the document
and when it is approved will clearly mentioned in this section.

6. TYPES OF TESTING:
The traditional debugging process includes code

review, using debugging tools such as GDB[33] .

Page 38

May 2014

Volume No: 1(2014), Issue No: 5 (May) ISSN No: 2348-4845

INTERNATIONAL JOURNAL & MAGAZINE OF ENGINEERING, TECHNOLOGY, MANAGEMENT AND RESEARCH

A Monthly Peer Reviewed Open Access International e-Journal <http://www.yuvaengineers.com/Journal/>

Sanity testing is a type of testing in which one will conduct
overall testing on the released build. For example whether
required connections like JDBC,ODBC are properly
established or not.

Whether one can navigate to all the pages of application or not
.Some people call it as smoke test.

Regression Testing Perform testing on already tested
functionality again and again is called regression testing. Test
the new features for fi rst time is not regression testing .It
means Regression testing starts from second build. Random
testing is also comes under Regression testing.

 Perform testing on same functionality again and again with
multiple set of values to achieve conclusion. Retesting starts
from fi rst build and ends to last build.

Installation Testing is to test that one should install the
application into environment by following the guidelines
provided in the deployment document in order to get suitable
installed application. .To do testing in this situation , whatever
the ideas we get are known as test cases. Test cases are broadly
categorized into three types 1.GUI test cases 2.Functional test
cases 3. Non functional test cases also called as performance
test cases. Functional test cases are divided into two types
1.positive test case 2.negative test cases .Some guidelines
for writing positive test cases are test engineer should have
positive mind set and at the same time he must consider
positive fl ow of application .Test engineer must use only valid
inputs from point of functionality. .Some guidelines for writing
negative test cases are test engineer should have negative
mind set at the same time he must consider positive fl ow of
application .Test engineer must use only invalid inputs from
point of functionality. Port testing is a testing in which one will
install the application into original customer environment and
check whether it is compatible with it or not. In End-to-End
testing one will perform testing on all the end-to-end scenarios
of the application. That comes under transaction fl ow testing.
Authentication testing is a basic testing in all web applications,
it checks different combinations of user name and password
in order to conform whether authorized persons are using
application or not. Direct URL testing and fi rewall leakage
testing are known testing types belongs to security testing. Ad-
hoc testing is the best testing to the tester as per his psychology.

7. BUG TRACKING AND REPORTING:
This process should need because, access must be fi rm to

authorized people and report must contain these issues like
number of cycles of execution, number of test cases executed
in this cycle, number of defects found, duration of each cycle
etc. The situation where we feel that we should do some
testing is known as test scenario. To do testing in this situation
, whatever the ideas we get are known as test cases .
Traceability matrix is a document which contains table of
linking information used for tracing back .

Here we can get some nice aspects like defect age, latent
defect and the goodness of test suit and test bed This general
model is often refi ned and each of these phases made more
or less granular, by breaking them into additional or fewer

phases [18].Test suite is a combination of different types of
test cases also called as test sweet. Test bed is a combination of
test environment plus test suite. The good thing in bug tracking
and reporting is fi nding to important issues in this phase. Those
are defect age and latent defect.

The time gap or duration between opening date and closing
date of defect is called as defect age. The defect that is found
late after some religious is known as latent defect .Even
inspections and reviews are not good enough to fi nd them.
Therefore in this paper I am stressing importance of test plan
along with bug tracking and reporting.

8. PSYCHOLOGY OF TESTING

One of the primary causes of poor program testing
is the fact that most programmers begin with a false
defi nition of the term. They might say:

“Testing is the process of demonstrating that errors are
not

present.” Hence, don’t test a system to show that it
lives up to expectations; rather, you might as well begin
with the presumption that the system holds mistakes
(a quality presumption for very nearly any system) and
after that test the project to discover whatever number
of the mistakes as could reasonably be expected.

9. FUTURE WORK
As we have already mentioned the role of test plan is very

crucial and due to evaluatory conditions still test plan can be
planned in optimized manner .So, one of our further thought is
involving the analysis of latent defect and defect age we can
produce best plan by that way we can increase the success rate
of software .Our sense is a good test plan can decrease failure
rate of software.

10. CONCLUSION
If at all most of the bugs are detected at early stages that

can help companies to improvise quality in software. But
metrics is always a complex word when we are discussing
about software quality .Benchmarks are needed at the same
time fi nding benchmarks are tough .Our attempt is to get
fi ne understanding of terms and content in test plans. Latent
defect shows its multifaceted behavior .Accomplished test
case means which test case can fi nds the latent defect. Sense
of prediction should cropped between test cases and defects.
Those test cases should decrease the defect age. Even with
utmost attention if a test engineer write a test case , it may not
help to fi nd defect. Here negative fl ow would essential. This
paragraph pointing the need of good test plan.

11. REFERENCES
[1] Salfner, F., Lenk, M., and Malek, M. 2010. A survey of

online failure prediction methods. ACM Computer. Survey.

Page 39

May 2014

Volume No: 1(2014), Issue No: 5 (May) ISSN No: 2348-4845

INTERNATIONAL JOURNAL & MAGAZINE OF ENGINEERING, TECHNOLOGY, MANAGEMENT AND RESEARCH

A Monthly Peer Reviewed Open Access International e-Journal <http://www.yuvaengineers.com/Journal/>

42, 3, Article 10 March2010, 42 pages.

[2] J. S. Huggins, “First Computer Bug,” 2006,

http /www.jamesshuggins.com/h/tek1/_rst computer bug.htm.

[3] Shinde V. “Bug life cycle” .Sept 2007.

http://www.softwaretestinghelp.com/buglifecycle/

[4] Zimmermann T, Nagappan N., and Zeller A. “Predicting bugs

from his-tory”. Springer, 2008.

[5] Figure 1.1 “Bug lie cycle” The bugzilla guide- 2.18.6 release

chapter 6. using bugzilla

http://www.bugzilla.org/docs/2.18/html/lifecycle.html

[6] European Space Agency. Arianne?5 ight 501 Inquiry Board

Report. http://ravel.esrin.esa.it/docs/esa?x? 1819eng.pdf

[7] N. Leveson and C.S.Turner. An Investigation of the

Therac?25 Accidents IEEE Computer, Vol. 25, No. 7, July

1993.

[8] V. R. Basili, L. C. Briand, and W. L. Melo, “A validation of

object- riented design metrics as quality indicators,” IEEE

Trans. Software Eng., vol. 22, no. 10, pp. 751761, 1996.

[9] N. Ohlsson and H. Alberg, “Predicting fault-prone software

modules in telephone switches,” IEEE Trans. Software Eng.,

vol. 22, no. 12, pp. 886-894, 1996.

[10] L. C. Briand, J. W. Daly, and J. Wust, “A unifi ed framework

for coupling measurement in object-oriented systems,” IEEE

Trans. Software Eng., vol. 25, no. 1, pp. 91-121, 1999.

[11] K. E. Emam, W. Melo, and J. C. Machado, “The prediction

of faulty classes using object-oriented design metrics,”

Journal of Systems and Software, vol. 56, no. 1, pp. 63-75,

2001.

[12] R. Subramanyam and M. S. Krishnan, “Empirical analysis of

ck metrics for object-oriented design complexity:

Implications for software defects,” IEEE Trans. Software

Eng., vol. 29, no. 4, pp. 297-310, 2003.

[13] T. Gyimothy, R. Ferenc, and I. Siket, “Empirical validation

of object- oriented metrics on open source software for fault

prediction,” IEEE Trans. Software Eng., vol. 31, no. 10, pp.

897-910, 2005.

[14] N. Nagappan and T. Ball, “Static analysis tools as early

indicators of pre-release defect density,” in Proceedings of

ICSE 2005. ACM, 2005, pp. 580-586

[15] N. Nagappan, T. Ball, and A. Zeller, “Mining metrics to

predict component failures,” in Proceedings of ICSE 2006.

ACM, 2006, pp. 452-461.

[16] N. Nagappan and T. Ball, “Use of relative code churn

measures to predict system defect density,” in Proceedings of

ICSE 2005. ACM, 2005, pp. 284-292.

[17] A. E. Hassan, “Predicting faults using the complexity of code

changes,” in Proceedings of ICSE 2009, 2009, pp. 78-88.

[18] R. Moser, W. Pedrycz, and G. Succi, “A comparative

analysis of the effi ciency of change metrics and static code
attributes for defect prediction,” in Proceedings of ICSE 2008, 2008,
pp. 181-190.

[19] A. Bernstein, J. Ekanayake, and M. Pinzger, “Improving
defect prediction using temporal features and non linear models,”
in Proceedings of IWPSE 2007, 2007, pp. 11-18. [20] S. Kim, T.
Zimmermann, J. Whitehead, and A. Zeller, “Predicting faults from
cached history,” in Proceedings of ICSE 2007. IEEE CS, 2007, pp.
489-498.

[21] T. J. Ostrand, E. J. Weyuker, and R. M. Bell, “Predicting the
location and number of faults in large software systems,”

IEEE Trans. Software Eng., vol. 31, no. 4, pp. 340-355,

2005.11

[22] A. E. Hassan and R. C. Holt, “The top ten list: Dynamic fault
prediction,” in Proceedings of ICSM 2005, 2005, pp. 263-272.

[23] R. Robbes, D. Pollet and N. Lanza , “Replaying IDE

Interactions to Evaluate and Improve Change Prediction

Approaches” ,in proceedings of MSR 2010, IEEE , 2010,

pp.161-180.

[24] T. Zimmermann, P. Weigerber, S. Diehl, and A. Zeller, “Mining
version histories to guide software changes,” in ICSE. IEEE
Computer Society, 2004, pp. 563-572.

[25] A. Ying, G. Murphy, R. Ng, and M. Chu-Carroll, “Predicting
source code changes by mining change history,” Transactions on
Software Engineering, vol. 30, no. 9, pp. 573-586, 2004.

[26] J. Sayyad-Shirabad, T. Lethbridge, and S. Matwin, “Mining the
maintenance history of a legacy software system,” in Proceedings
of ICSM 2003, 2003, pp. 95-104.

[27] L. C. Briand, J. Wust, and H. Lounis, “Using coupling

measurement for impact analysis in object-oriented systems,” in
Proceedings of ICSM 1999, 1999, pp. 475-482.

[28] F. G. Wilkie and B. A. Kitchenham, “Coupling measures and

change ripples in c++ application software,” Journal of

Systems and Software, vol. 52, no. 2-3, pp. 157-164, 2000.

[29] J. Ferzund, S. Nadeem Ahsan, and F. Wotawa , “Software

Change Classifi cation using Hunk Metrics” in Proceedings of

ICSM 2009,IEEE, 2009.

[30] S. Gar_nkel, “History’s Worst Software Bugs,” 2005,

http://wired.com/news/technology/bugs/0,2924,69355,00.htm.

Page 40

May 2014

Volume No: 1(2014), Issue No: 5 (May) ISSN No: 2348-4845

INTERNATIONAL JOURNAL & MAGAZINE OF ENGINEERING, TECHNOLOGY, MANAGEMENT AND RESEARCH

A Monthly Peer Reviewed Open Access International e-Journal <http://www.yuvaengineers.com/Journal/>

[31] “Software bug,” 2006, http //enw_ ikipediao_

rg/wiki/Computer bug.

[32] A. Zeller, Why Programs Fail: Elsevier, 2006.

[33] Free Software Foundation Inc., “GDB: The GNU Project

Debugger,” vol. 2006, 2006,

http://www.gnu.org/software/gdb/.

[34] M. Ernst, J. Cockrell, W. Griswold and D. Notkin,

“Dynamically discovering likely program invariants to

support program evolution”, IEEE TSE, Vol.27, No. 2, Feb 2001.

[35] M. Ernst, A. Czeisler, W. Griswold and D. Notkin, “Quickly
detecting relevant program invariants”, ICSE, 2000.

[36] S. Hangal and M. Lam, “Tracking down software bugs using
automatic anomaly detection”, ICSE, 2002. 12

[37] P. Zhou, W. Liu, L. Fei, S. Lu, F. Qin, Y. Zhou, S.Midki_

and J. Torrellas, “AccMon: Automatically detecting memoryrelated

bugs via program counter-based invariants”, MICRO- 37, 2004.

[38] A. Barr, “Find the Bug”, Addison-Wesley, 2004.

[39] M. Dimitrov and H. Zhou , “Anomaly-based bug prediction,

isolation, and validation: an automated approach for software

debugging” , The 14th International Conference on

Architectural Support for Programming Languages and

Operating Systems (ASPLOS-XIV), 2009.

[40] S. Shivaji, E. James Whitehead, Jr., R. Akella and S. Kim,

“Reducing features to improve bug prediction” , International

conference on automated software engineering., IEEE, 2009.

[41] V. R. Basili, L. C. Briand, and W. L. Melo, “A validation of

object oriented design metrics as quality indicators,” IEEE

Trans. Software Eng., vol. 22, no. 10, pp. 751-761, 1996.

[42] T. Zimmermann, R. Premraj, and A. Zeller. “Predicting

defects for eclipse”. in Proceedings of PROMISE 2007. IEEE

CS, 2007, p. 76.

[43] S kim. “Adaptive bug prediction by analyzing project

history”. Computer science thesis, University of California,

santa cruz , 2006.

[44] M.stoerzer, B.G. Rayder and F. Tip. “Finding Failure-

Inducing Changes in Java Programs using change

classi_cation”. ACM, 2006.

[45] B. Bergman and B. Klefsjo, Kvalitet, _dn behov till

anvdndning, Stu-dentlitteratur, Lund, 1991.

[46] James Kloeppel,”Researchers Develop Intelligent Bug

Detection Software”, 2006,

http://www.hpcwire.com/hpcwire/20060714/researchers

develop intelligent bug detection software-1.html

[47] P. L. Li, J. Herbsleb, M. Shaw, and B. Robinson,

“Experiences and results from initiating fi eld defect

prediction and product test prioritization eff orts at ABB Inc,”

in Proceedings of the 28th ICSE, Shanghai, China: ACM,

2006.

[48] M. Lyu, Handbook of Software Reliability Engineering.

McGraw-Hill, 1996.

[49] V. R. Basili and B. T. Perricone, “Software Errors and

Complexity: An Empirical Investigation.” Communications

of the ACM, vol. 27, pp. 42-52., 1984.

[50] G. Denaro and M. Pezze, “An Empirical Evaluation of Fault-

Proneness Models,” in Proceedings of the 25th International

Conference on Software Engineering (ICSE2002), Miami,

USA, May 2002., 2002.

[51] A. Mockus, D. Weiss, and P. Zhang, “Understanding and

Predicting Eff ort in Software Projects,” in Proceedings of the

26th ICSE, IEEE 2003.

[52] Benediktsson, O., Dalcher, D., and Thorbergsson,

H. “Comparison of Software Development Life

Cycles: A Multiproject Experiment,” IEE

Proceedings Software, Volume 153, Number 3,

2006, pp. 87-101.

[53] Royce, W.W. “Managing the Development of

Large Software Systems,” Proceedings of the IEEE

WESCON, Los Angeles, California, August 1970,

pp. 1-9.

[54] Cohen, C.F., Birkin, S.J., Garfi eld, M.J., and Webb,

H.W. “Management confl ict in software testing,”

Communications of the ACM, Volume 47, Number

1, 2004, pp. 76-81.

[55] Boehm, B. “Software and Its Impact: A

Quantitative Assessment,” Datamation, Volume 19,

Number 5, 1973, pp. 48-59.

[56] Boehm, B. “A View of 20th and 21st Century

Software Engineering,” Proceedings of the 28th

International Conference on Software Engineering,

May 20-28, 2006, Shanghai, China, pp. 11-29.

[57] Boehm, B. and Basili, V.R. “Software Defect

Reduction Top 10 List,” Computer, Volume 34,

Number 1, 2001, pp. 135-137.

