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Abstract:

Switched systems constitute a subclass of hybrid sys-
tems, which are systems where both continuous and
discrete event dynamics are tangled together. In this
work, we construct an observer for nonlinear systems
under rather generaltechnical assumptions that some
functions are globally Lipschitz. This observer works ei-
ther for autonomous systems or for nonlinear systems
that are observable for any input. A tentative applica-
tion to biological systems is described.

Index Terms:
Switching systems, High gain observer, Hybrid dynami-
cal system.

1.INTRODUCTION:

During the two last decades, Hybrid Dynamical Sys-
tems (HDSs) have been greatly investigated. These
systems have the property to tangle discrete and con-
tinuous dynamics. They allow modeling a large class
of systems arising in a great variety of fields of inter-
est, such as electronics, physics, chemistry, etc. Many
works regard the stability, controllability and observ-
ability of HDSs.Further works related to observation
of HDSs can be found in .An interesting class of HDSs
is that of Switched Dynamical Systems (SDSs) that are
HDSs with no jumps in the state. In particular, Linear
Switched Dynamical Systems (LSDSs) constitute a well
studied class of dynamical systems.They are character-
ized by some switching time instants, when the equa-
tions describing the continuous dynamics change. It is
common to assume that the number of switching’s in
any finite time interval is finite, viz. no Zero phenom-
ena occur.
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While for LSDSs some results on observability proper-
ties and observer design can be found in the literature,
nonlinear SDSs suffer from a lack of available results.
In the present paper, the study is focused on the ob-
servabilityproperties of the class of nonlinear SDSs for
which each subsystem admits a linearization, modulo
an output injection, . Moreover, starting from an ob-
server synthesis technique for LSDSs, the observer de-
sign is generalized to the considered class of nonlinear
SDS.

Some know facts about linear switched dy-
namical systems:

In this section the following class of LSDS is considered
Consider single-output analytic equation

in which xeR", and moreover there is a
"physical subset" © ¢ R™ under consideration, on
which we are interested in the observation problem
In most practical cases, {} will be an open
connected relatively compact subset of & ", and

in the ideal cases, n will be positively-invariant
under the dynamics ( ¥ ). We assume that (}) is

observableon {1, i.e . the data of the output y (¢) on
any finite time interval [¢ .¢;] . & = ¢, completely
determines the initial state x(1,). (At least for
trajectories x(#), such that x(t! €@ for any
t £ [fg.t1] } The fact that ( } ) is observable is

equivalent to the requirement that the set of
functions, called the observation space of ( ¥ ),

OF) = {h.Lih . Leh i 2 0} separates the

points on 0, ie,
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st L h (xy) = Lik(x;) (L denotes the Lie
derivative operator). This is due to the formula
(t) = L2, LF h(xg) th/ K1
Itis easily seenthat when (e) is observable, the map
is almost everywhere regular .Our main assumptions
will be as follows. Our main assumptions will be as
follows. HI: & is a diffeomorphism from () onto
F- (Q)) [as soon as there is no ambiguity we refer to ()
instead of 7, ({)). From this assumption it follows
that, on £}, in the global coordinate system defined by
Fr{Y) can be written as the following.
H2: ¢ can be extended from Q to all of R" by a
C* function, globally Lipschitzian on R" (w.rt. any
norm) Definition 7: When Assumptions H1 and H2
hold, we say that () is uniformly observable on (),
or (3"} is uniformly Uniform observability clearly
means that the initial state can be observable on R™.
The Statement of the Result
k=F(R)-5;'C(Ck-y) #&eR"
Assumption 1: for each time instant te [0.:x). the
function value =(z) is known.

Assumption 2 the switching function chasa minimal

dwell timet,.;, -
Assumption 3: each subsystem is observable

2.ESTIMATORS AND OBSERVERS:

A problem arises in which the internal states of many
systems cannot be directly observed, and therefore
state feedback is not possible. What we can do is try
to design a separate system, known as an observer or
an estimator that attempts to duplicate the values of
the state vector of the plant, except in a way that is
observable for use in state feedback. Some literature
calls these components “observers”, although they do
not strictly observe the state directly. Instead, these
devices use mathematical relations to try and deter-
mine an estimate of the state. Therefore, we will use
the term “estimator”, although the terms may be used
interchangeably.

3.CREATING AN ESTIMATOR:

Notice that we know the A, B, C, and D matrices of our
plant, so we can use these exact values in our estima-
tor. We know the input to the system, we know the
output of the system, and we have the system matri-
ces of the system. What we do not know,
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necessarily, are the initial conditions of the plant. What
the estimator tries to do is make the estimated state
vector approach the actual state vector quickly, and
then mirror the actual state vector. We do this using
the following system for an observer:

# = At + Bu+ L(y — §)

i =Ct+ Du

L is a matrix that we define that will help drive the error
to zero, and therefore drive the estimate to the actual
value of the state. We do this by taking the difference
between the plant output and the estimator output.

L@L*@LET%
| LEd
—0
RORCRHS

In order to make the estimator state approach the
plant state, we need to define a new additional state

vector called state error signa.lcir(t). We define this
error signal as:

e(t) =z — %
and it’s derivative:
af

e.(t)=2 -3

We can show that the error signal will satisfy the
following relationship:

¢.(f) = Av+ Bu - (43 + Bu+ L{y - §))
é,(t) = A(z - #) - L(Cz - C)
e (t) = (A — LCYeL(t)

We know that if the eigenvalues of the matrix (4 +
L) all have negative real parts that:
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(’_-r.(f-) — A+ LT) e (tll) —_— 0
when t = oo
This €2(00) = 0 means that the difference between

the state of the plant -‘7( t) and the estimated state of

the observer T (£) tends to fade as time approaches
infinity.

4. SEPARATION PRINCIPLE:

We have two equations:
ek + 1] = (4 — LC)e,[k]
ek +1) = (A- BK)z[k] + BK - e,[k]

We can combine them into a single system of
equations to represent the entire system:

N [‘:E;i? A —UBK] h[[:]]

eglk + 1]
z[k + 1]

We can find the characteristic equation easily using the
separation principle. We take the Z-Transform of this
digital system, and take the determinant of the coef-
ficient matrix to find the characteristic equation. The
characteristic equation of the whole system is:

-1
(remember the well known(2] — A) )

-A40100 0
B Jf-A+BK

Notice that the determinant of the large matrix can be
broken down into the product of two smaller determi-
nants. The first determinant is clearly the characteristic
equation of the estimator, and the second is clearly the
characteristic equation of the plant. Notice also that
we can design the L and K matrices independently of
one another.It is worth mentioning that if the order of
the system is n, this characteristic equation (full-order
state observer plus original system) becomes of order
2n and so has twice the number of roots of the original
system.

d-44BH]

‘:;EJ-HC

* Any application of dynamical system is solved by lu-
enberger observer and high gain observer

*An M-file program is written in MATLAB for steady
state and transient analysis by using Lipschitz theo-
rem.

e Grobner’s formulae are applied for real values esti-
mation (for improving stability range).
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¢ By considering white (or Gaussian) noise for state es-
timation.

5. PROGRANM™
% in this M-file we simulate the high-gain observer

with updated gain and

% time
clear all
close all
cle

%%%parameter ofthe observer
al=l1;
alpha=9;
a2=0.1;
a3=0.1;

%al*alpha<=1;

29%% %% Parameter of the Euler integration

dt=.001; % pas d'integration
tf=40; % Final time
NbP=tf/dt; % Number of integration step
Nbtk=1; % Estimation counter
Tpast=0;

global sin;

sin=3;

% Biological parameter for the bioreactor
29%%% Noise Parameter

StandDev = 0.05; % Standard dewviation of
measurement noise
umax=3; % Input maximal value

20%% %% %% %% initialization

t=zeros (1 NbP+1);
xo=zeros(2 NbP+1);
x=zeros (2 NbP+1);
zo=zeros(2 NbP+1);
z=zeros(2 NbP+1);
u=zeros(1 NbP);
LL=zeros{1 NbP);

¢ =zeros(1 NbP);

%6%% %% Initialization of the state
x(:,1)=[.15 :0.003];
z(c,1)=[15 ; x(1,1)*x(2,1)/(x(1,1)-x(2.1))];

%5% Initialization of the observer
xo(:.1)=[.15;0.003]; % Observer state
zo(,1)=[.15; 008 ];
M(1)=5;

L(1)=1;

% High-gain parameter
% High-gain parameter

%% mnormal form

N /
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7 ™
A=[01 0 0]; 6.SIMULATION RESULTS:
C=[10]; o I
[k1, k2]=solve (k1/2 - (k172 + 4%k2)"(1/2)/2=- Wit [o[e]e]| Hrges B
1k1/2 + (k172 + 4¥k2)(1/2)/2=-1"); Fie Edit Vien Inser Took Desko Windos Help % | il Edit View sett Tooks Deskop Window Help

K=[k1 0:k2 0]; Q8de 88094 *|NEas kA8 08843

Sampling-ime evolution

% Data of the grid which
compute the max of the Lipschitz constant

X2min = 0.001; e
x2max = 0.05; i
X1min =0.01; ;
X1lmax =03; -

% Initialization of the variables n
t(1)=0: :
q=1; £
tt(1)=0;

y(1)=x(1,1);
vob (1)=z(1,1);
for k=1:NbP

t(k+1)=k*dt; i —
% The controled inputsequence uhgured Bl uFigureS E@
Ift (k:l{:].':' File Edt Vien Inser Took Desito Windou Help ¥ | File Edt View lset Took Deskiop Window Help ¥
u(k)=0.41; D3Ee/h/%&094: *[DERe/k 8800840 *
elseif (t(k)-10)>=0 The estimats n the original base
u(k)=0.02; 3
elseif (t(k)-25)>=0 T
if t(k)<=35 0 |/ R
u(k)=0.3; 20 H
else 2 £
u(l)=3; "1 :
end =
end |
end L
end Time ()
figure (4) .
plot{t.z(2.:).'r' t.zo(2.:),'--") % The estimate in the 7-GABOR FUNCTIONS:
original base
xlabel("Time (h)") % Compute two Gabor functions often also
vlabel(' Substrate S") % called Gabor atoms, or also gaborettes.
title('The estimate in the original base") t=-10:0.001:10;
figure(5) b1=o0;
plot{t(1:end-1).LL) a1=1:
xlabel("Time (h)") .
ylabel('The computed gain L") b2=6;

L j a2=1./1.9;
g1=real(exp((-((t-b1)).~2)).*(exp(i.*((2).*pi).*((t-
b1)));
g2=real(exp((-((t-b2)).A2)).*(exp(i.*((4).*pi). *((t-
b2)));

plot(t,g1,’b’,t,g2,’b");
axis([-10 10 -2.05 2.05]);
title(‘Two Gabor functions’);
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9. CONCLUSION:

In this paper the problem of observer synthesis has
been studied for some class of switched systems. A
Luenbergerlike observer for SDS has been extended
to a class of nonlinear system linearizable with output
injection.
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Moreover, a high gain observer design has been pro-
posed for classof hybrid systems, which can be trans-
formed to a triangular form by a diffeomorphism. An
application to an electronic oscillator, whose equa-
tions are singularly perturbed, has beenpresented.Fur-
ther studies should focus on modeling a class of sin-
gularly perturbed system with modeled by SDS, such
asBelousov-Zhabotinsky system, or systems with fast
actuators, and include a thorough study on the impact
of switching estimation for those classes of systems.
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