
 Volume No: 2 (2015), Issue No: 5 (May) May 2015
 www.ijmetmr.com Page 60

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

ABSTRACT:
The cloud computing has increased in many organiza-
tions. It provides many benefits in terms of low cost
and accessibility of data. Ensuring the security of cloud
computing is a major factor in the cloud computing en-
vironment, as users often store sensitive information
with cloud storage providers but these providers may
be untrusted. In this project we propose anIntrusion
Detection and Countermeasure in Virtual Network Sys-
temsmechanism called NICE to prevent vulnerable vir-
tual machines from being compromised in the cloud.
NICE detects and mitigates collaborative attacks in the
cloud virtual networking environment. The system per-
formance evaluation demonstrates the feasibility of
NICE and shows that the proposed solution can signifi-
cantly reduce the risk of the cloud system from being
exploited and abused by internal and external attack-
ers..

INDEX TERMS:
Cloud Computing, Intrusion Detection, Network Secu-
rity, Zombie Detection.

I.INTRODUCTION :
Cloud Security Alliance (CSA) survey shows that among
all security issues, abuse and nefarious use of cloud
computing is considered as the top securitythreat, in
which attackers can exploit vulnerabilities in clouds
and utilize cloud system resources to deploy at-tacks.
In traditional data centers, where system admin- istra-
tors have full control over the host machines, vul- ner-
abilities can be detected and patched by the system
administrator in a centralized manner.However, patch-
ing known security holes in cloud data centers, where
cloud users usually have the privilege to control soft-
ware installed on their managed VMs, may not work ef-
fectively and can violate the Service Level Agreement
(SLA).

Y.Srilakshmi
M.Tech Student,

Department of CSE,
School of Technolog,

GITAM University.

Mr.S.D.Vara Prasad
Assistant Professor,
Department of CSE,

School of Technolog,
GITAM University.

[4] Furthermore, cloud users can install vulner- able
software on their VMs, which essentially contrib- utes
to loopholes in cloud security. The challenge is to es-
tablish an effective vulnerability/attack detection and
response system for accurately identifying attacks and
minimizing the impact of security breach to cloud us-
ers.To establish a defense-in-depth Intrusion Detection
Framework, We Propose NICE. In this article, we pro-
pose NICE (Network Intrusion detection and Coun-
termeasure Selection in virtual network systems) to
establish a defense-in-depth intrusion detection frame-
work. For better attack detection, NICE incorporates
attack graph analytical procedures into the intrusion
detection processes. [5] We must note that the design
of NICE does not intend to improve any of the exist-
ing intrusion detection algorithms; indeed, NICE em-
ploys a reconfigurable virtual networking approach to
detect and counter the attempts to compromise VMs,
thus preventing zombie VMs.Actually, NICE includes
two main phases: (1) deploy a lightweight mirroring
based network intrusion detection agent (NICE-A) on
each cloud server to capture and analyze cloud traf-
fic. A NICE-A periodically scans the virtual system vul-
ner- abilities within a cloud server to establish Scenario
At- tack Graph (SAGs), and then based on the severity
of identified vulnerability towards the collaborative
at- tack goals, NICE will decide whether or not to put a
VM in network inspection state. (2) Once a VM enters
inspection state, Deep Packet Inspection (DPI) is ap-
plied, and/or virtual network re- configurations can be
deployed to the inspecting VM to make the potential
attack behaviors prominent.

2. NORMALIZATION TRADEOFFS:

When designing traffic normalizes, we are faced with a
set of tradeoffs, which can be arranged along several
axes:

Detecting and Mitigating Collaborative Attacks using
NICE in Virtual Network systems

 Volume No: 2 (2015), Issue No: 5 (May) May 2015
 www.ijmetmr.com Page 61

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

•Extent of normalization vs. protection

•impact on end-to-end semantics (service models)

•impact on end-to-end performance amount of state
held

•work offloaded from the NIDS

Generally speaking, as we increase the degree of
normalization and protection, we need to hold more
state; performance decreases both for normalize and
for end-to-end flows; and we impact end-to-end se-
mantics more. Our goal is not to determine a single
“sweet spot,” but to understand the character of the
tradeoffs, and, ideally, design a system that a site can
tune to match their local requirements.

Normalization vs. protection:

As normalize is a “bump in the wire,” the same box per-
forming normalization can also perform firewall func-
tionality. For example, normalize can prevent known
attacks, or shut down access to internal machines from
an external host when the NIDS detects a probe or an
attack. In this paper we concentrate mainly on normal-
ization functionality, but will occasionally discuss pro-
tective functionality for which normalize is well suited.

End-to-end semantics:

As much as possible, we would like normalize to pre-
serve the end-to-end semantics of Well-behaved net-
work protocols, whilst cleaning up misbehaving traffic.
Some packets arriving at normalize simply cannot be
correct according to the protocol specification, and for
these there often is a clear normalization to apply. For
example, if two copies of an IP fragment arrive with
the same fragment offset, but containing differ- ent
data, then dropping either of the fragments or drop-
ping the whole packet won’t undermine the cor- rect
operation of the particular connection. Clearly the op-
eration was already incorrect. [6]However, there
are other packets that, while perfectly legal according
to the protocol specifications, may still cause ambigui-
ties for the NIDS. For example, it is perfectly legitimate
for a packet to arrive at normalize with a low TTL. How-
ever, per the discussion in the Introduction, the NIDS
cannot be sure whether the packet will reach the desti-
nation.

A possible normalization for such packets is to increase
its TTL to a large value.1 for most traffic, this will have
no adverse effect, but it will break diagnos- tics such as
trace route, which rely on the semantics of the TTL field
for their correct operation. Normaliza- tions like these,
which erode but do not brutally vio- late the end-to-
end protocol semantics, present a ba- sic tradeoff that
each site must weigh as an individual policy decision,
depending on its user community, [7] performance
needs, and threat model. In our analysis of different
normalizations, we place particular empha- sis on this
tradeoff, because we believe the long-term utility of
preserving end-to-end semantics is often un- derap-
preciated and at risk of being sacrificed for short- term
expediency.

Impact on end-to-end performance:

Some normalization is performed by modifying
packets in a way that removes ambiguities, but
also adversely affects the performance of the pro-
tocol being normal- ized. There is no clear answer
as to how much impact on performance might be
acceptable, as this clearly depends on the proto-
col, local network environment, and threat mod-
el.

State holding:

A NIDS system must hold state in order to under-
stand the context of incoming information. One
form of at- tack on a NIDS is a state holding attack,
whereby the attacker creates traffic that will cause
the NIDS to in- stantiate state (see _ 4.2 below). If
this state exceeds the NIDS’s ability to cope, the
attacker may well be able to launch an attack that
passes undetected. This is possible in part because
a NIDS generally operates passively, and so “fails
open.” A normalize also needs to hold state to
correct ambi- guities in the data flows. Such state
mightinvolve keep- ing track of unacknowledged
TCP segments, or holding IP fragments for reas-
sembly in normalize. However, unlike the NIDS,
normalize is in the forwarding path, and so has the
capability to “fail closed” in the pres- ence of state
holding attacks. Similarly, the normalize can per-
form “triage” amongst incoming flows:

 Volume No: 2 (2015), Issue No: 5 (May) May 2015
 www.ijmetmr.com Page 62

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

if the normalize is near state exhaustion, it can shut
down and discard state for flows that do not appear
to be making progress, whilst passing and normalizing
those that do make progress. [8] The assumption here
is that without complicity from internal hosts (see be-
low), it is difficult for an attacker to fake a large num-
ber of active connections and stress normalize state
holding. But even given the ability to perform triage,
if a normalize operates fail-closed then we must take
care to assess the degree to which an attacker can ex-
ploit state hold- ing to launch a denial-of-service attack
against a site, by forcing the normalize to terminate
some of the site’s legitimate connections.

Inbound vs. outbound traffic:

The design of the Bionetwork intrusion detection sys-
tem assumes that it is monitoring a bi-directional stream
of traffic, and that either the source or the destination
of the traffic can be trusted [3]. However it is equally
effective at detecting inbound or outbound attacks.
The addition of normalize to the scenario potentially
introduces an asymmetry due to its location— normal-
ize protects the NIDS against ambiguities by process-
ing the traffic before it reaches the NIDS (Figure 2).

Thus, an internal host attempting to attack an exter-
nal host might be able to exploit such ambiguities to
evade the local NIDS. If the site’s threat model includes
such attacks, either two normalize may be used, one
on either side of the NIDS, or a NIDS integrated into a
single normalize.

Finally, we note that if both internal and external hosts
in a connection are compromised, there is little any
NIDS or normalize can do to prevent the use of en-
crypted or otherwise covert channels be- tween the
two hosts. Whilst a normalize will typically make most
of its modifications to incoming packets, there may
also be a number of normalizations it ap- plies to out-
going packets.

These normalizations are to ensure that the internal
and external hosts’ protocol state machines stay in
step despite the normalization of the incoming traffic.
It is also possible to normalize outgoing traffic to pre-
vent unintended information about the internal hosts
from escaping ([3], and see _ 5.1 below).

Protection vs. offloading work:

Although the primary purpose of normalize is to pre-
vent ambiguous traffic from reaching the NIDS where
it would either contribute to a state explosion or allow
evasion, normalize can also serve to offload work from
the NIDS. For example, if the normalize discards pack-
ets with bad checksums, then the NIDS needn’t spend
cycles verifying checksums.

3. REAL-WORLD CONSIDERATIONS:

Due to the adversarial nature of attacks, for security
systems it is particularly important to consider not only
the principles by which the system operates, but as
much as possible also the “real world” details of oper-
ating the system. In this section, we discuss two such
issues, the “cold start” problem, and attackers target-
ing the normalize operation.

3.1 Cold start:

It is natural when designing a network traffic analyzer
to structure its analysis in terms of tracking the pro-
gression of each connection from the negotiation to
begin it, through the connection’s establishment and
data transfer operations, to its termination. Unless
carefully done, however, such a design can prove vul-
nerable to incorrect analysis during a cold start. That is,
when the analyzer first begins to run, it is confronted
with traffic from already-established connections for
which the analyzer lacks knowledge of the connection
characteristics negotiated when the connections were
established.

For example, the TCP scrubber [1] requires a connec-
tion to go through the normal start-up handshake.
However, if a valid connection is in progress, and the
scrubber restarts or otherwise loses state, then it will
terminate any connections in progress at the time
of the cold start, since to its analysis their traffic ex-
changes appear to violate the protocol semantics that
require each newly seen connection to begin with a
start-up handshake. The cold-start problem also affects
the NIDS itself. If the NIDS restarts, the loss of state
can mean that pre- viously monitored connections are
no longer monitor able because the state negotiated
at connection set- up time is no longer available.

 Volume No: 2 (2015), Issue No: 5 (May) May 2015
 www.ijmetmr.com Page 63

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

As we will show, tech- niques required to allow clean
normalize restarts can also help a NIDS with cold start
(_ 6.2). Finally, we note that could start is not an unlike-
ly “corner case” to deal with, but instead an on-going
issue for normalize and NIDS alike. First, an attacker
might be able to force a cold start by exploiting bugs
in either system. Second, from operational experience
we know that one cannot avoid occasionally restart-
ing a monitor system, for ex- ample to reclaim leaked
memory or update configura- tion files. Accordingly, a
patient attacker who keeps a connection open for a
long period of time can ensure a high probability that it
will span a cold start.

3.2 Attacking the Normalize:

Inevitably we must expect the normalize itself to be the
target of attacks. Besides complete subversion, which
can be prevented only though good design and coding
practice, two other ways normalize can be attacked
are state holding attacks and CPU overload attacks.

State holding attacks:

Some normalization are stateless. For example, the TCP
MSS option (Maximum Segment Size) is only allowed
in TCP SYN packets. If a normalize sees a TCP packet
with an MSS Option but no SYN flag, then this is illegal;
but even so, it may be unclear to the NIDS what the re-
ceiving host will do with the option, since its TCP imple-
mentation might incorrectly still honor it. Because the
use of the option is illegal, normalize can safely remove
it (and adjust the TCP checksum) without needing to
instantiate any state for this purpose. Other normal-
izations require normalize to hold state. For example,
an attacker can create ambiguity by sending multiple
copies of an IP fragment with different payloads. While
normalize can remove fragment based ambiguities by
reassembling all fragmented IP packets itself before
forwarding them (and if necessary re-fragmenting cor-
rectly), to do this, normalize must hold fragments until
they can be reassembled into a complete packet. An
attacker can thus cause normalize to use up memory
by sending many fragments of packets without ever
sending enough to complete a packet. This particular
attack is easily defended against by simply bounding
the amount of memory that can be used for fragments,
and culling the oldest fragments from the cache if the
fragment cache fills up.

Because fragments tend to arrive together, this simple
strategy means an attacker has to flood with a very
high rate of fragments to cause a problem. Also,as IP
packets are unreliable, there’s no guarantee they ar-
rive anyway, so dropping the occasional packet doesn’t
break any end- to-end semantics. More difficult to de-
fend against is an attacker causing normalize to hold
TCP state by flood- ing in, for example, the following
ways:

1.Simple SYN flooding with SYNs for multiple connec-
tions to the same or to many hosts.

2.ACK flooding. A normalize receiving a packet for
which it has no state might be designed to Then in-
stantiate state (in order to address the “cold start”
problem).

3.Initial window flooding. The attacker sends a SYN
to a server that exists, receives a SYN-ACK, and then
floods data without waiting for a response. A normal-
ize would normally temporarily store unacknowledged
text to prevent inconsistent retransmissions.

Our strategy for defending against these is twofold.
First, normalize knows whether or not it’s under attack
by monitoring the amount of memory it is consuming.
If it’s not under attack, it can instantiate whatever state
it needs to normalize correctly. If it believes it’s under
attack, it takes a more conservative strategy that is de-
signed to allow it to survive, although some legitimate
traffic will see degraded performance. In general our
aim when under attack is to only instantiate TCP con-
nection state when we see traffic from an internal (and
hence trusted) host as this restricts state holding at-
tacks on normalize to those actually involving real con-
nections to internal hosts. Note here that normalize is
explicitly not attempting to protect the internal hosts
from denial-of-service attacks; only to protect itself
and the NIDS.

CPU over load attacks:

An attacker may also attempt to overload the CPU on
normalize. However, unlike state holding attacks, such
an attack cannot cause normalize to allow an ambigu-
ity to pass. Instead, CPU overload attacks can merely
cause normalize to forward packets at a slower rate
than it otherwise would.

 Volume No: 2 (2015), Issue No: 5 (May) May 2015
 www.ijmetmr.com Page 62

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

if the normalize is near state exhaustion, it can shut
down and discard state for flows that do not appear
to be making progress, whilst passing and normalizing
those that do make progress. [8] The assumption here
is that without complicity from internal hosts (see be-
low), it is difficult for an attacker to fake a large num-
ber of active connections and stress normalize state
holding. But even given the ability to perform triage,
if a normalize operates fail-closed then we must take
care to assess the degree to which an attacker can ex-
ploit state hold- ing to launch a denial-of-service attack
against a site, by forcing the normalize to terminate
some of the site’s legitimate connections.

Inbound vs. outbound traffic:

The design of the Bionetwork intrusion detection sys-
tem assumes that it is monitoring a bi-directional stream
of traffic, and that either the source or the destination
of the traffic can be trusted [3]. However it is equally
effective at detecting inbound or outbound attacks.
The addition of normalize to the scenario potentially
introduces an asymmetry due to its location— normal-
ize protects the NIDS against ambiguities by process-
ing the traffic before it reaches the NIDS (Figure 2).

Thus, an internal host attempting to attack an exter-
nal host might be able to exploit such ambiguities to
evade the local NIDS. If the site’s threat model includes
such attacks, either two normalize may be used, one
on either side of the NIDS, or a NIDS integrated into a
single normalize.

Finally, we note that if both internal and external hosts
in a connection are compromised, there is little any
NIDS or normalize can do to prevent the use of en-
crypted or otherwise covert channels be- tween the
two hosts. Whilst a normalize will typically make most
of its modifications to incoming packets, there may
also be a number of normalizations it ap- plies to out-
going packets.

These normalizations are to ensure that the internal
and external hosts’ protocol state machines stay in
step despite the normalization of the incoming traffic.
It is also possible to normalize outgoing traffic to pre-
vent unintended information about the internal hosts
from escaping ([3], and see _ 5.1 below).

Protection vs. offloading work:

Although the primary purpose of normalize is to pre-
vent ambiguous traffic from reaching the NIDS where
it would either contribute to a state explosion or allow
evasion, normalize can also serve to offload work from
the NIDS. For example, if the normalize discards pack-
ets with bad checksums, then the NIDS needn’t spend
cycles verifying checksums.

3. REAL-WORLD CONSIDERATIONS:

Due to the adversarial nature of attacks, for security
systems it is particularly important to consider not only
the principles by which the system operates, but as
much as possible also the “real world” details of oper-
ating the system. In this section, we discuss two such
issues, the “cold start” problem, and attackers target-
ing the normalize operation.

3.1 Cold start:

It is natural when designing a network traffic analyzer
to structure its analysis in terms of tracking the pro-
gression of each connection from the negotiation to
begin it, through the connection’s establishment and
data transfer operations, to its termination. Unless
carefully done, however, such a design can prove vul-
nerable to incorrect analysis during a cold start. That is,
when the analyzer first begins to run, it is confronted
with traffic from already-established connections for
which the analyzer lacks knowledge of the connection
characteristics negotiated when the connections were
established.

For example, the TCP scrubber [1] requires a connec-
tion to go through the normal start-up handshake.
However, if a valid connection is in progress, and the
scrubber restarts or otherwise loses state, then it will
terminate any connections in progress at the time
of the cold start, since to its analysis their traffic ex-
changes appear to violate the protocol semantics that
require each newly seen connection to begin with a
start-up handshake. The cold-start problem also affects
the NIDS itself. If the NIDS restarts, the loss of state
can mean that pre- viously monitored connections are
no longer monitor able because the state negotiated
at connection set- up time is no longer available.

 Volume No: 2 (2015), Issue No: 5 (May) May 2015
 www.ijmetmr.com Page 63

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

As we will show, tech- niques required to allow clean
normalize restarts can also help a NIDS with cold start
(_ 6.2). Finally, we note that could start is not an unlike-
ly “corner case” to deal with, but instead an on-going
issue for normalize and NIDS alike. First, an attacker
might be able to force a cold start by exploiting bugs
in either system. Second, from operational experience
we know that one cannot avoid occasionally restart-
ing a monitor system, for ex- ample to reclaim leaked
memory or update configura- tion files. Accordingly, a
patient attacker who keeps a connection open for a
long period of time can ensure a high probability that it
will span a cold start.

3.2 Attacking the Normalize:

Inevitably we must expect the normalize itself to be the
target of attacks. Besides complete subversion, which
can be prevented only though good design and coding
practice, two other ways normalize can be attacked
are state holding attacks and CPU overload attacks.

State holding attacks:

Some normalization are stateless. For example, the TCP
MSS option (Maximum Segment Size) is only allowed
in TCP SYN packets. If a normalize sees a TCP packet
with an MSS Option but no SYN flag, then this is illegal;
but even so, it may be unclear to the NIDS what the re-
ceiving host will do with the option, since its TCP imple-
mentation might incorrectly still honor it. Because the
use of the option is illegal, normalize can safely remove
it (and adjust the TCP checksum) without needing to
instantiate any state for this purpose. Other normal-
izations require normalize to hold state. For example,
an attacker can create ambiguity by sending multiple
copies of an IP fragment with different payloads. While
normalize can remove fragment based ambiguities by
reassembling all fragmented IP packets itself before
forwarding them (and if necessary re-fragmenting cor-
rectly), to do this, normalize must hold fragments until
they can be reassembled into a complete packet. An
attacker can thus cause normalize to use up memory
by sending many fragments of packets without ever
sending enough to complete a packet. This particular
attack is easily defended against by simply bounding
the amount of memory that can be used for fragments,
and culling the oldest fragments from the cache if the
fragment cache fills up.

Because fragments tend to arrive together, this simple
strategy means an attacker has to flood with a very
high rate of fragments to cause a problem. Also,as IP
packets are unreliable, there’s no guarantee they ar-
rive anyway, so dropping the occasional packet doesn’t
break any end- to-end semantics. More difficult to de-
fend against is an attacker causing normalize to hold
TCP state by flood- ing in, for example, the following
ways:

1.Simple SYN flooding with SYNs for multiple connec-
tions to the same or to many hosts.

2.ACK flooding. A normalize receiving a packet for
which it has no state might be designed to Then in-
stantiate state (in order to address the “cold start”
problem).

3.Initial window flooding. The attacker sends a SYN
to a server that exists, receives a SYN-ACK, and then
floods data without waiting for a response. A normal-
ize would normally temporarily store unacknowledged
text to prevent inconsistent retransmissions.

Our strategy for defending against these is twofold.
First, normalize knows whether or not it’s under attack
by monitoring the amount of memory it is consuming.
If it’s not under attack, it can instantiate whatever state
it needs to normalize correctly. If it believes it’s under
attack, it takes a more conservative strategy that is de-
signed to allow it to survive, although some legitimate
traffic will see degraded performance. In general our
aim when under attack is to only instantiate TCP con-
nection state when we see traffic from an internal (and
hence trusted) host as this restricts state holding at-
tacks on normalize to those actually involving real con-
nections to internal hosts. Note here that normalize is
explicitly not attempting to protect the internal hosts
from denial-of-service attacks; only to protect itself
and the NIDS.

CPU over load attacks:

An attacker may also attempt to overload the CPU on
normalize. However, unlike state holding attacks, such
an attack cannot cause normalize to allow an ambigu-
ity to pass. Instead, CPU overload attacks can merely
cause normalize to forward packets at a slower rate
than it otherwise would.

 Volume No: 2 (2015), Issue No: 5 (May) May 2015
 www.ijmetmr.com Page 64

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

In practice, we find that most normalization are rather
cheap to perform (_ 7.2), so such attacks need to con-
centrate on the normalizations where the attacker can
utilize computational complexity to their advantage.
Thus, CPU utilization attacks will normally need to be
combined with state holding attacks so that normalize
performs an expensive search in a large state-space.
Accordingly, we need to pay great attention to the
implementation of such search algorithms, with ex-
tensive use of constant-complexity hash algorithms
to locate matching state. An additional difficulty that
arises is the need to be opportunistic about garbage
collection, and to apply algorithms that are low cost at
the possible expense of not being completely optimal
in the choice of state that is reclaimed.

ALGORITHM:

When an Attacker Attacks the Server by using a User
Account, Attacker can Deploy Multiple Levels of Mal-
wares to the Server, If and only if he can Access to
the Server, but in Existing System it’s Hard to Detect
the Attacker because of Server Cloud Service While
in Proposed, When an Attacker Attacks the Server us-
ing User Account, the Attack Analyzer can Detect the
Attacker and Send the Warning to Administrator that
User[Attacked by the Zombie] try to Access to Other
Users Account to Deploy the Multiple Levels of Mal-
ware and Admin waits for Maximum Attempts and
then Admin Blocks him Permanently using Scenario At-
tack Graph.

Fig 1: Designed NICE Architecture

The major functions of NICE system are performed by
attack analyzer, which includes procedures such as at-
tack graph construction and update, alert correlation
and countermeasure selection. The process of con-
structing and utilizing the Scenario Attack Graph (SAG)
consists of three phases: information gathering, attack
graph construction, and potential exploit path analy-
sis. With this information, attack paths can be model
using SAG. Each node in the attack graph represents an
exploit by the attacker. Each path from an initial node
to a goal node represents a successful attack.

Algorithm:

Alert Correlation

Require: alert ac, SAG, ACG

1:if (ac is a new alert) then

2:create node ac in ACG

3:n1 vc map (ac)

4:for all n2 parent (n1) does

5:create edge (n2.alert, ac)

6:for all Si containing a do

a is the last element in Si then ppend ac to Si
lsecreate path Si+1 = {sub set (Si, a), ac}

nd if end for
add ac to n1.alert

14:end for

15:end if

16: return S

above method for utilizing SAG and ACG together so
as to predict an attackers behavior. Alert Correlation
algorithm is followed for every alert detected and re-
turns one or more paths Si. For every alert ac that is
received from the IDS, it is added to ACG if it does not
exist. For this new alert ac, the corresponding vertex in
the SAG is found by using function map.

 Volume No: 2 (2015), Issue No: 5 (May) May 2015
 www.ijmetmr.com Page 65

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

Fig 2: Counter-Measure Model

Algorithm presents how to select the optimal counter-
measure for a given attack scenario. Input to the algo-
rithm is an alert, attack graph G, and a pool of coun-
termeasures CM. The algorithm starts by electing the
node v Alert that corresponds to the alert generated
by a NICE-A. Before selecting the countermeasure, we
count the distance of v Alert to the target node. If the
distance is greater than a threshold value, we do not
perform countermeasure selection but update the
ACG to keep track of alerts in the system.

4. CONCLUSION:

In this paper, we presented NICE, which is proposed to
detect and mitigate collaborative attacks in the cloud
virtual networking environment. NICE utilizes the at-
tack graph model to conduct attack detection and pre-
diction. The proposed solution investigates how to use
the programmability of software switches based solu-
tions to improve the detection accuracy and defeat vic-
tim exploitation phases of collaborative attacks.The
system performance evaluation demonstrates the fea-
sibility of NICE and shows that the proposed solu- tion
can significantly reduce the risk of the cloud sys- tem
from being exploited and abused by internal and exter-
nal attackers. NICE only investigates the network IDS
approach to counter zombie explorative attacks. In or-
der to improve the detection accuracy, host-based IDS
solutions are needed to be incorporated and to cover
the whole\ spectrum of IDS in the cloud system. This
should be investigated in the future work. Addi- tion-
ally, as indicated in the paper, we will investigate the
scalability of the proposed NICE solution by inves- ti-
gating the decentralized network control and attack
analysis model based on current study.

REFERENCES:

[1]G. R. Malan, D.Watson, F. Jahanian and P. Howell,
“Transport and Application Protocol Scrubbing”, Pro-
ceedings of the IEEE INFOCOM 2000 Conference, Tel
Aviv, Israel, Mar. 2000.
[2]V. Paxson, “Bro: A System for Detecting Network In-
truders in Real-Time”, Computer Networks, 31(23-24),
pp. 2435-2463, 14 Dec 1999.
[3]M. Smart, G.R. Malan and F. Jahanian, “Defeating
TCP/IP Stack Fingerprinting,” Proc. USENIX Security
Symposium, Aug. 2000.
[4]H. Takabi, J. B. Joshi, and G. Ahn, “Security and pri-
vacy challenges in cloud computing environments,”
IEEE Security & Privacy, vol. 8, no. 6, pp. 24–31, Dec.
2010.
[5]“Open vSwitch project,” http://openvswitch.org,
May 2012.
[6]C. Kent and J. Mogul, “Fragmentation Considered
Harmful,” Proc. ACM SIGCOMM, 1987.
[7]E. Kohler, R. Morris, B. Chen, J. Jannotti and M.F.
Kaashoek, “The Click modular router,”ACM Transac-
tions on Computer Systems, 18(3), pp. 263–297, Aug.
2000.
[8] G. R. Malan, D.Watson, F. Jahanian and P. Howell,
“Transport and Application Protocol Scrubbing”, Pro-
ceedings of the IEEE INFOCOM 2000 Conference, Tel
Aviv, Israel, Mar. 2000.

 Volume No: 2 (2015), Issue No: 5 (May) May 2015
 www.ijmetmr.com Page 64

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

In practice, we find that most normalization are rather
cheap to perform (_ 7.2), so such attacks need to con-
centrate on the normalizations where the attacker can
utilize computational complexity to their advantage.
Thus, CPU utilization attacks will normally need to be
combined with state holding attacks so that normalize
performs an expensive search in a large state-space.
Accordingly, we need to pay great attention to the
implementation of such search algorithms, with ex-
tensive use of constant-complexity hash algorithms
to locate matching state. An additional difficulty that
arises is the need to be opportunistic about garbage
collection, and to apply algorithms that are low cost at
the possible expense of not being completely optimal
in the choice of state that is reclaimed.

ALGORITHM:

When an Attacker Attacks the Server by using a User
Account, Attacker can Deploy Multiple Levels of Mal-
wares to the Server, If and only if he can Access to
the Server, but in Existing System it’s Hard to Detect
the Attacker because of Server Cloud Service While
in Proposed, When an Attacker Attacks the Server us-
ing User Account, the Attack Analyzer can Detect the
Attacker and Send the Warning to Administrator that
User[Attacked by the Zombie] try to Access to Other
Users Account to Deploy the Multiple Levels of Mal-
ware and Admin waits for Maximum Attempts and
then Admin Blocks him Permanently using Scenario At-
tack Graph.

Fig 1: Designed NICE Architecture

The major functions of NICE system are performed by
attack analyzer, which includes procedures such as at-
tack graph construction and update, alert correlation
and countermeasure selection. The process of con-
structing and utilizing the Scenario Attack Graph (SAG)
consists of three phases: information gathering, attack
graph construction, and potential exploit path analy-
sis. With this information, attack paths can be model
using SAG. Each node in the attack graph represents an
exploit by the attacker. Each path from an initial node
to a goal node represents a successful attack.

Algorithm:

Alert Correlation

Require: alert ac, SAG, ACG

1:if (ac is a new alert) then

2:create node ac in ACG

3:n1 vc map (ac)

4:for all n2 parent (n1) does

5:create edge (n2.alert, ac)

6:for all Si containing a do

a is the last element in Si then ppend ac to Si
lsecreate path Si+1 = {sub set (Si, a), ac}

nd if end for
add ac to n1.alert

14:end for

15:end if

16: return S

above method for utilizing SAG and ACG together so
as to predict an attackers behavior. Alert Correlation
algorithm is followed for every alert detected and re-
turns one or more paths Si. For every alert ac that is
received from the IDS, it is added to ACG if it does not
exist. For this new alert ac, the corresponding vertex in
the SAG is found by using function map.

 Volume No: 2 (2015), Issue No: 5 (May) May 2015
 www.ijmetmr.com Page 65

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

Fig 2: Counter-Measure Model

Algorithm presents how to select the optimal counter-
measure for a given attack scenario. Input to the algo-
rithm is an alert, attack graph G, and a pool of coun-
termeasures CM. The algorithm starts by electing the
node v Alert that corresponds to the alert generated
by a NICE-A. Before selecting the countermeasure, we
count the distance of v Alert to the target node. If the
distance is greater than a threshold value, we do not
perform countermeasure selection but update the
ACG to keep track of alerts in the system.

4. CONCLUSION:

In this paper, we presented NICE, which is proposed to
detect and mitigate collaborative attacks in the cloud
virtual networking environment. NICE utilizes the at-
tack graph model to conduct attack detection and pre-
diction. The proposed solution investigates how to use
the programmability of software switches based solu-
tions to improve the detection accuracy and defeat vic-
tim exploitation phases of collaborative attacks.The
system performance evaluation demonstrates the fea-
sibility of NICE and shows that the proposed solu- tion
can significantly reduce the risk of the cloud sys- tem
from being exploited and abused by internal and exter-
nal attackers. NICE only investigates the network IDS
approach to counter zombie explorative attacks. In or-
der to improve the detection accuracy, host-based IDS
solutions are needed to be incorporated and to cover
the whole\ spectrum of IDS in the cloud system. This
should be investigated in the future work. Addi- tion-
ally, as indicated in the paper, we will investigate the
scalability of the proposed NICE solution by inves- ti-
gating the decentralized network control and attack
analysis model based on current study.

REFERENCES:

[1]G. R. Malan, D.Watson, F. Jahanian and P. Howell,
“Transport and Application Protocol Scrubbing”, Pro-
ceedings of the IEEE INFOCOM 2000 Conference, Tel
Aviv, Israel, Mar. 2000.
[2]V. Paxson, “Bro: A System for Detecting Network In-
truders in Real-Time”, Computer Networks, 31(23-24),
pp. 2435-2463, 14 Dec 1999.
[3]M. Smart, G.R. Malan and F. Jahanian, “Defeating
TCP/IP Stack Fingerprinting,” Proc. USENIX Security
Symposium, Aug. 2000.
[4]H. Takabi, J. B. Joshi, and G. Ahn, “Security and pri-
vacy challenges in cloud computing environments,”
IEEE Security & Privacy, vol. 8, no. 6, pp. 24–31, Dec.
2010.
[5]“Open vSwitch project,” http://openvswitch.org,
May 2012.
[6]C. Kent and J. Mogul, “Fragmentation Considered
Harmful,” Proc. ACM SIGCOMM, 1987.
[7]E. Kohler, R. Morris, B. Chen, J. Jannotti and M.F.
Kaashoek, “The Click modular router,”ACM Transac-
tions on Computer Systems, 18(3), pp. 263–297, Aug.
2000.
[8] G. R. Malan, D.Watson, F. Jahanian and P. Howell,
“Transport and Application Protocol Scrubbing”, Pro-
ceedings of the IEEE INFOCOM 2000 Conference, Tel
Aviv, Israel, Mar. 2000.

