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Abstract:  

Many efficient algorithms and architectures have been 

introduced for the design of low complexity bit-

parallel Multiple Constant Multiplications (MCM) 

operation which dominates the complexity of many 

digital signal processing systems. On the other hand, 

little attention has been given to the digit-serial MCM 

design that offers alternative low complexity MCM 

operations. In this paper, we address the problem of 

optimizing the gate-level area and delay in digit-serial 

MCM designs, for that purpose we introduce high 

level CSE and GB algorithms. Experimental results 

show the efficiency of the proposed optimization 

algorithms and of the digit-serial MCM architectures 

in the design of digit-serial MCM operations and finite 

impulse response filters. 

 

Index Terms: 

0–1 integer linear programming (ILP), digit-serial 

arithmetic, finite impulse response (FIR) filters, CSE 

and GB algorithms, multiple constant multiplications. 

 

1. INTRODUCTION: 

FINITE impulse response (FIR) filters are of great 

importance in digital signal processing (DSP) systems 

since their characteristics in linear-phase and feed-

forward implementations make them very useful for 

building stable high-performance filters [1]. These are 

mainly consists of multiplication of a vector of input 

samples with a set of constant coefficients is known as 

MCM operations. Multiple constant multiplications 

(MCM) are typical operations in digital signal 

processing (DSP) as well as in the design of finite-

impulse-response (FIR) filters, as shown in Fig.1 (a). 

Multiplications are expensive in terms of area and 

power consumption, when implemented in hardware.  

 

 

 

The relative cost of an adder and a multiplier in 

hardware, depends on the adder and multiplier 

architectures. For example, a k x k array multiplier has 

k times the logic (and area) and twice the latency of 

the slowest ripple carry adder. Since the values of the 

coefficients are known beforehand, the full flexibility 

of a multiplier is not necessary, and it can be more 

efficiently implemented by converting it into a 

sequence of additions/subtractions and shift operations 

are shown in fig.1 (b). 

 
Figure 1(a): A multiplier-based MCM example 

 
Figure 1(b): A multiplierless-based MCM example 

 

For the shift-adds implementation of constant 

multiplications, a straightforward method, generally 

known as digit based recoding [2], initially defines the 

constants in binary. Then, for each “1” in the binary 

representation of the constant, according to its bit 

position, it shifts the variable and adds up the shifted 

variables to obtain the result.  
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As a simple example, consider the constant 

multiplications 29x and 43x. Their decompositions in 

binary are listed as follows:      

29x = (11101)binx = x<<4 + x<<3 + x<<2 + x 

43x =(101011)binx = x<<5 + x<<3 + x<<1 + x 

Which requires six addition operations as illustrated in 

Fig.2 (a)  

 
Fig. 2. Shift-adds implementations of 29x and 43x. 

(a) Without partial product sharing [2] and with 

partial product sharing. (b) Exact CSE algorithm 

[5]. (c) Exact GB algorithm [6]. 

  

The algorithms designed for the MCM problem can be 

categorized in two classes: common sub expression 

elimination (CSE) algorithms [3]–[5] and graph-based 

(GB) algorithm [6]–[8]. The proposed algorithm that 

optimally solves this maximal sharing problem. This 

problem has been the subject of extensive research in 

recent years. Two key strategies have had a large 

impact in the optimization of MCMs. One is to 

consider not only adders, but also subtracter to 

combine partial terms, thus increasing the opportunity 

for the sharing of common sub expressions. 

 

The second is the usage of the Canonical Sign Digit 

(CSD) representation for the coefficients. This 

representation minimizes the number of non-zero 

digits; hence the maximal sub expression sharing 

search starts from a minimal level of complexity. In a 

recent paper, Park [9] propose the usage of a Minimal 

Signed Digit (MSD) representation for the coefficients. 

The MSD representation is obtained from the CSD 

representation by relaxing the requirement that there 

cannot be two consecutive non-zero digits.  

Under the MSD representation, a given numerical 

value can have multiple representations. However, in 

all of them, the number of non-zero digits is the same 

as the CSD representation. The algorithm proposed in 

[9] exploits the redundancy of the MSD representation 

by choosing the MSD instance that leads to a maximal 

sharing in the implementation of efficient FIR filters. 

To the best of our knowledge, all previous solutions to 

this problem have been heuristic, providing no 

indication as to how far from the optimum their 

solution is. We propose an exact algorithm that is 

feasible for many real situations. We model this 

problem as a Boolean network that covers all possible 

partial terms which may be used to generate the set of 

coefficients in the MCM instance.  

 

The inputs to this network are shifted versions of the 

value that serves as input to the MCM operation. Each 

adder and subtracter used to generate a given partial 

term is represented as an AND gate. All partial terms 

that represent the same numerical value are ORed 

together. There is a single output which is an AND 

over all the coefficients in the MCM. We cast this 

problem into a 0-1 Integer Linear Programming (ILP) 

problem by requiring: that the output is asserted, 

meaning that all coefficients are covered by the set of 

partial terms found; while minimizing the total number 

of AND gates that evaluate to one, i.e., the number of 

adders/subtracters.  

 

We have applied this algorithm to coefficients 

represented in binary, CSD and MSD representations. 

Note that the redundancy of the MSD representation 

can be readily incorporated in our model, where the 

equivalent MSD representations are simply new inputs 

to the OR gate that generates a given coefficient. 

Returning to our example in Fig. 2, the exact CSE 

algorithm of [9] gives a solution with four operations 

by finding the most common partial products 3x = 

(11)binx and 5x = (101)binx when constants are 

defined under binary, as illustrated in Fig. 2(b). On the 

other hand, the exact GB algorithm [6] finds a solution 

with the minimum number of operations by sharing the 

common partial product 7x in both multiplications, as 
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shown in Fig. 2(c). Note that the partial product 7x = 

(111)binx cannot be extracted from the binary 

representation of 43x in the exact CSE algorithm [5]. 

 

2. Digit-Serial Arithmetic: 

In digit-serial arithmetic, data words are divided into 

digits, with a digit size of d bits, which are processed 

in one clock cycle. The special cases of the digit-serial 

computation, called bit-serial and bit-parallel 

processing, occur when the digit size d is equal to 1 

and input data word length, respectively. The digit-

serial computation plays an important role when the 

bit-serial implementations cannot meet delay 

requirements and the bit-parallel designs require 

excessive hardware. Thus, an optimal tradeoff between 

area and delay can be obtained by changing the digit 

size parameter (d). The fundamental digit-serial 

operations were introduced in [8]. The digit-serial 

addition, subtraction, and left shift operations are 

depicted in Figure 3 when d is equal to 3. Notice from 

Figure 3(a) that in a digit-serial addition operation, in 

general, the number of required full adders (FAs) is 

equal to d and the number of necessary D flip-flops is 

always 1. The subtraction operation (Figure 3(b)) is 

implemented using 2’s complement, requiring the 

initialization of the D flip-flop with 1 and additional d 

inverter gates with respect to the digit-serial addition 

operation. 

 
Figure 3: The digit-serial operations when d is 3: 

(a) addition operation; (b) subtraction operation; 

(c) left shift by 2 times;(d)left shift by 4 times. 

 
Figure 4: Bit-serial realization of shift-adds 

implementation of 29x and 43x given in Figure 2(c). 

 

As an example on digit-serial realization of constant 

multiplications under the shift-adds architecture, 

Figure 4 illustrates the bit-serial implementation of 29x 

and 43x obtained by the exact GB algorithm [2] given 

in Figure 2(c). The network includes 2 bit serial 

additions, 1 bit-serial subtraction, and 5 D flip-flops 

for all the left shift operations. Observe from Figure 4 

that at each clock cycle, one bit of the input data x is 

applied to the network input and one bit of the constant 

multiplication output is computed. Note that the digit-

serial design of the MCM operation occupies 

significantly less area when compared to its bit-parallel 

design and the area of the design is not dependent on 

the bit-width of the input data. However, the latency of 

the MCM computation is increased due to the serial 

processing. Suppose that x is a 16-bit input value.  

 

To obtain the actual output of 29x and 43x in the bit-

serial network of Figure 4, 21 and 22 clock cycles are 

required respectively. Thus, necessary bits must be 

appended to the input data x, i.e., 0s, if x is an 

unsigned input or sign bits, otherwise. Moreover, in 

the case of the conversion of the outputs obtained in 

digit-serial to the bit parallel format, storage elements 

and control logic are required. Note that while the 

sharing of addition/subtraction operations reduces the 

complexity of the digit-serial MCM design (since each 

addition and subtraction operation requires a digit-

serial operation), the sharing of shift operations for a 

constant multiplication reduces the number of D flip-

flops, and consequently, the design area. Observe from 

Figure 4 that two D flip-flops cascaded serially to 

generate the left shift of 7x by two can also generate 

the left shift of 7x by one without adding any hardware 
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cost. The exact CSE algorithms that formalize the 

MCM problem as a 0–1 ILP problem were introduced 

in [23] and [24]. In these algorithms, the target 

constants are defined under a number representation 

and all possible implementations of constant 

multiplications are extracted from the representations 

of constants. The problem reduction and model 

simplification techniques for the exact CSE algorithms 

were presented in [9].  The exact GB algorithms that 

search for a solution with the minimum number of 

operations in breadth-first and depth-first manners 

were introduced in [12]. Efficient GB algorithms that 

includes two parts, i.e., optimal and heuristic, were 

introduced in [10]–[12]. In their optimal parts, each 

target constant that can be implemented with a single 

operation is synthesized.  

 

If there exist unimplemented elements left in the target 

set, then they switch to their heuristic parts where the 

required intermediate constants are found. The RAG-n 

algorithm [10] initially chooses a single 

unimplemented target constant with the smallest single 

coefficient cost evaluated by the algorithm  and then 

synthesizes it with a single operation including 

one(two) intermediate constant(s) that has(have) the 

smallest value in its heuristic part. The Hcub algorithm 

[11] selects a single intermediate constant that yields 

the best cumulative benefit over all unimplemented 

target constants for the implementation of each target 

constant. The approximate algorithm [12] computes all 

possible intermediate constants that can be synthesized 

with the current set of implemented constants using a 

single operation and chooses the one that leads to the 

largest number of synthesized target constants.  

 

For the MCM-DS problem, the GB algorithms based 

on RAG-n were introduced. The RSAG-n algorithm 

chooses the intermediate constant(s) that require the 

minimum number of shifts. The RASG-n algorithm  

selects the intermediate constant(s) with the minimum 

cost value as done in RAG-n, but if there are more 

than one possible intermediate constant, it favors the 

one that requires the minimum number of shifts. 

  

3. SIMULATION RESULTS: 

GB algorithm can be applied for any coefficient pair 

combinations. Hence GB algorithm is used and 

number of operations is reduced drastically than other 

algorithms. 

 
Fig5. Output for FIR filter with digit based 

recoding algorithm 

 

Four filter coefficient 29,43,59,89 values are taken for 

digit serial FIR filter design. X(n) is taken as a input 

sequence and Y(n) is taken as output sequence. 

 
Fig6. Output for FIR filter with CSE algorithm 
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Fig.5 shows 4 tap FIR filter with without partial 

product sharing (Digit based recoding) algorithm and 

Fig.6 displays 4 tap filter with CSE algorithm. 

 

 
Fig7.  Output for FIR filter with GB algorithm 

 

Fig.7 displays 4 tap filter with GB algorithm. This 

simulation result was displayed by modelsim software. 

These are the simulation results displayed by 

modelsim software.  

 

3.1. FIR FILTER DEVICE UTILIZATION 

REPORT 

Table -1: Delay and Gate Count Comparison 

FIR Filter Delay Device 

Utilization 

Normal 

method 

14.203 323 

CSE 

Algorithm 

12.875 299 

 

4. CONCLUSION: 

Thus the implementation of digit serial FIR filter was 

implemented with low complexity MCM architectures 

using GB algorithm. Device utilization and delay 

values are compared for hardware implementation. 

Hence this MCM approach drastically reduces the 

system complexity, area and delay and FPGA 

hardware real time implementation has performed with 

spartan3 version. Future enhancement of this paper is 

to design MCM architecture with more coefficient 

pairs for FIR filter implementation. 
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