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ABSTRACT: 

This paper describes the various stability controlling of 

bipedal robot through mathematical modeling. 

Basically bipedal robot walks by balancing its whole 

model through Centre of mass and different moments 

acting. Here direct kinematics, zero moment point and 

velocity based stability of bipedal robot are explained. 

The way how robot walks in polygon region by 

maintaining the Centre of pressure and zero moment 

point within the bound is described. It also contains the 

review of stability margins in bipedal walking robot. 
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1. INTRODUCTION: 

“How stable is your robot?” is a fundamental yet 

challenging question to answer, particularly with fast 

moving legged robots, such as dynamically balanced 

bipedal walkers. With many traditional control 

systems, questions of stability and robustness can be 

answered by eigenvalues, phase margins, loop gain 

margins, and other stability margins. However, legged 

robots are nonlinear, under actuated, combine 

continuous and discrete dynamics, and do not 

necessarily have periodic motions. These features 

make applying traditional stability margins difficult. 

Stability for a biped in terms of whether or not the 

biped will fall down. However, the concept of falling 

down is difficult to precisely define. For example, 

sitting down on the floor and slipping down onto the 

floor might result in the exact same trajectories and 

end state but one is considered falling and the other is 

considered sitting, with the only difference being 

intent. In this paper we define stability for a biped 

simply as whether or not the biped will fall down. The 

focus on velocity-based stability since believe that 

regulating the velocity of the Center of Mass is the 

most challenging subtask for human like bipedal 

walking. Regulating velocity is a challenging subtask 

due to the extended period during a natural gait that 

the Center of Mass velocity is under actuated (the 

actuators cannot produce an arbitrary acceleration on 

the Center of Mass). For example, once the body has 

traveled far enough away from the foot, the only 

course of action that can stabilize the Center of Mass 

velocity is to take a step. Other requirements such as 

regulating virtual leg length and body orientation, and 

swinging the swing leg, can be met through traditional 

control system techniques since these subtasks are 

fully actuated during the majority of the gait. 

2. DESIRABLE CHARACTERISTICS OF 

STABILITY MARGINS 

An ideal stability margin for a biped would act as a 

fortune teller. It would tell us when the biped is going 

to fall down next, what the cause will be, and how it 

can be prevented. If the biped is not going to fall 

down, the margin would indicate the closest the biped 

will be to falling down in the next step or so, at what 

point during the gait this occurs, and how much extra 

disturbance it could handle. While such omniscience is 

infeasible for anything but the simplest systems, some 

reasonable characteristics may desire for stability 

margins include: 

• If the stability margin is outside an acceptable 

threshold of values, the robot will fall down.  
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• If the stability margin is inside the acceptable 

threshold of values, the robot will not fall down.  

• Two control algorithms should be comparable for 

stability based on their relative stability margins.  

• One should be able to measure the relevant state 

variables and estimate the stability margin on-line in 

order to use it for control purposes.  

• The stability margin should answer relevant 

questions as to why the robot fell. It should correlate 

with the degree of robustness to disturbances, such as 

noise, terrain irregularities, and external forces or 

impulses. 

The Viability Margin is necessary, sufficient, and 

allows comparisons. However, its main drawback is 

that it is very difficult to compute. Various heuristic 

stability margins, which are much easier to compute, 

have been used in analyzing and controlling bipeds. In 

the next section review some of the margins that are 

commonly used for bipedal walking and discuss how 

well they achieve these desirable characteristics. 

3. REVIEW OF STABILITY MARGINS FOR 

BIPEDAL WALKING 

While there have been many proposed ways to define 

stability for a bipedal walking robot, we argue that 

many of these do not adequately address the desired 

characteristics described above. The review about 

stability will be explained through direct kinematics, 

zero moment point (ZMP), foot rotation indicator 

(FRI) and angular momentum of the robot.  

3.1. KINEMATIC MODELING OF LINKS:  

The waist link connects the two legs. Each leg has 

three links: foot link, shank link and thigh link. The 

joint between the foot link and shank link is the ankle, 

the joint between shank link and thigh link is the knee 

while the one between thigh link and waist link is the 

hip. The bipedal robot has six DOF. The direct 

kinematics consists of place the robot's final link 

(position and orientation), with regard to a reference 

system of coordinates, resolving the values of each 

link and the geometric parameters of the robot's 

elements. In other words, from the solution of each 

link coordinates, the final link localization is deduced 

(without having control where the final link is going to 

be). Also it is possible to and the position and the 

orientation of the robot's final link based only on its 

geometric relations (by a geometric method) but this is 

not a systematic method and can be used only in a 

robot with a few degrees of liberty. 

 

       Direct kinematics   

                   Inverse kinematics 

 

Fig.3.1. pictorial representation of kinematics 

Hence through transformation matrices direct 

kinematics and inverse kinematics will be derived as 

follows  

 

nLn+1=  cosθn+1   −sinθn+1*cosαn+1    sinθn+1*sinαn+1      

an+1*cosθn+1 

                 sinθn+1    cosθn+1*cosαn+1   −cosθn+1*sinαn+1    

an+1*sinθn+1 

                     0                    sinαn+1                  cosαn+1                   

dn+1 

                    0                       0                          0                           

1 

Where θn+1, dn+1, an+1, αn+1 are the D-H parameters for 

the i link. Thus, is enough to identify the θn+1, dn+1, 

an+1, αn+1 parameters to obtain the nLn+1 matrices and 

relate each robot's link. 

Each joint coordinate Position and 

orientation of the final 

robot’s link 
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Fig.3.2.FRAME ASSIGNMENT 

LINK ai ∞i di Øi 

1 0 900 0 ø1 

2 0 0 d1 ø2 

3 0 -900 d2 ø3 

4 L3 900 0 0 

5 L5 0 0 ø5 

6 0 900 0 ø6 

Table.3.1.D-H parameters of the bipedal robot 

Now substitute the values in the table in nLn+1 to get the 

homogenous transformation matrix for each link in the 

robot. So six matrixes will be obtain because having 

six links.  By the product of six matrixes total 

homogenous transformation matrix will obtain. 

[ 0L6 ] = [ 0L1] x [ 1L2] x [2L3] x [3L4] x [4L5] x [5L6] 

[0L1] =         cosθ1         0          sinθ1       0 

    sinθ1          0         -cosθ1      0 

      0              1            0          0 

      0              0            0          1 

[1L2] =         cosθ2        -sinθ2       0        0 

    sinθ2         cosθ2       0        0 

       0                1           0        d1 

            0                0           0        1 

[2L3] =         cosθ3          0        -sinθ3     0 

         sinθ3            0        cosθ3     0 

   0              -1          0         d2 

   0               0         0          1 

[3L4] =          1           0            0       L3 

                         0           0           -1       0 

     0           1            0        0 

     0           0            0        1 

[4L5] =  cosθ5    - sinθ5        0     L4cosθ5 

  sinθ5       cosθ5       0      L4sinθ5 

   0                0           1         0 

   0                0           0         1 

[5L6] =        cosθ6         0          sinθ6      0 

    sinθ6         0         -cosθ6     0 

     0              1          0            0 

     0              0          0            1 

The total transformation matrix is product of above all 

six matrix that is shown below as From the above 

transformation matrix we can find the link lengths. If 

transformation matrix is known we can find the angles 

of the joints and vice-versa. [ 0L6] 4x4 = 

cosθ1 

cosθ2356 

sin

θ1 

 

cosθ1sinθ

2356 

 cosθ1(L4cosθ235+L3 

cosθ23)+sinθ1[d1+d2

] 

    

 

sinθ1cosθ

2356 

 

cos

θ1 

 

sinθ1sinθ

2356 

                      

sinθ1(L4cosθ235+L3c

osθ23)-cosθ1[d1+d2] 

    

sinθ2356  0 -cosθ2356             

L4sinθ235+L3sinθ23 

    

  0 0     0                        1     
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INVERSE KINEMATICS: 

The purpose of solving the inverse kinematics is to 

find the angle of each joint for a known foot position. 

The equation provides the solution for the forward 

kinematics with matrix P being the result. The 

translation vector {Px, Py, Pz} gives the position of the 

foot and the orientation matrix shows the direction of 

the foot in the space of the motion. Based on the 

assumption that the values in P are known, the joint 

angles can be calculated. 

 The orientation matrix is given as O =  

                                       r11      r12       r13      r14 

                                       r21      r22       r23      r24 

                                       r31      r32       r33      r34 

                                       0        0         0        1 

General transformation matrix as T =  

                     nx     ox   ax     dx 

                                         ny     oy   ay     dy 

                            nz     oz   az      dz 

                                          0       0     0      1 

Hence the orientation and position will be determined 

by the comparison of above two matrixes with the total 

transformation matrix [ 0L6 ]4x4. So, the angular 

position of the hip joint, knee joint and ankle joints are 

given as below. 

Θ1 = tan-1 ( sinθ1/ cosθ1);   where cosθ1 = -( ax/az), 

sinθ1 = √(1-cosθ1
2) 

Θ2 = tan-1( r31/r32), 

Θ3 = tan-1( sinθ3/cosθ3);   where cosθ3 = √( [r31+r32]/ 

2[r32-r31] ) 

Θ5 =tan-1( sinθ5/cosθ5); where cosθ5= 

{dx2+dy2+dz2+(d1+d2)2-[L4
2+L3

2]}/ 2L4L3 

Θ6 = tan-1 ( sinθ6/cosθ6); where cosθ6 = [r11+1]-cosθ5 

Above angles are defined by considering both legs in 

bipedal robot. So, this is the kinematic parameters 

analysis to the bipedal robot. It may vary according to 

the movement and rotation of the robot.  

3.2. ZERO MOMENT POINT (ZMP): 

The Zero Moment Point (ZMP) is the location on the 

ground where the net moment generated from the 

ground reaction forces has zero moment about two 

axes that lie in the plane of the ground. The ZMP when 

used in control algorithm synthesis for bipedal walking 

robots typically is computed analytically based upon 

desired trajectories of the robot’s joints. As long as the 

ZMP lies strictly inside the support polygon of the 

foot, then these desired trajectories are dynamically 

feasible. If the ZMP lies on the edge of the support 

polygon, then the trajectories may not be dynamically 

feasible. During playback of the desired joint 

trajectories, the actual ZMP is measured from force 

sensors in the foot or by observing accelerations of all 

the joints. Then deviations between the precompiled 

and actual ZMP are typically used to modify the joint 

trajectories. The ZMP is equivalent to the Center of 

Pressure (COP) but is commonly used to mean the 

analytically computed point based on the state and 

acceleration of the robot whereas the Centre of 

pressure is commonly used to mean the point 

measured from ground reaction forces.The resultant 

force of the inertia and gravity forces acting on a biped 

robot is expressed by the formula:  

              F gi = mg – maG  

Were, m is the total mass of the robot. 

               g is the acceleration of gravity. 

               aG
  is the acceleration of COM. 

 The moment in any point X can be defined as  

      Mgi
x = XG x mg – XG x m aG- HG 

          Were HG is the rate of angular momentum at the 

Centre of mass. 
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Bipedal robot is dynamically balanced if the contact 

forces and the inertia and gravity forces are strictly 

opposite. So zero moment point can define by  

               PZ = Mgi
x  / F gi . 

Were P is the point of contact with surface.  

3.3. FOOT ROTATIONAL INDICATOR (FRI): 

1. The Foot Rotation Indicator (FRI) point is the point 

on the ground where the net ground reaction force 

would have to act to keep the foot stationary given the 

state of the biped and the accelerations of its joints.  

2. If the foot is stationary, then the FRI, the ZMP, and 

the COP are all the same point.  

3. If the foot is experiencing rotational acceleration, 

then the ZMP and COP are on an edge of the support 

polygon, and the FRI is outside the support polygon.  

4. Therefore the FRI is a more general form of the 

ZMP and provides both a positive and negative margin 

when used for control and analysis purposes. 

3.4. ANGULAR MOMENTUM: 

1. Humans appear to regulate angular momentum 

about the Center of Mass when standing, walking, and 

running. 

2. Researchers have suggested that angular momentum 

about the Center of Mass (referred to as spin angular 

momentum) of a biped should be minimized 

throughout a motion.   

3. On reverse of angular momentum and a couple leads 

to net angular momentum of biped around COP is only 

modified by gravity.  

4. The angular momentum dynamics about the Center 

of Pressure can therefore be written as 

           Htot = mglsinθ1 

The total momentum about the Center of Pressure 

consists of the angular momentum of the Center of 

Mass rotating about the Center of Pressure, plus the 

spin angular momentum about the Center of Mass: 

 Htot = H0 + Hcm = ml2 ˙θ1 + Hcm  

   Differentiating, we get  

 ˙Htot = mglsinθ1 = ml2¨θ1 + 2ml˙l ˙θ1 + ˙ Hcm.  

1. The first term, ml2¨θ1 is the acceleration of the 

Center of Mass around the Center of Pressure.  

2. The second term, 2ml˙l ˙θ1 encodes the coupling of 

distance to Center of Mass and rotational velocity. 

4. IMPORTANT STEPS TO STABILISE THE 

BIPEDAL ROBOT. 

1. Maintain body orientation within a reasonable 

bound.  

2. Maintain virtual leg length within a reasonable 

bound.  

3. Swing the swing leg.  

4. Transfer support from one support leg to the other.  

5. Regulate Center of Mass velocity. 

5. DISCUSSION AND FUTURE WORK: 

In this paper, have defined stability assuming a 

deterministic system. However, bipeds should be 

considered nondeterministic, since ground variations, 

sensor noise, and external disturbances are impossible 

to precisely model. Most stability margins handle non 

determinism by relating to the tolerance to a particular 

unknown disturbance. This is the case for phase 

margins and gain margins in traditional linear control 

and is the case for many margins for bipedal walking, 

such as the static stability margin and the margins 

introduced in this paper. These margins typically give 

comparative indications of robustness to terrain, noise, 

and disturbances (the larger the margin, the greater the 

disturbance that can be tolerated). They sometimes are 

an indication of the magnitude of the largest single 

disturbance that can be tolerated. However, they 

usually do not indicate the probability of instability 

given a particular disturbance distribution. In a 

companion paper, explore stochastic stability margins 

for legged locomotion. 
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