

 Page 388

An Efficient Nearest Keyword Set Query Search in Multi-

Dimensional Datasets
Adina Karunasri

M.Tech Student,

Department of CSE,

BVC Engineering College, Odalarevu.

B.S.N.Murthy, M.Tech, (Ph.D)

Associate Professor,

Department of CSE,

BVC Engineering College, Odalarevu.

Abstract:

We focused on multi-dimensional dataset where each

data point has set of keywords in feature space allows

for the development of new tools to query and explore

these multidimensional dataset. Here we study nearest

keyword set Queries on text rich multidimensional

dataset. We propose a new method called ProMiSH

(Projection and Multi scale Hashing) that uses random

projection and hash-based index structure. Our

experimental result shows that ProMiSH has Speedup

over state-of-art-tree-based techniques. Keyword-

based search in text-rich multi-dimensional datasets

facilitates many novel applications and tools. In this

work, we consider objects that are tagged with

keywords and are embedded in a vector space. For

these datasets, we study queries that ask for the tightest

groups of points satisfying a given set of keywords.

Keywords:

NKS Querying, multi-dimensional data, indexing,

ProMiSH.

INTRODUCTION:

In today's digital world the amount of data which is

developed is increasing day by day. There is different

multimedia in which data is saved. It’s very difficult to

search the large dataset for a given query as well to

archive more accuracy on user query. In the same time

query will search on dataset for exact keyword match

and it will not find the nearest keyword for accuracy.

so we have implemented a method of nearest keyword

set search in multi-dimensional datasets. In Existing

techniques using tree based indexes suggest possible

solution to NKS queries on multi-dimensional dataset,

the performance of these algorithms decline sharply

with the increase of size or dimensionality in dataset.

Therefore there is need for an efficient algorithm that

scales with dataset dimension, and yield practical

query efficiency on large datasets. An NKS query is

set of user-provide keywords, and result of the query

may include k-sets of data points each of which

contains all the query keywords and forms one of the

top-k tightest cluster in the multi-dimensional space. In

this paper We study nearest keyword set queries on

text-rich multi-dimensional datasets. we consider

multi-dimensional datasets where each data point has a

set of keywords.

Multi-Dimensional Data Sets:

The multi-dimensional points in the dataset are

represented by dots. Each point has a unique identifier

and is tagged with a set of keywords. For a query

Q={a; b; c}, the set of points {7, 8,9} contains all the

query keywords {a; b; c} and are nearest to each other

compared to any other set of points containing these

query keywords. Therefore, the set {7, 8, 9} is the top-

1 Result for the query Q.

LITERATURE SURVEY:

[1]Mapping mash ups are emergent Web 2.0

applications in which data objects like blogs, images

and videos from dissimilar sources are added together

and marked in a map using APIs that are released by

 Page 389

online mapping solutions like Google and Yahoo

Maps. These objects are mainly connected with a set

of tags capturing the embedded semantic and a set of

coordinates showing their geographical locations.

Traditional web resource searching strategies are not

effective in such an environment due to the lack of the

gazetteer context in the tags. In place of, a better

alternative approach is to locate an object by tag

matching. However, the number of tags associated

with each object is typically small, making it difficult

for an object to capture the complete semantics in the

query objects. In this report, we concentrate on the

basic application of locating geographical resources

and propose an efficient tag-centric query processing

strategy. In particular, we aim to find a set of nearest

co-located objects which together match the query

tags. Given the fact that there could be large number of

data objects and tags, we develop an efficient search

algorithm that can scale up in terms of the number of

objects and tags. Further, to ensure that the results are

relevant, we also propose a geographical context

sensitive geo-tf-idf ranking mechanism. Our

experiments on synthetic data sets show its scalability

while the experiments using the real life data set

confirm its utility.

[2] Images with GPS coordinates are a rich source of

information about a geographic location. Innovative

user services and applications are being built using

geotagged images taken from community contributed

repositories like Flickr. Only a small subset of the

images in these repositories is geotagged, limiting their

exploration and effective utilization. They propose to

use optional meta-data along with image content to

geo-cluster all the images in a partly geotagged

dataset. We formulate the problem as a graph

clustering problem where edge weights are vectors of

incomparable components. Author’s develop

probabilistic approaches to fuse the components into a

single measure and then, discover clusters using an

existing random walk method. Our empirical results

strongly show that meta-data can be successfully

exploited and merged together to achieve geo

clustering of images missing geotags.

[3] This work covers a novel spatial keyword query

called the m-closest keywords (mCK) query. Given a

database of spatial objects, each tuple is associated

with some descriptive information represented in the

form of keywords. The mCK query proposes to find

the spatially closest tuples which match m user-

specified keywords. Given a set of keywords from a

document, mCK query can be very useful in

geotagging the document by comparing the keywords

to other geotagged documents in a database. To answer

mCK queries efficiently, they bring in a new index

called the bR*-tree, which is an extension of the R*-

tree. Based on bR*-tree, they exploit a priori-based

search strategies to effectively reduce the search space.

They also propose two monotone constraints, namely

the distance mutex and keyword mutex, as our a priori

properties to facilitate effective pruning. Our

performance study demonstrates that our search

strategy is indeed efficient in reducing query response

time and demonstrates remarkable scalability in terms

of the number of query keywords which is essential for

our main application of searching by document.

[4] Many applications need finding objects closest to a

specified location that have a set of keywords. For

example online yellow pages allow users to specify an

address and a set of keywords. In return the user gets a

list of businesses whose description contains these

keywords ordered by their distance from the specified

address. The problems of nearest neighbor search on

spatial data and keyword search on text data have been

extensively studied separately. However to the best of

author’s knowledge there are no efficient methods to

answer spatial keyword queries that are queries that

specify both a location and a set of keywords. In this

work the author present an efficient method to answer

top-k spatial keyword queries. To do so they

introduced an indexing structure called IR2-Tree

(Information Retrieval R-Tree) which combines an R-

Tree with superimposed text signatures. they present

 Page 390

algorithms that construct and maintain an IR2-Tree

and use it to answer top-k spatial keyword queries. Our

algorithms are experimentally compared to current

methods and are shown to have superior performance

and excellent scalability.

[5] A spatial preference query ranks objects based on

the qualities of features in their spatial neighborhood.

For example, consider a real estate agency office that

holds a database with available flats for lease. A

customer may want to rank the flats with respect to the

rightness of their location, defined after combining the

qualities of other features (e.g., restaurants, cafes,

hospital, market, etc.) within a distance range from

them. In this paper, the authors defined spatial

preference queries and propose appropriate indexing

techniques and search algorithms for them. Our

methods are experimentally evaluated for a wide range

of problem settings..

EXISTING SYSTEM:

 Location-specific keyword queries on the web and

in the GIS systems were earlier answered using a

combination of R-Tree and inverted index.

 Felipe et al. developed IR2-Tree to rank objects

from spatial datasets based on a combination of

their distances to the query locations and the

relevance of their text descriptions to the query

keywords.

 Cong et al. integrated R-tree and inverted file to

answer a query similar to Felipe et al. using a

different ranking function.

Disadvantages:

 These techniques do not provide concrete

guidelines on how to enable efficient processing

for the type of queries where query coordinates are

missing.

 In multi-dimensional spaces, it is difficult for users

to provide meaningful coordinates, and our work

deals with another type of queries where users can

only provide keywords as input.

 Without query coordinates, it is difficult to adapt

existing techniques to our problem.

 Note that a simple reduction that treats the

coordinates of each data point as possible query

coordinates suffers poor scalability.

PROPOSED SYSTEM:

 In this report, we take multi-dimensional datasets

where each data point has a set of keywords. The

presence of keywords in feature space allows for

the development of new tools to query and explore

these multi-dimensional datasets.

 In this report, we study nearest keyword set (NKS)

queries on text-rich multi-dimensional datasets. An

NKS query is a set of user-provided keywords, and

the result of the query may include k sets of data

points each of which has all the query keywords

and forms the top-k tightest cluster in the multi-

dimensional space.

 In this paper, we propose ProMiSH (short for

Projection and Multi-Scale Hashing) to enable fast

processing for NKS queries. Particularly , we

develop an exact ProMiSH (referred to as

ProMiSH-E) that always retrieves the optimal top-

k results, and an approximate ProMiSH (referred

to as ProMiSH-A) that is more efficient in terms of

time and space, and is able to obtain near-optimal

results in practice.

 ProMiSH-E uses a set of hash tables and inverted

indexes to execute a localized search.

 Advantages:

 Better time and space efficiency.

 A novel multi-scale index for exact and

approximate NKS query processing.

 It’s an efficient search algorithms that work with

the multi-scale indexes for fast query processing.

 We conduct extensive experimental studies to

demonstrate the performance of the proposed

techniques.

 Page 391

SYSTEM ARCHITECTURE:

Fig system architecture

MODULES DESCRIPTION:

The Index Structure for Exact Search (ProMiSH-E):-

Algorithm:

In: Q: query keywords; k: number of top results

In: w0: initial bin-width

1: PQ ←[e([],+∞)]: priority queue of top-k results

2: HC: hashtable to check duplicate candidates

3: BS: bitset to track points having a query keyword

4: for all o ϵ U ᵿvQϵQIkp[vQ] do

5: BS[o] ←true /* Find points having query

keyword*/

6: end for

7: for all s ϵ{0,…, L-1}do

8: Get HI at s

9: E[]←0/* List of hash buckets*/

10: for all vQ ϵ Q do

11: for all bId ϵ Ikhb[vQ]do

12: E[bId] ←E[bid]+1

13: end for

14: end for

15: for all i ϵ(0,…, Size Of (E)) do

16: if E(i)= SizeOf(Q) then

17: F’ ←Ø /* Obtain a subset of points*/

18: for all o ϵ H[i] do

19: if BS[o]= true then

20: F’← F’ U o

21: end if

22: end for

23: if checkDuplicateCand(F’, HC)=false then

24: searchInSubset(F’, PQ)

25: end if

26: end if

27: end if

28: /* check termination condition */

29: if PQ[k].r <= w0 2
s-1

then

30: Return PQ

31: end if

32: end for

33: /* Perform search on D If algorithm has not

terminated */

34: for all o ϵ D do

35: if BS[o]=true then

36: F’ ←F’ U o

37: end if

38: end for

39: searchInSubset(F’,PQ)

40: Return PQ

 In This Project we start with the index for exact

ProMiSH (ProMiSH-E). This index consists of

two main components.

 Inverted Index Ikp: The first component is an

inverted index referred to as Ikp. In Ikp, we treat

keywords as keys, and each keyword points to a

set of data points that are associated with the

keyword. Let D be a set of data points and V be a

dictionary that contains all the keywords appearing

in D. We build Ikp for D as follows. (1) For each

,we create a key entry in I kp, and this key entry

points to a set of data points (i.e., a set includes all

data points in D that contain keyword v). (2) We

repeat (1) until all the keywords in V are

processed.

 Hash table-Inverted Index Pairs HI: The second

component consists of multiple hash tables and

inverted indexes referred to as HI. HI is controlled

by three parameters: (1) (Index level) L, (2)

(Number of random unit vectors) m, and (3) (hash

table size) B. All the three parameters are non-

 Page 392

negative integers. These three parameters control

the construction of HI.

The Exact Search Algorithm:

 We present the search algorithms in ProMiSH-E

that finds top-k results for NKS queries. First, we

introduce two lemmas that guarantee ProMiSH-E

always retrieves the optimal top-k results.

 We project all the data points in D on a unit

random vector and partition the projected values

into overlapping bins of bin-width. If we perform a

search in each of the bins independently, that the

top-1 result of query Q will be found in one of the

bins. ProMiSH-E explores each selected bucket

using an efficient pruning based technique to

generate results. ProMiSH-E terminates after

exploring HI structure at the smallest index level s

such that all the top-k results have been found. The

efficiency of ProMiSH-E highly depends on an

efficient search algorithm that finds top-k results

from a subset of data points.

Optimization Techniques:

 An algorithm for finding top-k tightest clusters in a

subset of points. A subset is obtained from a

hashtable bucket Points in the subset are grouped

based on the query keywords. Then, all the

promising candidates are searched by a multi-way

distance join of these groups. The join uses rk, the

diameter of the k
th
 result obtained by ProMiSH-E,

as the distance threshold.

 A suitable ordering of the groups leads to an

efficient candidate exploration by a multi-way

distance join. We first perform a pairwise inner

joins of the groups with distance threshold rk. In

inner join, a pair of points from two groups are

joined only if the distance between them is at most

rk.

 We propose a greedy approach to find the ordering

of groups. The weight of an edge is the count of

point pairs obtained by an inner join of

the corresponding groups. The greedy method

starts by selecting an edge having the least weight.

If there are multiple edges with the same weight,

then an edge is selected at random and we

perform a multi-way distance join of the groups by

nested loops.

The Approximate Algorithm (ProMiSH-A):

 The approximate version of ProMiSH referred to

as ProMiSH-A. We start with the algorithm

description of ProMiSH-A, and then analyze its

approximation quality.

 ProMiSH-A is more time and space efficient than

ProMiSH-E, and is able to obtain near-optimal

results in practice. The index structure and the

search method of ProMiSH-A are similar to

ProMiSH-E.

 The index structure of ProMiSH-A differs from

ProMiSH-E in the way of partitioning projection

space of random unit vectors. ProMiSH-A

partitions projection space into non-overlapping

bins of equal width, unlike ProMiSH-E which

partitions projection space into overlapping bins.

The search algorithm in ProMiSH-A differs from

ProMiSH-E in the termination condition.

ProMiSH-A checks for a termination condition

after fully exploring a hash table at a given index

level: It terminates if it has k entries with

nonempty data point sets in its priority queue PQ.

CONCLUSION AND FUTURE SCOPE:

In this report, we suggested solutions to the problem of

top-k nearest keyword set search in multi-dimensional

datasets. We proposed a novel index called ProMiSH

based on random projections and hashing. Based on

this index, we developed ProMiSH-E that finds an

optimal subset of points and ProMiSH-A which

searches near-optimal results with better efficiency.

Our observational results show that ProMiSH is faster

than state-of-the-art tree-based techniques, with

multiple orders of magnitude performance

improvement. Moreover, our techniques scale well

with both real and synthetic datasets. Ranking

functions. In the future, we plan to explore other

scoring schemes for ranking the result sets.

 Page 393

In one scheme, we may allot weights to the keywords

of a point by using techniques like tf-idf. Then, each

group of points can be scored based on distance

between points and weights of keywords. Moreover,

the criteria of a result containing all the keywords can

be relaxed to generate results having only a subset of

the query keywords.

REFERENCES:

[1]D. Zhang, B. C. Ooi, and A. K. H. Tung, "Finding

mapped assets in web 2.0," in Proc. IEEE 26th Int.

Conf. Information Eng., 2010, pp. 521–532.

[2]V. Singh, S. Venkatesha, and A. K. Singh, "Geo-

bunching of pictures with missing geotags," in Proc.

IEEE Int. Conf. Granular Comput., 2010, pp. 420–425.

[3]D. Zhang, Y. M. Chee, A. Mondal, A. K. H. Tung,

and M. Kitsuregawa, "Watchword look in spatial

databases: Towards seeking by record," in Proc. IEEE

25th Int. Conf. Information Eng., 2009, pp. 688–699.

[4]I. De Felipe, V. Hristidis, and N. Rishe,

"Catchphrase seek on spatial databases," in Proc. IEEE

24th Int. Conf. Information Eng., 2008, pp. 656–665.

[5]M. L. Yiu, X. Dai, N. Mamoulis, and M. Vaitis,

"Best k spatial inclination inquiries," in Proc. IEEE

23rd Int. Conf. Information Eng., 2007, pp. 1076–

1085.

[6]W. Li and C. X. Chen, "Effective information

displaying and questioning framework for multi-

dimensional spatial information," in Proc. sixteenth

ACM SIGSPATIAL Int. Conf. Adv. Geographic Inf.

Syst., 2008, pp. 58:1– 58:4.

[7]V. Singh, A. Bhattacharya, and A. K. Singh,

"Questioning spatial examples," in Proc. thirteenth Int.

Conf. Expanding Database Technol.: Adv.Database

Technol., 2010, pp. 418–429.

[8]J. Bourgain, "On lipschitz inserting of limited

metric spaces in hilbert space," Israel J. Math., vol. 52,

pp. 46–52, 1985.

[9]H. He and A. K. Singh, "GraphRank: Statistical

demonstrating and mining of critical subgraphs in the

element space," in Proc. sixth Int. Conf. Information

Mining, 2006, pp. 885–890.

[10]X. Cao, G. Cong, C. S. Jensen, and B. C. Ooi,

"Aggregate spatial catchphrase questioning," in Proc.

ACM SIGMOD Int. Conf. Oversee. Information, 2011,

pp. 373–384.

[11]C. Long, R. C.- W. Wong, K. Wang, and A. W.-

C. Fu, "Aggregate spatial catchphrase inquiries: A

separation proprietor driven approach," in Proc. ACM

SIGMOD Int. Conf. Oversee. Information, 2013, pp.

689–700.

[12]M. Datar, N. Immorlica, P. Indyk, and V. S.

Mirrokni, "Localitysensitive hashing plan in light of p-

stable circulations," in Proc. twentieth Annu. Symp.

Comput. Geometry, 2004, pp. 253–262.

[13] Y. Zhou, X. Xie, C. Wang, Y. Gong, and W.- Y.

Mama, "Half and half file structures for area based

web seek," in Proc. fourteenth ACM Int. Conf. Inf.

Knowl. Oversee., 2005, pp. 155–162.

[14]R. Hariharan, B. Hore, C. Li, and S. Mehrotra,

"Handling spatialkeyword (SK) questions in

geographic data recovery (GIR) frameworks," in Proc.

nineteenth Int. Conf. Sci. Measurable Database

Manage., 2007, p. 16.

[15]S. Vaid, C. B. Jones, H. Joho, and M. Sanderson,

"Spati o-textualindexing for topographical hunt on the

eb," in Proc. ninth Int. Conf. Adv. Spatial Temporal

Databases, 2005, pp. 218–235.

[16]A. Khodaei, C. Shahabi, and C. Li, "Half and half

ordering and consistent positioning of spatial and

 Page 394

literary elements of web records," in Proc. 21st Int.

Conf. Database Expert Syst. Appl., 2010, pp. 450–466.

[17]A. Guttman, "R-trees: A dynamic file structure for

spatial looking," in Proc. ACM SIGMOD Int. Conf.

Oversee. Information, 1984, pp. 47–57.

[18]G. Cong, C. S. Jensen, and D. Wu, "Proficient

recovery of the top-k most pertinent spatial web

objects," Proc. VLDB Endowment, vol. 2, pp. 337–

348, 2009.

