
 

 Page 388 
 

An Efficient Nearest Keyword Set Query Search in Multi-

Dimensional Datasets 
Adina  Karunasri 

M.Tech Student, 

Department of CSE, 

BVC Engineering College, Odalarevu. 

B.S.N.Murthy, M.Tech, (Ph.D) 

Associate Professor, 

Department of CSE, 

BVC Engineering College, Odalarevu. 
 

Abstract: 

We focused on multi-dimensional dataset where each 

data point has set of keywords in feature space allows 

for the development of new tools to query and explore 

these multidimensional dataset. Here we study nearest 

keyword set Queries on text rich multidimensional 

dataset. We propose a new method called ProMiSH 

(Projection and Multi scale Hashing) that uses random 

projection and hash-based index structure. Our 

experimental result shows that ProMiSH has Speedup 

over state-of-art-tree-based techniques. Keyword-

based search in text-rich multi-dimensional datasets 

facilitates many novel applications and tools. In this 

work, we consider objects that are tagged with 

keywords and are embedded in a vector space. For 

these datasets, we study queries that ask for the tightest 

groups of points satisfying a given set of keywords. 
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INTRODUCTION: 

In today's digital world the amount of data which is 

developed is increasing day by day. There is different 

multimedia in which data is saved. It’s very difficult to 

search the large dataset for a given query as well to 

archive more accuracy on user query. In the same time 

query will search on dataset for exact keyword match 

and it will not find the nearest keyword for accuracy. 

so we have implemented a method of nearest keyword 

set search in multi-dimensional datasets. In Existing 

techniques using tree based indexes suggest possible 

solution to NKS queries on multi-dimensional dataset, 

the performance of these algorithms decline sharply  

 

with the increase of size or dimensionality in dataset. 

Therefore there is need for an efficient algorithm that 

scales with dataset dimension, and yield practical 

query efficiency on large datasets. An NKS query is 

set of user-provide keywords, and result of the query 

may include k-sets of data points each of which 

contains all the query keywords and forms one of the 

top-k tightest cluster in the multi-dimensional space. In 

this paper We study nearest keyword set queries on 

text-rich multi-dimensional datasets. we consider 

multi-dimensional datasets where each data point has a 

set of keywords. 

 

Multi-Dimensional Data Sets: 

The multi-dimensional points in the dataset are 

represented by dots. Each point has a unique identifier 

and is tagged with a set of keywords. For a query 

Q={a; b; c}, the set of points {7, 8,9} contains all the 

query keywords {a; b; c} and are nearest to each other 

compared to any other set of points containing these 

query keywords. Therefore, the set {7, 8, 9} is the top-

1 Result for the query Q. 

 
LITERATURE SURVEY: 

[1]Mapping mash ups are emergent Web 2.0 

applications in which data objects like blogs, images 

and videos from dissimilar sources are added together 

and marked in a map using APIs that are released by 
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online mapping solutions like Google and Yahoo 

Maps. These objects are mainly connected with a set 

of tags capturing the embedded semantic and a set of 

coordinates showing their geographical locations. 

Traditional web resource searching strategies are not 

effective in such an environment due to the lack of the 

gazetteer context in the tags. In place of, a better 

alternative approach is to locate an object by tag 

matching. However, the number of tags associated 

with each object is typically small, making it difficult 

for an object to capture the complete semantics in the 

query objects. In this report, we concentrate on the 

basic application of locating geographical resources 

and propose an efficient tag-centric query processing 

strategy. In particular, we aim to find a set of nearest 

co-located objects which together match the query 

tags. Given the fact that there could be large number of 

data objects and tags, we develop an efficient search 

algorithm that can scale up in terms of the number of 

objects and tags. Further, to ensure that the results are 

relevant, we also propose a geographical context 

sensitive geo-tf-idf ranking mechanism. Our 

experiments on synthetic data sets show its scalability 

while the experiments using the real life data set 

confirm its utility. 

 

[2]  Images with GPS coordinates are a rich source of 

information about a geographic location. Innovative 

user services and applications are being built using 

geotagged images taken from community contributed 

repositories like Flickr. Only a small subset of the 

images in these repositories is geotagged, limiting their 

exploration and effective utilization. They propose to 

use optional meta-data along with image content to 

geo-cluster all the images in a partly geotagged 

dataset. We formulate the problem as a graph 

clustering problem where edge weights are vectors of 

incomparable components. Author’s develop 

probabilistic approaches to fuse the components into a 

single measure and then, discover clusters using an 

existing random walk method. Our empirical results 

strongly show that meta-data can be successfully 

exploited and merged together to achieve geo 

clustering of images missing geotags. 

 

[3] This work covers a novel spatial keyword query 

called the m-closest keywords (mCK) query. Given a 

database of spatial objects, each tuple is associated 

with some descriptive information represented in the 

form of keywords. The mCK query proposes to find 

the spatially closest tuples which match m user-

specified keywords. Given a set of keywords from a 

document, mCK query can be very useful in 

geotagging the document by comparing the keywords 

to other geotagged documents in a database. To answer 

mCK queries efficiently, they bring in a new index 

called the bR*-tree, which is an extension of the R*-

tree. Based on bR*-tree, they exploit a priori-based 

search strategies to effectively reduce the search space. 

They  also propose two monotone constraints, namely 

the distance mutex and keyword mutex, as our a priori 

properties to facilitate effective pruning. Our 

performance study demonstrates that our search 

strategy is indeed efficient in reducing query response 

time and demonstrates remarkable scalability in terms 

of the number of query keywords which is essential for 

our main application of searching by document. 

 

[4] Many applications need finding objects closest to a 

specified location that have a set of keywords. For 

example online yellow pages allow users to specify an 

address and a set of keywords. In return the user gets a 

list of businesses whose description contains these 

keywords ordered by their distance from the specified 

address. The problems of nearest neighbor search on 

spatial data and keyword search on text data have been 

extensively studied separately. However to the best of 

author’s knowledge there are no efficient methods to 

answer spatial keyword queries that are queries that 

specify both a location and a set of keywords. In this 

work the author  present an efficient method to answer 

top-k spatial keyword queries. To do so they 

introduced an indexing structure called IR2-Tree 

(Information Retrieval R-Tree) which combines an R-

Tree with superimposed text signatures. they present 
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algorithms that construct and maintain an IR2-Tree 

and use it to answer top-k spatial keyword queries. Our 

algorithms are experimentally compared to current 

methods and are shown to have superior performance 

and excellent scalability. 

 

[5] A spatial preference query ranks objects based on 

the qualities of features in their spatial neighborhood. 

For example, consider a real estate agency office that 

holds a database with available flats for lease. A 

customer may want to rank the flats with respect to the 

rightness of their location, defined after combining the 

qualities of other features (e.g., restaurants, cafes, 

hospital, market, etc.) within a distance range from 

them. In this paper, the authors defined spatial 

preference queries and propose appropriate indexing 

techniques and search algorithms for them. Our 

methods are experimentally evaluated for a wide range 

of problem settings.. 

 

EXISTING SYSTEM: 

 Location-specific keyword queries on the web and 

in the GIS systems were earlier answered using a 

combination of R-Tree and inverted index.  

 Felipe et al. developed IR2-Tree to rank objects 

from spatial datasets based on a combination of 

their distances to the query locations and the 

relevance of their text descriptions to the query 

keywords.  

 Cong et al. integrated R-tree and inverted file to 

answer a query similar to Felipe et al. using a 

different ranking function. 

 

Disadvantages: 

 These techniques do not provide concrete 

guidelines on how to enable efficient processing 

for the type of queries where query coordinates are 

missing.  

 In multi-dimensional spaces, it is difficult for users 

to provide meaningful coordinates, and our work 

deals with another type of queries where users can 

only provide keywords as input.  

 Without query coordinates, it is difficult to adapt 

existing techniques to our problem.  

 Note that a simple reduction that treats the 

coordinates of each data point as possible query 

coordinates suffers poor scalability. 

 

PROPOSED SYSTEM: 

 In this report, we take multi-dimensional datasets 

where each data point has a set of keywords. The 

presence of keywords in feature space allows for 

the development of new tools to query and explore 

these multi-dimensional datasets. 

 In this report, we study nearest keyword set (NKS) 

queries on text-rich multi-dimensional datasets. An 

NKS query is a set of user-provided keywords, and 

the result of the query may include k sets of data 

points each of which has all the query keywords 

and forms the top-k tightest cluster in the multi-

dimensional space. 

 In this paper, we propose ProMiSH (short for 

Projection and Multi-Scale Hashing) to enable fast 

processing for NKS queries. Particularly , we 

develop an exact ProMiSH (referred to as 

ProMiSH-E) that always retrieves the optimal top-

k results, and an approximate ProMiSH (referred 

to as ProMiSH-A) that is more efficient in terms of 

time and space, and is able to obtain near-optimal 

results in practice.  

 ProMiSH-E uses a set of hash tables and inverted 

indexes to execute a localized search. 

 

 Advantages: 

 Better time and space efficiency. 

 A novel multi-scale index for exact and 

approximate NKS query processing.  

 It’s an efficient search algorithms that work with 

the multi-scale indexes for fast query processing.  

 We conduct extensive experimental studies to 

demonstrate the performance of the proposed 

techniques. 
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SYSTEM ARCHITECTURE: 

 

Fig  system architecture 

 

MODULES DESCRIPTION: 

The Index Structure for Exact Search (ProMiSH-E):- 

 

Algorithm: 

In: Q: query keywords; k: number of top results 

In: w0: initial bin-width 

1: PQ ←[e([],+∞)]: priority queue of top-k results 

2: HC: hashtable to check  duplicate candidates 

3: BS: bitset to track points having a query keyword 

4: for all o ϵ U  ᵿvQϵQIkp[vQ] do 

5: BS[o] ←true /* Find points having query 

keyword*/ 

6: end for 

7: for all s ϵ{0,…, L-1}do 

8: Get HI at s 

9: E[]←0/* List of hash buckets*/ 

10: for all vQ ϵ Q do 

11: for all bId ϵ Ikhb[vQ]do 

12: E[bId] ←E[bid]+1 

13: end for 

14: end for 

15: for all i ϵ(0,…, Size Of (E)) do 

16: if E(i)= SizeOf(Q) then 

17: F’ ←Ø /* Obtain a subset of points*/ 

18: for all o ϵ H[i] do 

19: if BS[o]= true then 

20: F’← F’ U o 

21: end if 

22: end for 

23: if checkDuplicateCand(F’, HC)=false then 

24: searchInSubset(F’, PQ) 

25: end if 

26: end if 

27: end if 

28: /* check termination condition */ 

29: if PQ[k].r <= w0 2
s-1 

then 

30: Return PQ 

31: end if 

32: end for 

33: /* Perform search on D If algorithm has not 

terminated */ 

34: for all o ϵ  D do 

35: if BS[o]=true then 

36: F’ ←F’ U o 

37: end if 

38: end for 

39: searchInSubset(F’,PQ) 

40: Return PQ 

 

 In This Project we start with the index for exact 

ProMiSH (ProMiSH-E). This index consists of 

two main components. 

 Inverted Index Ikp: The first component is an 

inverted index referred to as Ikp. In Ikp, we treat 

keywords as keys, and each keyword points to a 

set of data points that are associated with the 

keyword. Let D be a set of data points and V be a 

dictionary that contains all the keywords appearing 

in D. We build Ikp for D as follows. (1) For each 

,we create a key entry in I kp, and this key entry 

points to a set of data points (i.e., a set includes all 

data points in D that contain keyword v). (2) We 

repeat (1) until all the keywords in V are 

processed. 

 Hash table-Inverted Index Pairs HI: The second 

component consists of multiple hash tables and 

inverted indexes referred to as HI. HI is controlled 

by three parameters: (1) (Index level) L, (2) 

(Number of random unit vectors) m, and (3) (hash 

table size) B. All the three parameters are non-
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negative integers. These three parameters control 

the construction of HI. 

 

The Exact Search Algorithm: 

 We present the search algorithms in ProMiSH-E 

that finds top-k results for NKS queries. First, we 

introduce two lemmas that guarantee ProMiSH-E 

always retrieves the optimal top-k results. 

 We project all the data points in D on a unit 

random vector and partition the projected values 

into overlapping bins of bin-width. If we perform a 

search in each of the bins independently, that the 

top-1 result of  query Q will be found in one of the 

bins. ProMiSH-E explores each selected bucket 

using an efficient pruning based technique to 

generate results. ProMiSH-E terminates after 

exploring HI structure at the smallest index level s 

such that all the top-k results have been found. The 

efficiency of ProMiSH-E highly depends on an 

efficient search algorithm that finds top-k results 

from a subset of data points. 

 

Optimization Techniques: 

 An algorithm for finding top-k tightest clusters in a 

subset of points. A subset is obtained from a 

hashtable bucket Points in the subset are grouped 

based on the query keywords. Then, all the 

promising candidates are searched by a multi-way 

distance join of these groups. The join uses rk, the 

diameter of the k
th
 result obtained by ProMiSH-E, 

as the distance threshold. 

 A suitable ordering of the groups leads to an 

efficient candidate exploration by a multi-way 

distance join. We first perform a pairwise inner 

joins of the groups with distance threshold rk. In 

inner join,  a pair of points from two groups are 

joined only if the distance between them is at most 

rk. 

 We propose a greedy approach to find the ordering 

of groups. The weight of an edge is the count of 

point pairs obtained by an inner join of 

the corresponding groups. The greedy method 

starts by selecting an edge having the least weight. 

If there are multiple edges with the same weight, 

then an edge is selected at random and we  

perform a multi-way distance join of the groups by 

nested loops. 

 

The Approximate Algorithm (ProMiSH-A): 

 The approximate version of  ProMiSH  referred to 

as ProMiSH-A. We start with the algorithm 

description of ProMiSH-A, and then analyze its 

approximation quality. 

 ProMiSH-A is more time and space efficient than 

ProMiSH-E, and is able to obtain near-optimal 

results in practice. The index structure and the 

search method of ProMiSH-A are similar to 

ProMiSH-E. 

 The index structure of ProMiSH-A differs from 

ProMiSH-E in the way of partitioning projection 

space of random unit vectors. ProMiSH-A 

partitions projection space into non-overlapping 

bins of equal width, unlike ProMiSH-E which 

partitions projection space into overlapping bins. 

The search algorithm in ProMiSH-A differs from 

ProMiSH-E in the termination condition. 

ProMiSH-A checks for a termination condition 

after fully exploring a hash table at a given index 

level: It terminates if it has k entries with 

nonempty data point sets in its priority queue PQ. 

 

CONCLUSION AND FUTURE SCOPE: 

In this report, we suggested solutions to the problem of 

top-k nearest keyword set search in multi-dimensional 

datasets. We proposed a novel index called ProMiSH 

based on random projections and hashing. Based on 

this index, we developed ProMiSH-E that finds an 

optimal subset of points and ProMiSH-A which 

searches near-optimal results with better efficiency. 

Our observational results show that ProMiSH is faster 

than state-of-the-art tree-based techniques, with 

multiple orders of magnitude performance 

improvement. Moreover, our techniques scale well 

with both real and synthetic datasets. Ranking 

functions. In the future, we plan to explore other 

scoring schemes for ranking the result sets.  
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In one scheme, we may allot weights to the keywords 

of a point by using techniques like tf-idf. Then, each 

group of points can be scored based on distance 

between points and weights of keywords. Moreover, 

the criteria of a result containing all the keywords can 

be relaxed to generate results having only a subset of 

the query keywords. 
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