
 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 4 (2017), Issue No: 5 (May) May 2017
 www.ijmetmr.com Page 557

ABSTRACT:
Although a large research effort has been going on for
more than a decade, the security of web applications con-
tinues to be a challenging problem. An important part of
that problem derives from vulnerable source code, often
written in unsafe languages like PHP. Source code static
analysis tools are a solution to find vulnerabilities, but
they tend to generate false positives and require consider-
able effort for programmers to manually fix the code. We
explore the use of a combination of methods to discover
vulnerabilities in source code with less false positives. We
combine taint analysis, which finds candidate vulnerabili-
ties, with data mining, in order to predict the existence
of false positives. This approach brings together two ap-
proaches that are apparently orthogonal: humans coding
the knowledge about vulnerabilities (for taint analysis)
versus automatically obtaining that knowledge (with ma-
chine learning, for data mining). Given this enhanced form
of detection, we propose doing automatic code correction
by inserting fixes in the source code. Our approach was
implemented in the WAP tool and an experimental evalu-
ation was performed with a large set of PHP applications.
Our tool found 388 vulnerabilities in 1.4 million lines of
code. Its accuracy and precision were approximately 5%
better than PhpMinerII’s and 45% better than Pixy’s.

INTRODUCTION:
Since its appearance in the early 1990s, the Web evolved
from a platform to access text and other media to a frame-
work for running complex web applications. These ap-
plications appear in many forms, from small home-made
to large-scale commercial services (e.g., Google Docs,
Twitter, Facebook). However, web applications have been
plagued with security problems. For example, a recent re-
port indicates an increase of web attacks of around 33%
in 2012 [34]. Arguably, a reason for the insecurity of web
applications is that many programmers lack appropriate
knowledge about secure coding, so they leave applica-
tions with flaws. However, the mechanisms for web ap-
plication security fall in two extremes.

Diagne Papa Ousmane Thiaw
Research Scholar,

Dongua University, Shanghai, China.

Jianguo Zheng
Professor,

Dongua University, Shanghai, China.

On one hand, there are techniques that put the programmer
aside, e.g., web application firewalls and other runtime
protections, On the other hand, there are techniques that
discover vulnerabilities but put the burden of removing
them on the programmer, e.g., black-box testing and static
analysis. The paper explores an approach for automati-
cally protecting web applications while keeping the pro-
grammer in the loop. The approach consists in analyzing
the web application source code searching for input vali-
dation vulnerabilities and inserting fixes in the same code
to correct these flaws. The programmer is kept in the loop
by being allowed to understand where the vulnerabilities
were found and how they were corrected. This contributes
directly for the security of web applications by removing
vulnerabilities, and indirectly by letting the programmers
learn from their mistakes. This last aspect is enabled by
inserting fixes that follow common security coding prac-
tices, so programmers can learn these practices by seeing
the vulnerabilities and how they were removed.

We explore the use of a novel combination of methods to
detect this type of vulnerabilities: static analysis and data
mining. Static analysis is an effective mechanisms to find
vulnerabilities in source code, but tends to report many
false positives (non-vulnerabilities) due to its undecidabil-
ity. This problem is particularly difficult with languages
such as PHP that are weakly typed and not formally speci-
fied. Therefore, we complement a form of static analy-
sis, taint analysis, with the use of data mining to predict
the existence of false positives. This solution combines
two apparently opposite approaches: humans coding the
knowledge about vulnerabilities (for taint analysis) versus
automatically obtaining that knowledge (with supervised
machine learning supporting datamining). To predict the
existence of false positives we introduce the novel idea of
assessing if the vulnerabilities detected are false positives
using data mining. To do this assessment, we measure at-
tributes of the code that we observed to be associated with
the presence of false positives, and use a combination of
the three top-ranking classifiers to flag every vulnerability
as false positive or not.

Detecting and Removing Web Application Vulnerabilities with
Static Analysis and Data Mining

 ISSN No: 2348-4845 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

International Journal & Magazine of Engineering,
Technology, Management and Research

A Peer Reviewed Open Access International Journal

 Volume No: 4 (2017), Issue No: 5 (May) May 2017
 www.ijmetmr.com Page 558

 Volume No: 4 (2017), Issue No: 5 (May) May 2017
 www.ijmetmr.com Page 559

We explore the use of several classifiers: ID3, C4.5/J48,
Random Forest, Random Tree, K-NN, Naïve Bayes,
Bayes Net, MLP, SVM, and Logistic Regression. More-
over, for every vulnerability classified as false positive,
we use an induction rule classifier to show which attri-
butes are associated with it. We explore the JRip, PART,
Prism and Ridor induction rule classifiers for this goal.
Classifiers are automatically configured using machine
learning based on labeled vulnerability data.Ensuring that
the code correction is done correctly requires assessing
that the vulnerabilities are removed and that the correct
behavior of the application is not modified by the fixes.

We propose using program mutation and regression test-
ing to confirm, respectively, that the fixes do the function
to what they are programmed to (blocking malicious in-
puts) and that the application remains working as expected
(with benign inputs). Notice that we do not claim that our
approach is able to correct any vulnerability, or to detect it,
only the input validation vulnerabilities it is programmed
to deal with. The paper also describes the design of the
Web Application Protection (WAP) tool that implements
our approach. WAP analyzes and removes input valida-
tion vulnerabilities from code1 written in PHP 5, which
according to a recent reportis used by more than 77% of
the web applications. WAP covers a considerable number
of classes of vulnerabilities: SQL injection (SQLI), cross-
site scripting (XSS), remote file inclusion, local file inclu-
sion, directory traversal/path traversal,source code disclo-
sure, PHP code injection, and OS command injection.

EXISTING SYSTEM:
In the existing system, the system begins by giving »»

a survey of web application attacks and vulnerabilities,
also approaches to improve the web application security
using intrusion detection systems and scanners based on
machine learning and artificial intelligence.

When it comes to vulnerability, it is also an attack which »»
exploits this vulnerability; therefore the existing system
presents web intrusion detection system based on detec-
tion of web vulnerabilities. Experimental results have
been acquired from HTTP simulations in our network and
from responses of HTTP requests sent to a bunch of web-
sites and applications to test the efficiency of our intrusion
detection system. This efficiency can be noticed from a
High detection rate which is greater than 90%.

documents and generate digital sign, view uploaded doc-
uments, verify his documents and recover if it is attacked,
view all on his documents like(downloads and attacked
details), Execute SQL queries if query is incomplete the it
is SQL Injection Vulnerabilities.

Attacker•	
Attacker searches the documents and edit document by
changing content.

SCREEN SHOTS:
Data Owner Login:

Data Owner Home:

Upload Document:

PROPOSED SYSTEM:
In the proposed system, the system explores the use *	

of a novel combination of methods to detect this type of
vulnerabilities: static analysis and data mining. Static
analysis is an effective mechanism to find vulnerabilities
in source code, but tends to report many false positives
(non-vulnerabilities) due to its undesirability. This prob-
lem is particularly difficult with languages such as PHP
that are weakly typed and not formally specified.

Therefore, the system complements a form of static *	
analysis, taint analysis, with the use of data mining to pre-
dict the existence of false positives. This solution com-
bines two apparently opposite approaches: humans cod-
ing the knowledge about vulnerabilities (for taint analysis)
versus automatically obtaining that knowledge (with su-
pervised machine learning supporting data mining).

IMPLEMENTATION:
•	 Admin
In this module, admin has to login with valid username
and password. After login successful he can do some op-
erations such as view all user, their details and authorize
them , view all owners, their details and authorize them,
view all attackers details(like ip address and host name),
view all sql injection vulnerabilities and block them(those
who are execute wrong query), view all file access vulner-
abilities of users(those who are used wrong secret key)
, view all blocked data owners , view unblock requests
and unblock them, view all secret key requests and gener-
ate, view all users download history, view SQL Injection
Vulnerabilities in chart, View number of remote vulner-
abilities in chart.

User•	
In this module, there are n numbers of users are present.
User should register before doing some operations. After
registration successful he can login by using valid user
name and password. Login successful he will do some
operations like view profile details, request secret key and
view response, search documents and download by enter-
ing secret key.

Data Owner•	
In this module, there are n numbers of owners are pres-
ent. Owner should register before doing some operations.
After registration successful he can login by using valid
user name and password. Login successful he will do
some operations like view profile details, Upload

Admin Login:

View Documents:

User Login:

Send Secret Key Request:

 ISSN No: 2348-4845 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

International Journal & Magazine of Engineering,
Technology, Management and Research

A Peer Reviewed Open Access International Journal

 Volume No: 4 (2017), Issue No: 5 (May) May 2017
 www.ijmetmr.com Page 558

 Volume No: 4 (2017), Issue No: 5 (May) May 2017
 www.ijmetmr.com Page 559

We explore the use of several classifiers: ID3, C4.5/J48,
Random Forest, Random Tree, K-NN, Naïve Bayes,
Bayes Net, MLP, SVM, and Logistic Regression. More-
over, for every vulnerability classified as false positive,
we use an induction rule classifier to show which attri-
butes are associated with it. We explore the JRip, PART,
Prism and Ridor induction rule classifiers for this goal.
Classifiers are automatically configured using machine
learning based on labeled vulnerability data.Ensuring that
the code correction is done correctly requires assessing
that the vulnerabilities are removed and that the correct
behavior of the application is not modified by the fixes.

We propose using program mutation and regression test-
ing to confirm, respectively, that the fixes do the function
to what they are programmed to (blocking malicious in-
puts) and that the application remains working as expected
(with benign inputs). Notice that we do not claim that our
approach is able to correct any vulnerability, or to detect it,
only the input validation vulnerabilities it is programmed
to deal with. The paper also describes the design of the
Web Application Protection (WAP) tool that implements
our approach. WAP analyzes and removes input valida-
tion vulnerabilities from code1 written in PHP 5, which
according to a recent reportis used by more than 77% of
the web applications. WAP covers a considerable number
of classes of vulnerabilities: SQL injection (SQLI), cross-
site scripting (XSS), remote file inclusion, local file inclu-
sion, directory traversal/path traversal,source code disclo-
sure, PHP code injection, and OS command injection.

EXISTING SYSTEM:
In the existing system, the system begins by giving »»

a survey of web application attacks and vulnerabilities,
also approaches to improve the web application security
using intrusion detection systems and scanners based on
machine learning and artificial intelligence.

When it comes to vulnerability, it is also an attack which »»
exploits this vulnerability; therefore the existing system
presents web intrusion detection system based on detec-
tion of web vulnerabilities. Experimental results have
been acquired from HTTP simulations in our network and
from responses of HTTP requests sent to a bunch of web-
sites and applications to test the efficiency of our intrusion
detection system. This efficiency can be noticed from a
High detection rate which is greater than 90%.

documents and generate digital sign, view uploaded doc-
uments, verify his documents and recover if it is attacked,
view all on his documents like(downloads and attacked
details), Execute SQL queries if query is incomplete the it
is SQL Injection Vulnerabilities.

Attacker•	
Attacker searches the documents and edit document by
changing content.

SCREEN SHOTS:
Data Owner Login:

Data Owner Home:

Upload Document:

PROPOSED SYSTEM:
In the proposed system, the system explores the use *	

of a novel combination of methods to detect this type of
vulnerabilities: static analysis and data mining. Static
analysis is an effective mechanism to find vulnerabilities
in source code, but tends to report many false positives
(non-vulnerabilities) due to its undesirability. This prob-
lem is particularly difficult with languages such as PHP
that are weakly typed and not formally specified.

Therefore, the system complements a form of static *	
analysis, taint analysis, with the use of data mining to pre-
dict the existence of false positives. This solution com-
bines two apparently opposite approaches: humans cod-
ing the knowledge about vulnerabilities (for taint analysis)
versus automatically obtaining that knowledge (with su-
pervised machine learning supporting data mining).

IMPLEMENTATION:
•	 Admin
In this module, admin has to login with valid username
and password. After login successful he can do some op-
erations such as view all user, their details and authorize
them , view all owners, their details and authorize them,
view all attackers details(like ip address and host name),
view all sql injection vulnerabilities and block them(those
who are execute wrong query), view all file access vulner-
abilities of users(those who are used wrong secret key)
, view all blocked data owners , view unblock requests
and unblock them, view all secret key requests and gener-
ate, view all users download history, view SQL Injection
Vulnerabilities in chart, View number of remote vulner-
abilities in chart.

User•	
In this module, there are n numbers of users are present.
User should register before doing some operations. After
registration successful he can login by using valid user
name and password. Login successful he will do some
operations like view profile details, request secret key and
view response, search documents and download by enter-
ing secret key.

Data Owner•	
In this module, there are n numbers of owners are pres-
ent. Owner should register before doing some operations.
After registration successful he can login by using valid
user name and password. Login successful he will do
some operations like view profile details, Upload

Admin Login:

View Documents:

User Login:

Send Secret Key Request:

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 4 (2017), Issue No: 5 (May) May 2017
 www.ijmetmr.com Page 560

CONCLUSION:
The paper presents an approach for finding and correcting
vulnerabilities in web applications and a tool that imple-
ments the approach for PHP programs and input valida-
tion vulnerabilities. The approach and the tool search for
vulnerabilities using a combination of two techniques:
static source code analysis and data mining. Data min-
ing is used to identify false positives using a top three of
machine learning classifiers and to justify their presence
using an induction rule classifier. All classifiers were se-
lected after a thorough comparison of several alternatives.
It is important to note that this combination of detection
techniques cannot provide entirely correct results. The
static analysis problem is not decidable and the resort to
data mining cannot circumvent this undecidability, only
provide probabilistic results. The tool corrects the code
by inserting fixes, i.e., sanitization and validation func-
tions. Testing is used to verify if the fixes actually remove
the vulnerabilities and do not compromise the (correct)
behavior of the applications. The tool was experimented
with synthetic code with vulnerabilities inserted on pur-
pose and with a considerable number of open source PHP
applications. It was also compared with two source code
analysis tools, Pixy and PhpMinerII. This evaluation sug-
gests that the tool can detect and correct the vulnerabili-
ties of the classes it is programmed to handle. It was able
to find 388 vulnerabilities in 1.4 million lines of code.
Its accuracy and precision were approximately 5% better
than PhpMinerII’s and 45% better than Pixy’s.

REFERENCES:
[1] WAP tool website. http://awap.sourceforge.net/.

[2] J. Antunes, N. F. Neves, M. Correia, P. Verissimo, and
R. Neves.Vulnerability removal with attack injection.
IEEE Transactions on Software Engineering, 36(3):357–
370, 2010.

[3] E. Arisholm, L. C. Briand, and E. B. Johannessen. A
systematic and comprehensive investigation of methods
to build and evaluate fault prediction models. Journal of
Systems and Software, 83(1):2–17, 2010.

[4] R. Banabic and G. Candea. Fast black-box testing of
system recovery code. In Proceedings of the 7th ACM
European Conference on Computer Systems, pages 281–
294, 2012.

[5] L. C. Briand, J. Wüst, J. W. Daly, and D. Victor Porter.
Exploring the relationships between design measures

and software quality in objectoriented systems. Journal of
Systems and Software, 51(3):245–273, 2000.

[6] G. T. Buehrer, B. W. Weide, and P. Sivilotti. Using
parse tree validation to prevent SQL injection attacks. In
Proceedings of the 5th International Workshop on Soft-
ware Engineering and Middleware, pages 106–113, Sept.
2005.

[7] N. L. de Poel. Automated security review of PHP web
applications with static code analysis. Master’s thesis,
State University of Groningen, May 2010.

[8] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints
on test data selection: Help for the practicing program-
mer. Computer, 11(4):34–41, Apr 1978.

[9] J. Demšar. Statistical comparisons of classifiers over
multiple data sets. The Journal of Machine Learning Re-
search, 7:1–30, Dec 2006.

[10] D. Evans and D. Larochelle. Improving security us-
ing extensible lightweight static analysis. IEEE Software,
pages 42–51, Jan/Feb 2002.

[11] W. Halfond and A. Orso. AMNESIA: analysis and
monitoring for neutralizing SQL-injection attacks. In
Proceedings of the 20th IEEE/ACM International Con-
ference on Automated Software Engineering, pages 174–
183, Nov. 2005.

[12] W. Halfond, A. Orso, and P. Manolios. WASP: pro-
tecting web applications using positive tainting and syn-
tax-aware evaluation. IEEE Transactions on Software En-
gineering, 34(1):65–81, 2008.

[13] J. C. Huang. Software Error Detection through Test-
ing and Analysis.John Wiley and Sons, Inc., 2009.
[14] Y.-W. Huang, S.-K.Huang, T.-P.Lin, and C.-H. Tsai.
Web application security assessment by fault injection and
behavior monitoring. In Proceedings of the 12th Interna-
tional Conference on World Wide Web, pages 148–159,
2003.

[15] Y.-W. Huang, F. Yu, C. Hang, C.-H.Tsai, D.-T.Lee,
and S.-Y. Kuo.Securing web application code by static
analysis and runtime protection. In Proceedings of the
13th International World Wide Web Conference, pages
40–52, 2004.

