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Abstract: 

Content addressable memory (CAM) is a special type 

of memory which can do search operation in a single 

clock cycle. CAM is the hardware for parallel 

lookup/search. The parallel search scheme promises a 

high-speed search operation but at the cost of high 

power consumption. Conventional content addressable 

memory (BCAM and TCAM) uses specialized 

10T/16T bit cells that are significantly larger than 6T 

SRAM cells. A new BCAM/TCAM is proposed that 

can operate with standard push-rule 6T SRAM cells. In 

this way, chip area and overall power consumption can 

be reduced, leading to higher energy efficiency for 

search operations. In addition, the configurable 

memory can perform bit-wise logical operations: 

―AND‖ and ―NOR‖ on two or more words stored 

within the array. Thus, the configurable memory with 

CAM and logical function capability can be used to 

off-load specific computational operations to the 

memory, improving system performance and 

efficiency. The proposed novel 6T SRAM based 

BCAM/TCAM memory can be designed on DSCH 

and Microwind 3.5 using 65nm rule. 

 

Index Terms: 

SRAM, content addressable memory (CAM), 

Computation-in-memory, configurable memory, 

reconfigurable sense amplifier. 

 

I. INTRODUCTION: 

Software-based search algorithms are widely used. 

When used in the applications requiring high-speed 

search, e.g., IP routing, image processing, data 

compression, data management, and so on [1]–[4],  

 

they are slow and reduce the system speed. Thus, 

software-based search algorithms are unsuitable for 

high-speed applications. Content addressable memory 

(CAM) features hardware-based parallel search 

operation suitable for high-speed applications. Like 

other memories, CAM stores the data in its data banks. 

CAM feeds the search data, performs the search, and 

outputs the match address [5] if any. A binary CAM 

(BCAM) looks for an exact match, while a ternary 

CAM (TCAM) can have ―don’t care‖ bits in the 

memory, and therefore TCAM words can match 

multiple search strings. CAMs are very useful 

wherever a lookup table is involved. CAMs can 

perform a parallel search operation across multiple 

data and consequently boost system performance. This 

parallel multidata search makes CAM an indispensable 

component for high-associativity caches, translation 

look-aside buffers [1], and register-renaming [2]. 

Lookup tables are also the main function of IP router 

tables, as shown in Fig. 1, and therefore CAMs are the 

major component of many router chips [3], [4]. 

 
Fig. 1. CAM—a major component of IP router 

tables [4]. 

 

Despite CAM being an important building block, it 

tends to use large bit cells.  
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The main reason is that foundries typically focus on 

density and power of SRAM arrays and only make 

push-rule bit cells for SRAMs. In addition, CAMs 

require highly specialized bit cells with 10 transistors 

for a BCAM [4], [5], or even 16 transistors for a 

TCAM [4], as shown in Fig. 2. Hence, in practice, 

nonpush-rule CAM bit cells are several times larger 

[5]–[8] than dense push-rule 6T SRAM [9], [10] and 

this results in large CAM arrays. 

 
Fig. 2. Conventional bit cell design for BCAM and 

TCAM, respectively. 

 

 The main motivation for our proposed solution is to 

improve CAM density [11], [12]. For this, a new CAM 

structure is proposed that uses a traditional push-rule 

6T SRAM bit cell, which results in as much as 4× 

improvement [13] in array density over conventional 

CAMs. In this way, chip area and overall capacitance 

can be reduced, leading to higher energy efficiency for 

search operations. In addition to CAM functionality, 

the configurable memory also provides the ability to 

perform bit-wise logical operations between two or 

more data words stored in the memory. By performing 

the operation within the memory array, a system using 

the proposed solution will be more energy efficient 

due to reduced data movement. Performing logical 

operations in memory also frees up the ALU for more 

involved calculations, and hence boosts performance 

[14]–[17]. The configurable SRAM with both CAM 

and logic functions can therefore be used in 

accelerators in both ASICs and general purpose 

design. 

 

II. LITERATURE SURVEY: 

A conventional CAM is organized to have its words 

stored row-wise.  

The search string is applied in the vertical direction, 

which is same as the bit-lines, whereas the match lines 

run horizontally like the word-lines, as shown in Fig. 

3. The match-line sense amplifiers (SAs) at the end of 

the match-lines provide the match or mismatch result 

for each row. A word is said to match the search string 

if each bit of the word matches every bit of the search 

string. To accomplish the bit-wise comparison, each 

bit cell has a storage part and a dynamic XNOR part. 

The bit-wise XNORs are wire ANDed on the match 

lines, and the match result is obtained at the output of 

the SAs. In many lookup applications, multiple 

matches are required, but if a single address is required 

the results can also be priority encoded. 

 
Fig. 3. Conventional CAM array organization. 

 

As shown in Fig. 2, a conventional 10 transistor (10T) 

BCAM bit cell is composed of a 6T SRAM-like 

storage component, and a 4T XOR component to 

determine the bit-wise match. A TCAM can store 0, 1, 

or X, where ―X‖ implies that it matches with both a 

―0‖ and a ―1‖ of the search key. As such, it requires 

double the storage, resulting in a 16T cell. The high 

transistor count of BCAM/TCAM cells, coupled with 

the fact that foundries do not typically support ―push-

rule‖ CAM cells, results in a CAM array with 2–5× 

larger area than a corresponding SRAM; this 

significantly impacts chip area as well as power and 

performance. Certain TCAM cells are built-up using 

push-rule [3], [18] 8T bit cells. From the layout shown 

in [18], the 16T TCAM bit cell uses two 8T cells, 

which is estimated to be 1.35× the size of the proposed 

TCAM composed of two 6T cells. 

 

III. PROPOSED CAM MEMORIES: 
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A reconfigurable CAM circuit based on a 

conventional, pushrule 6T SRAM bit cell that 

improves array density by as much as 4× is proposed. 

The approach hinges on storing the words column-

wise and using the standard bit-lines to perform a 

matching operation. Fig. 4 shows the configurable 

memory. The word-lines are reused to apply the search 

string in the horizontal direction, and the bit-lines are 

also reused to read-out the match result. A 

configurability feature allows on-the-fly mode 

switching among BCAM, TCAM, and SRAM 

operation. In this way, an SRAM memory can be 

reconfigured to a CAM upon demand to accelerate 

parallel search-like applications. SRAM mode is still 

used conventionally with address on word-lines, words 

stored row-wise, and data-out on the bit-lines. As a 

result of using standard push-rule 6T cells, the bit 

density for the proposed memory array is about four 

times higher than other conventional BCAMs after 

normalizing for technology. The configurable memory 

can also perform bit-wise logical operations: ―AND‖ 

and ―NOR‖ on two or more words stored row-wise 

within the array. Thus, the configurable memory with 

CAM functionality and logical function capability can 

be used to off-load specific computational operations 

to the memory in order to improve system 

performance and energy efficiency. 

 
Fig. 4. Proposed CAM array organization. 

 

IV. CONFIGURABLE MEMORY: BCAM/TCAM 

This section describes in detail how to obtain CAM 

operation and logic operations with SRAM bit cells. 

This section first describes the proposed bit cell and 

builds up from there.  

Although the proposed bit cell is 6T push-rule, to 

obtain the CAM operation the word-line is separated 

into word-line-right (WLR) and word-line-left (WLL) 

(Fig. 4). This creates two independent access 

transistors but incur no area penalty since the push-rule 

layers are kept intact (i.e., only DRC-compliant 

metallization changes are made). The key to 

performing a parallel search with this bit-cell is to 

store words column-wise (vertically) while placing the 

search data on the word-lines rather than the bit-lines 

as in a conventional BCAM. 

 

A. BCAM Search Operation  

This section explains BCAM search with an example 

on a simplified 4 × 4 array. In Fig. 5, the search-data is 

applied to WLRs (the bit-line side access transistors) 

and search-data-bar to WLLs (the bit-line-bar side 

access transistors). In the match case, both BL and 

BLB stay at the precharged high value. If there is a 

mismatch, BL, BLB, or both discharge. To detect this, 

BL and BLB are sensed separately using two single-

ended SAs that are logically ANDed to indicate a 

match in the column. 

 
Fig. 5. BCAM search example. Only column 3 is a 

match. Transistors in red (gray in gray scale) are 

enabled. 

 

The CAM operation will happen in parallel for all the 

columns of the array. The first column has a 0 in place 

of the 1 in the search string; therefore, it has a 

mismatch. As indicated by the red arrow in Fig. 5, the 

―0‖ on the top bit will start pulling the precharged bit-

line down. This will make the bit-line SA to read a 

―0.‖ Hence, the AND of the two SAs outputs a 0 

indicating a mismatch, as expected.  

The timing waveform for BCAM search operation is 

shown in Fig. 6. The second cycle shows BL getting 
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discharged, and hence OUT senses 0, indicating a 

mismatch. In the match case, both OUT and OUTB 

stay high.  

 
Fig. 6. Timing waveforms for BCAM search. Shows 

a “match” where both OUT and OUTB are high 

and a “mismatch” case. 

 

The second column in Fig. 5 has a 1 in place of the 0 

in the search string. The 0 on the second bit will start 

pulling the bit-line-bar down. The ANDing is a 0, 

indicating a mismatch. Notice that the proposed 

memory always indicates the mismatch for a 1 in the 

search string, on the bit-line SA, whereas it indicates a 

mismatch for a 0 on the bit-line-bar SA. The third 

column is a match, as all bits are the same in the search 

string  and the stored word. As seen in Fig. 5, all the 

access transistors that are enabled have a 1 on both 

source and drain. Therefore, both bit-line and bit-line-

bar stay high and the output at the AND gate is a 1, 

implying a match. The array thus performs a similar 

operation as a conventional BCAM. The bit-wise 

XNOR of the data is performed at the access 

transistors and they are then wire-ANDed at the bit-

line SAs. Section IV-B describes the unconventional 

two SAs per column which is actually designed as a 

single, reconfigurable amplifier. 

 

B. Reconfigurable Sense Amplifier Design  

The cross-couple of a conventional voltage differential 

SA is split into two parallel cross-couples, as shown in 

Fig. 7. During the CAM mode, it is required to 

individually sense both bit-line and bit-line-bar.  

The upper cross-couple compares bit-line-bar against a 

reference voltage vref, while the lower one compares 

bit-line against vref. During the SRAM mode, the 

faster differential mode is used between the bit-line 

and the bit-line-bar. In SRAM mode, both the cross-

couples are tied together in parallel, effectively leading 

to the same strength differential SA that had been split. 

 
Fig. 7. Reconfigurable sense amplifier: two-single-

ended amplifiers in CAM and logic modes; 

differential mode for SRAM. 

 

Hence, the two SAs per column obtained for the CAM 

operation are designed using the same area as that of a 

standard amplifier for SRAM. Fig. 8 shows the SPICE 

simulation waveform for the reconfigurable SA in the 

single-ended mode. In this figure, BLB falls below 

vref; therefore, OUTB senses a 0 when ―SA_EN‖ is 

asserted. This reference voltage vref, used for single-

ended sensing mode, is brought in as an additional 

supply for this chip. 

 
Fig. 8. Spice waveform for reconfigurable SA. 

“Diff” = 0, therefore, it is in two-single ended 

amplifier mode. 

 

B. CAM Write Operation  

One way to write the CAM is to use the SRAM mode 

and write the transpose of the required CAM data row-
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wise. But this implies doing a bulk write of CAM data, 

which might be acceptable for applications where the 

lookup table has static data while the search string 

changes. However, for a general CAM-based lookup, 

it is required to update specific data elements. To write 

data column-wise into the CAM, as required for 

parallel search, a two-cycle write scheme is proposed 

for BCAM mode. A column-decoder is added to select 

the column to be written. 

 
Fig. 9. BCAM column-wise write.In this example, 

column 3 is being written. Orange lines (light gray) 

are Vdd_Lo, while red (dark gray) lines are 

nominal Vdd.  

 

To write column-wise, the data is applied to the word-

lines instead of the conventional bit-lines, as shown in 

Fig. 9. Column 3, marked in orange, is the column-

under-write. The columnwise write takes two cycles, 

wherein all the ―1‖s are written in cycle 1 and all the 

―0‖s are written in cycle 2. In cycle 1, only the word-

lines for those bit positions are enabled where a ―1‖ 

has to be written. The word-lines are under-driven, and 

additionally, the cross-couple voltage of the column-

under-write is also lowered to Vdd_Lo as seen in Fig. 

9 by the orange cross-couples in column 3. This allows 

the third column to be written even with low word-line 

voltages. The other columns are protected from data 

corruption, by keeping their crosscouple voltage high. 

Also the bit-line and bit-line-bar are driven strongly 

only for the column-under-write. Thus, the first cycle 

only writes all the 1s in the column-under-write. 

 
Fig. 10. Timing waveforms for two-cycle BCAM 

write. First cycle writes all the “1s” in the column, 

whereas the second cycle writes all the “0s.” Notice 

that other columns not under write have their bit 

cells at full Vdd. 

 

Similarly, in the second cycle, the 0s are written. For 

this, data-bar is applied on the word-lines. When 

writing a 0, the 1s already written in the column should 

not be corrupted. Therefore, the Vdd_Lo should not go 

below the retention voltage. The constraint for 

Vdd_Lo is thus two sided—it should be less than the 

Vdd_disturb and more than the retention voltage. The 

timing waveform for BCAM write operation is shown 

in Fig. 10. The first cycle shows Bitx (bit at row index 

―x‖ in the column-under-write) being written with a 

―1‖ followed by Bity in the same column being written 

with a ―0‖ in the second cycle. While Bity is being 

written, Bitx holds its data at Vdd_Lo. In addition, if 

data are written in ―bulk,‖ the extra write cycle can be 

avoided by first writing zero into the entire array in 

one cycle and then only writing the ―1‖ bits in the data 

to each of the columns. 

 

C. BCAM Search Robustness  

The robustness and the probability of data corruption 

in a BCAM are discussed in this section. Unlike the 

SRAM, multiple word-lines are enabled in the array 

for the CAM operation. The bit cell encircled in Fig. 

11 matches the search string but the data in the column 

as a whole does not, and hence the bit-line will 

discharge. As a result, this matching bit cell has a 

write-like condition, a pseudowrite, where the BL is 

falling, and the access transistor is ON. But this disturb 

is not very strong because of two reasons.  
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First, the search disturb is only single-ended as just 

one access transistor is ON for the cell. Second, the 

falling bit-line is well above 0. However, the bit-line 

voltage is data-dependent. A column with multiple 

mismatches with ―1‖s on the search string can have BL 

closer to 0. Thus, the data in the bit cell might still flip 

under sufficient process variation. To solve this search 

disturb, it is required to weaken the access transistors, 

and make the storage cross-couple stronger But for 

this, the layout cannot be changed, as the SRAM mode 

and the push-rule cell should not be affected. 

Therefore, a different voltage on the word-line drivers 

is used as an assist technique. The word-lines are 

under-driven, while the power lines supplying the 

cross-couple in the columns are kept high at Vdd. The 

word-line under drive and cell boosting prevents data 

corruption during the search and write operations. By 

using Vdd_Lo for both write and search assist, only 

one additional supply voltage is needed for the 

configurable memory. 

 
Fig. 11. BCAM search disturb: pseudowrite 

condition on encircled bit cell. 

 

D. TCAM Mode Operation  

TCAM mode will be covered in brief in this section, as 

it is very similar to BCAM mode in its operation. As 

the TCAM needs 0, 1, and don’t care to be 

represented, it needs two bits per cell.  

Consequently, two columns have to be used for each 

word, as shown in Fig. 12, and hence the capacity is 

half. To represent X, ―01‖ is used, whereas 0 and 1 are 

simply 00 and 11, respectively. In TCAM read, the 

only difference with BCAM mode is the SAs being 

observed, as each word spans two columns, as can be 

seen in Fig. 12. In this mode, two of the four SA 

outputs that span the two columns constituting a word 

are ANDed together. A mask bit ―X‖ will not 

discharge either sensed bit-line or bitline-bar as it 

stores a ―1‖ in both positions. Hence, it matches with 

both 0 and 1 of the search data. In the example in Fig. 

12, the top-right bit enclosed in the red box is masked; 

hence the second word matches ―1011.‖ By virtue of 

the mask bit, the second word would also have 

matched the search string ―0011.‖ 

 
Fig. 12. TCAM mode organization. Two columns 

comprise a word. The bit cell in the top-right red 

box is “masked.” 

 

TCAM write is similar to BCAM but takes three 

cycles. The first two cycles are similar to BCAM, as 

first ―11‖ is written and then ―00‖ is written. The mask 

bits ―01‖ are then written in the third cycle by only 

enabling the word-lines of rows which need to be 

masked. The adjacent cells are written with 01, by 

applying the appropriate voltage levels at the bit-lines. 

This has been shown conceptually in Fig. 12. In Fig. 

13, we show the TCAM write operation’s timing 

waveform. Bitx and Bitx+1 is written with ―11,‖ 

whereas Bity and Bity+1 are written with ―’00.‖  
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To write mask in column-wordi in rowz, Bitz is 

written as ―0‖. and Bitz+1 as ―1‖ as shown in this 

figure. Since write is less common in many CAM 

applications than search, the additional cycles pose 

less overhead. 

 
Fig. 13. Timing waveforms for three-cycle TCAM 

write. First cycle writes all the “11” in the column, 

the second cycle writes all the “00.” The third cycle 

writes a “01” in the adjacent cells of the bit to be 

masked. 

 

The waveform is for typical process corner at room 

temperature, with Vdd = 1 V and Vdd_Lo = 0.5 V 

 

V. SRAM MODE AND LOGIC OPERATIONS IN  

MEMORY  

A. SRAM Mode Operation  

In SRAM mode, the configurable memory works 

conventionally with both WLR and WLL driven from 

the address-decoder output. In SRAM mode, reads and 

writes proceed row-wise using conventional 

differential signaling and the performance impact from 

reconfigurability is found to be negligible. By 

reconfiguring the two single-ended SAs in CAM mode 

into a single differential SA in SRAM mode, total 

reconfiguration area overhead is limited to only 7% for 

the added column decoder. 

 

B. Logic Operations in Memory  

The configurable memory can be used to perform 

certain logical operations between the row-wise stored 

SRAM words. These logic operations are enabled by 

reutilizing the circuits used in the CAM modes.  

Logic-in-memory here is defined as the feature of 

performing logical operations within the memory 

subarray itself, without having to read-out or sense the 

individual words being operated upon. The term logic-

in-memory has been used before in other contexts, 

such as using memory technology other than CMOS to 

realize logic on a dedicated memory layer [19], or 

dedicated logic layer in 3-D DRAMs [20], or logic in 

the main memory [15], but not within the subarray. 

The main difference lies in not sensing the individual 

operands to perform the logic. 

 
Fig. 14. Logic operations in memory. Enabled two 

rows (rows 1, 3 while rows 2, 4 are masked, i.e., 

disabled), to get an “AND” between data stored in 

the two enabled rows. The logic operations reuse 

the search circuit for BCAM mode. 

 

In the example shown in Fig. 14, the search string (1, 

M, 1, M) is applied, which only activates WLR for 

rows 1 and 3. If any bit in row 1 or row 3 is ―0,‖ it will 

pull-down the precharged bit-line. As all, WLL 

transistors are disabled, all bit-line-bar lines stay high. 

Hence, the bit-wise AND of rows 1 and 3 is obtained 

at the memory output. More than two words can also 

be activated by putting more 1s in the search string. 

The bit-wise ―AND‖ operation can thus be executed 

for two or more than two words. Table I shows all the 

logic operations supported by the proposed 

configurable memory.  
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Similar to the ―AND‖ operation, a NOR operation can 

be performed by only activating the WLL access 

transistor and by applying 0s at the search string. A 

―01‖ combination activates WLL for row A and WLR 

for row B, hence it senses the complement of the data 

in row A on the bit-line-bar SAs, and simultaneously 

senses the data in row B on the bit-line SAs. These two 

are then ANDed to produce the result. ―10‖ has the 

same operation as ―’01,‖ but changes the location of 

the rows activated. A ―01‖ like operation allows two 

rows to be read out simultaneously, as the configurable 

memory has two single-ended SAs. Thus, this feature 

can also be used as a dual read port, where ―A_bar‖ is 

read on the bit-line-bar SAs and ―B‖ is read on the bit-

line SAs. 

 

TABLE I LOGIC OPERATIONS IN MEMORY 

 
Note: Only the words to be operated upon get the 

search string value while the other words have 

WLR=WLL=0, i.e., they are masked. 

 

Similar to the BCAM search robustness issue 

discussed in Section IV-D above, logic operations also 

activate multiple word-lines. The BCAM search 

activates all the word-lines, and hence the probability 

of data corruption is higher. To prevent data corruption 

in BCAM mode, Vdd_Lo has to be reduced 

significantly. During a logic operation on two words, 

only two bits are fighting in any column. This allows 

Vdd_Lo to rise signifi- cantly; hence the logic mode 

for two words can run much faster than the BCAM 

mode. For multi-word logic operations, the Vdd_Lo 

reduces with the increase in the number of words that 

are simultaneously operated upon, and consequently 

the frequency of operation reduces.  

If an ―AND‖ or ―NOR‖ operation is performed on all 

the rows in the array, operation approaches the BCAM 

frequency and Vdd_Lo value. 

 
Fig. 15. Configurable memory organization 

 

Fig. 15 is the overall block diagram of the 

reconfigurable memory. Notice the additional column 

decoder at the top. This ensures that only the column-

under-write is supplied by low Vdd. The column 

decoder output also controls the enable of the write 

drivers. A common header switch is placed for 

wordline drivers to switch between Vdd and Vdd_Lo, 

as shown in Fig. 15. Also, most 6T SRAMs at 

advanced technology nodes, need some type of 

read/write assist techniques. 

 

VI. SIMULATION RESULTS: 

Along with the existing and proposed CAM design, 

both BCAM and TCAM using 6T Push Rule SRAM 

cell, CAMs of size 4 × 4 were implemented in the 65-

nm technology node and postlayout simulation was 

performed to measure their performance using DSCH 

and Microwind. Following figures shows the DSCH 

and Microwind simulation result and the layout of the 

proposed CAM cell.  
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Fig 16: Schematic of 6T SRAM cell 

 

 
Fig 18: Layout of 6T SRAM cell 

 

 
Fig 19: Simulation of Layout of 6T SRAM cell 

 

 
Fig 20: Schematic of Existing 4x4 BCAM array 

 
Fig 21: Layout of Existing 4x4 BCAM array 

 

 
Fig 22: Schematic of Existing 4x4 TCAM array 

 

 
Fig 23: Layout of Existing 4x4 TCAM array 

 

 
Fig 24: Schematic of Proposed 4x4 BCAM array 
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Fig 25: Layout of Proposed 4x4 BCAM array 

 

 
Fig 26: Simulation of Layout of Proposed 4x4 

BCAM array 

 

 
Fig 27: Schematic of Proposed 4x4 TCAM array 

 

 
Fig 28: Layout of Proposed 4x4 TCAM array 

 
Fig 29 Simulation of Layout of Proposed 4x4 

TCAM array 

 

CONCLUSION: 

A configurable memory with CAM functionality using 

standard push-rule SRAM 6T bit cells is presented. 

This memory can be used as an area-energy efficient 

CAM in search-based applications. In conventional 

BCAM required 10T and TCAM required 16T due to 

this area and power consumptions are high 

comparatively proposed push-rule SRAM 6T based 

BCAM and TCAM. It also has lower instantaneous 

power because of less number of transistor counts. The 

memory can also be used to perform certain logic 

operations between two or more rows. This can be 

used to off-load computations to the memory, 

improving system performance. 
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