

 Page 823

An Efficient Design of Content Addressable Memory

(BCAM/TCAM) using Push-Rule 6T SARAM Cell
N.Venkatesh

M.Tech,

Dept of ECE (VLSI),

BVC College of Engineering,

Rajahmundry- 533294. A.P.

Mr G.Sravan Kumar, M.Tech

Associate Professor,

Dept of ECE,

BVC College of Engineering,

Rajahmundry- 533294. A.P.

Abstract:

Content addressable memory (CAM) is a special type

of memory which can do search operation in a single

clock cycle. CAM is the hardware for parallel

lookup/search. The parallel search scheme promises a

high-speed search operation but at the cost of high

power consumption. Conventional content addressable

memory (BCAM and TCAM) uses specialized

10T/16T bit cells that are significantly larger than 6T

SRAM cells. A new BCAM/TCAM is proposed that

can operate with standard push-rule 6T SRAM cells. In

this way, chip area and overall power consumption can

be reduced, leading to higher energy efficiency for

search operations. In addition, the configurable

memory can perform bit-wise logical operations:

―AND‖ and ―NOR‖ on two or more words stored

within the array. Thus, the configurable memory with

CAM and logical function capability can be used to

off-load specific computational operations to the

memory, improving system performance and

efficiency. The proposed novel 6T SRAM based

BCAM/TCAM memory can be designed on DSCH

and Microwind 3.5 using 65nm rule.

Index Terms:

SRAM, content addressable memory (CAM),

Computation-in-memory, configurable memory,

reconfigurable sense amplifier.

I. INTRODUCTION:

Software-based search algorithms are widely used.

When used in the applications requiring high-speed

search, e.g., IP routing, image processing, data

compression, data management, and so on [1]–[4],

they are slow and reduce the system speed. Thus,

software-based search algorithms are unsuitable for

high-speed applications. Content addressable memory

(CAM) features hardware-based parallel search

operation suitable for high-speed applications. Like

other memories, CAM stores the data in its data banks.

CAM feeds the search data, performs the search, and

outputs the match address [5] if any. A binary CAM

(BCAM) looks for an exact match, while a ternary

CAM (TCAM) can have ―don’t care‖ bits in the

memory, and therefore TCAM words can match

multiple search strings. CAMs are very useful

wherever a lookup table is involved. CAMs can

perform a parallel search operation across multiple

data and consequently boost system performance. This

parallel multidata search makes CAM an indispensable

component for high-associativity caches, translation

look-aside buffers [1], and register-renaming [2].

Lookup tables are also the main function of IP router

tables, as shown in Fig. 1, and therefore CAMs are the

major component of many router chips [3], [4].

Fig. 1. CAM—a major component of IP router

tables [4].

Despite CAM being an important building block, it

tends to use large bit cells.

 Page 824

The main reason is that foundries typically focus on

density and power of SRAM arrays and only make

push-rule bit cells for SRAMs. In addition, CAMs

require highly specialized bit cells with 10 transistors

for a BCAM [4], [5], or even 16 transistors for a

TCAM [4], as shown in Fig. 2. Hence, in practice,

nonpush-rule CAM bit cells are several times larger

[5]–[8] than dense push-rule 6T SRAM [9], [10] and

this results in large CAM arrays.

Fig. 2. Conventional bit cell design for BCAM and

TCAM, respectively.

 The main motivation for our proposed solution is to

improve CAM density [11], [12]. For this, a new CAM

structure is proposed that uses a traditional push-rule

6T SRAM bit cell, which results in as much as 4×

improvement [13] in array density over conventional

CAMs. In this way, chip area and overall capacitance

can be reduced, leading to higher energy efficiency for

search operations. In addition to CAM functionality,

the configurable memory also provides the ability to

perform bit-wise logical operations between two or

more data words stored in the memory. By performing

the operation within the memory array, a system using

the proposed solution will be more energy efficient

due to reduced data movement. Performing logical

operations in memory also frees up the ALU for more

involved calculations, and hence boosts performance

[14]–[17]. The configurable SRAM with both CAM

and logic functions can therefore be used in

accelerators in both ASICs and general purpose

design.

II. LITERATURE SURVEY:

A conventional CAM is organized to have its words

stored row-wise.

The search string is applied in the vertical direction,

which is same as the bit-lines, whereas the match lines

run horizontally like the word-lines, as shown in Fig.

3. The match-line sense amplifiers (SAs) at the end of

the match-lines provide the match or mismatch result

for each row. A word is said to match the search string

if each bit of the word matches every bit of the search

string. To accomplish the bit-wise comparison, each

bit cell has a storage part and a dynamic XNOR part.

The bit-wise XNORs are wire ANDed on the match

lines, and the match result is obtained at the output of

the SAs. In many lookup applications, multiple

matches are required, but if a single address is required

the results can also be priority encoded.

Fig. 3. Conventional CAM array organization.

As shown in Fig. 2, a conventional 10 transistor (10T)

BCAM bit cell is composed of a 6T SRAM-like

storage component, and a 4T XOR component to

determine the bit-wise match. A TCAM can store 0, 1,

or X, where ―X‖ implies that it matches with both a

―0‖ and a ―1‖ of the search key. As such, it requires

double the storage, resulting in a 16T cell. The high

transistor count of BCAM/TCAM cells, coupled with

the fact that foundries do not typically support ―push-

rule‖ CAM cells, results in a CAM array with 2–5×

larger area than a corresponding SRAM; this

significantly impacts chip area as well as power and

performance. Certain TCAM cells are built-up using

push-rule [3], [18] 8T bit cells. From the layout shown

in [18], the 16T TCAM bit cell uses two 8T cells,

which is estimated to be 1.35× the size of the proposed

TCAM composed of two 6T cells.

III. PROPOSED CAM MEMORIES:

 Page 825

A reconfigurable CAM circuit based on a

conventional, pushrule 6T SRAM bit cell that

improves array density by as much as 4× is proposed.

The approach hinges on storing the words column-

wise and using the standard bit-lines to perform a

matching operation. Fig. 4 shows the configurable

memory. The word-lines are reused to apply the search

string in the horizontal direction, and the bit-lines are

also reused to read-out the match result. A

configurability feature allows on-the-fly mode

switching among BCAM, TCAM, and SRAM

operation. In this way, an SRAM memory can be

reconfigured to a CAM upon demand to accelerate

parallel search-like applications. SRAM mode is still

used conventionally with address on word-lines, words

stored row-wise, and data-out on the bit-lines. As a

result of using standard push-rule 6T cells, the bit

density for the proposed memory array is about four

times higher than other conventional BCAMs after

normalizing for technology. The configurable memory

can also perform bit-wise logical operations: ―AND‖

and ―NOR‖ on two or more words stored row-wise

within the array. Thus, the configurable memory with

CAM functionality and logical function capability can

be used to off-load specific computational operations

to the memory in order to improve system

performance and energy efficiency.

Fig. 4. Proposed CAM array organization.

IV. CONFIGURABLE MEMORY: BCAM/TCAM

This section describes in detail how to obtain CAM

operation and logic operations with SRAM bit cells.

This section first describes the proposed bit cell and

builds up from there.

Although the proposed bit cell is 6T push-rule, to

obtain the CAM operation the word-line is separated

into word-line-right (WLR) and word-line-left (WLL)

(Fig. 4). This creates two independent access

transistors but incur no area penalty since the push-rule

layers are kept intact (i.e., only DRC-compliant

metallization changes are made). The key to

performing a parallel search with this bit-cell is to

store words column-wise (vertically) while placing the

search data on the word-lines rather than the bit-lines

as in a conventional BCAM.

A. BCAM Search Operation

This section explains BCAM search with an example

on a simplified 4 × 4 array. In Fig. 5, the search-data is

applied to WLRs (the bit-line side access transistors)

and search-data-bar to WLLs (the bit-line-bar side

access transistors). In the match case, both BL and

BLB stay at the precharged high value. If there is a

mismatch, BL, BLB, or both discharge. To detect this,

BL and BLB are sensed separately using two single-

ended SAs that are logically ANDed to indicate a

match in the column.

Fig. 5. BCAM search example. Only column 3 is a

match. Transistors in red (gray in gray scale) are

enabled.

The CAM operation will happen in parallel for all the

columns of the array. The first column has a 0 in place

of the 1 in the search string; therefore, it has a

mismatch. As indicated by the red arrow in Fig. 5, the

―0‖ on the top bit will start pulling the precharged bit-

line down. This will make the bit-line SA to read a

―0.‖ Hence, the AND of the two SAs outputs a 0

indicating a mismatch, as expected.

The timing waveform for BCAM search operation is

shown in Fig. 6. The second cycle shows BL getting

 Page 826

discharged, and hence OUT senses 0, indicating a

mismatch. In the match case, both OUT and OUTB

stay high.

Fig. 6. Timing waveforms for BCAM search. Shows

a “match” where both OUT and OUTB are high

and a “mismatch” case.

The second column in Fig. 5 has a 1 in place of the 0

in the search string. The 0 on the second bit will start

pulling the bit-line-bar down. The ANDing is a 0,

indicating a mismatch. Notice that the proposed

memory always indicates the mismatch for a 1 in the

search string, on the bit-line SA, whereas it indicates a

mismatch for a 0 on the bit-line-bar SA. The third

column is a match, as all bits are the same in the search

string and the stored word. As seen in Fig. 5, all the

access transistors that are enabled have a 1 on both

source and drain. Therefore, both bit-line and bit-line-

bar stay high and the output at the AND gate is a 1,

implying a match. The array thus performs a similar

operation as a conventional BCAM. The bit-wise

XNOR of the data is performed at the access

transistors and they are then wire-ANDed at the bit-

line SAs. Section IV-B describes the unconventional

two SAs per column which is actually designed as a

single, reconfigurable amplifier.

B. Reconfigurable Sense Amplifier Design

The cross-couple of a conventional voltage differential

SA is split into two parallel cross-couples, as shown in

Fig. 7. During the CAM mode, it is required to

individually sense both bit-line and bit-line-bar.

The upper cross-couple compares bit-line-bar against a

reference voltage vref, while the lower one compares

bit-line against vref. During the SRAM mode, the

faster differential mode is used between the bit-line

and the bit-line-bar. In SRAM mode, both the cross-

couples are tied together in parallel, effectively leading

to the same strength differential SA that had been split.

Fig. 7. Reconfigurable sense amplifier: two-single-

ended amplifiers in CAM and logic modes;

differential mode for SRAM.

Hence, the two SAs per column obtained for the CAM

operation are designed using the same area as that of a

standard amplifier for SRAM. Fig. 8 shows the SPICE

simulation waveform for the reconfigurable SA in the

single-ended mode. In this figure, BLB falls below

vref; therefore, OUTB senses a 0 when ―SA_EN‖ is

asserted. This reference voltage vref, used for single-

ended sensing mode, is brought in as an additional

supply for this chip.

Fig. 8. Spice waveform for reconfigurable SA.

“Diff” = 0, therefore, it is in two-single ended

amplifier mode.

B. CAM Write Operation

One way to write the CAM is to use the SRAM mode

and write the transpose of the required CAM data row-

 Page 827

wise. But this implies doing a bulk write of CAM data,

which might be acceptable for applications where the

lookup table has static data while the search string

changes. However, for a general CAM-based lookup,

it is required to update specific data elements. To write

data column-wise into the CAM, as required for

parallel search, a two-cycle write scheme is proposed

for BCAM mode. A column-decoder is added to select

the column to be written.

Fig. 9. BCAM column-wise write.In this example,

column 3 is being written. Orange lines (light gray)

are Vdd_Lo, while red (dark gray) lines are

nominal Vdd.

To write column-wise, the data is applied to the word-

lines instead of the conventional bit-lines, as shown in

Fig. 9. Column 3, marked in orange, is the column-

under-write. The columnwise write takes two cycles,

wherein all the ―1‖s are written in cycle 1 and all the

―0‖s are written in cycle 2. In cycle 1, only the word-

lines for those bit positions are enabled where a ―1‖

has to be written. The word-lines are under-driven, and

additionally, the cross-couple voltage of the column-

under-write is also lowered to Vdd_Lo as seen in Fig.

9 by the orange cross-couples in column 3. This allows

the third column to be written even with low word-line

voltages. The other columns are protected from data

corruption, by keeping their crosscouple voltage high.

Also the bit-line and bit-line-bar are driven strongly

only for the column-under-write. Thus, the first cycle

only writes all the 1s in the column-under-write.

Fig. 10. Timing waveforms for two-cycle BCAM

write. First cycle writes all the “1s” in the column,

whereas the second cycle writes all the “0s.” Notice

that other columns not under write have their bit

cells at full Vdd.

Similarly, in the second cycle, the 0s are written. For

this, data-bar is applied on the word-lines. When

writing a 0, the 1s already written in the column should

not be corrupted. Therefore, the Vdd_Lo should not go

below the retention voltage. The constraint for

Vdd_Lo is thus two sided—it should be less than the

Vdd_disturb and more than the retention voltage. The

timing waveform for BCAM write operation is shown

in Fig. 10. The first cycle shows Bitx (bit at row index

―x‖ in the column-under-write) being written with a

―1‖ followed by Bity in the same column being written

with a ―0‖ in the second cycle. While Bity is being

written, Bitx holds its data at Vdd_Lo. In addition, if

data are written in ―bulk,‖ the extra write cycle can be

avoided by first writing zero into the entire array in

one cycle and then only writing the ―1‖ bits in the data

to each of the columns.

C. BCAM Search Robustness

The robustness and the probability of data corruption

in a BCAM are discussed in this section. Unlike the

SRAM, multiple word-lines are enabled in the array

for the CAM operation. The bit cell encircled in Fig.

11 matches the search string but the data in the column

as a whole does not, and hence the bit-line will

discharge. As a result, this matching bit cell has a

write-like condition, a pseudowrite, where the BL is

falling, and the access transistor is ON. But this disturb

is not very strong because of two reasons.

 Page 828

First, the search disturb is only single-ended as just

one access transistor is ON for the cell. Second, the

falling bit-line is well above 0. However, the bit-line

voltage is data-dependent. A column with multiple

mismatches with ―1‖s on the search string can have BL

closer to 0. Thus, the data in the bit cell might still flip

under sufficient process variation. To solve this search

disturb, it is required to weaken the access transistors,

and make the storage cross-couple stronger But for

this, the layout cannot be changed, as the SRAM mode

and the push-rule cell should not be affected.

Therefore, a different voltage on the word-line drivers

is used as an assist technique. The word-lines are

under-driven, while the power lines supplying the

cross-couple in the columns are kept high at Vdd. The

word-line under drive and cell boosting prevents data

corruption during the search and write operations. By

using Vdd_Lo for both write and search assist, only

one additional supply voltage is needed for the

configurable memory.

Fig. 11. BCAM search disturb: pseudowrite

condition on encircled bit cell.

D. TCAM Mode Operation

TCAM mode will be covered in brief in this section, as

it is very similar to BCAM mode in its operation. As

the TCAM needs 0, 1, and don’t care to be

represented, it needs two bits per cell.

Consequently, two columns have to be used for each

word, as shown in Fig. 12, and hence the capacity is

half. To represent X, ―01‖ is used, whereas 0 and 1 are

simply 00 and 11, respectively. In TCAM read, the

only difference with BCAM mode is the SAs being

observed, as each word spans two columns, as can be

seen in Fig. 12. In this mode, two of the four SA

outputs that span the two columns constituting a word

are ANDed together. A mask bit ―X‖ will not

discharge either sensed bit-line or bitline-bar as it

stores a ―1‖ in both positions. Hence, it matches with

both 0 and 1 of the search data. In the example in Fig.

12, the top-right bit enclosed in the red box is masked;

hence the second word matches ―1011.‖ By virtue of

the mask bit, the second word would also have

matched the search string ―0011.‖

Fig. 12. TCAM mode organization. Two columns

comprise a word. The bit cell in the top-right red

box is “masked.”

TCAM write is similar to BCAM but takes three

cycles. The first two cycles are similar to BCAM, as

first ―11‖ is written and then ―00‖ is written. The mask

bits ―01‖ are then written in the third cycle by only

enabling the word-lines of rows which need to be

masked. The adjacent cells are written with 01, by

applying the appropriate voltage levels at the bit-lines.

This has been shown conceptually in Fig. 12. In Fig.

13, we show the TCAM write operation’s timing

waveform. Bitx and Bitx+1 is written with ―11,‖

whereas Bity and Bity+1 are written with ―’00.‖

 Page 829

To write mask in column-wordi in rowz, Bitz is

written as ―0‖. and Bitz+1 as ―1‖ as shown in this

figure. Since write is less common in many CAM

applications than search, the additional cycles pose

less overhead.

Fig. 13. Timing waveforms for three-cycle TCAM

write. First cycle writes all the “11” in the column,

the second cycle writes all the “00.” The third cycle

writes a “01” in the adjacent cells of the bit to be

masked.

The waveform is for typical process corner at room

temperature, with Vdd = 1 V and Vdd_Lo = 0.5 V

V. SRAM MODE AND LOGIC OPERATIONS IN

MEMORY

A. SRAM Mode Operation

In SRAM mode, the configurable memory works

conventionally with both WLR and WLL driven from

the address-decoder output. In SRAM mode, reads and

writes proceed row-wise using conventional

differential signaling and the performance impact from

reconfigurability is found to be negligible. By

reconfiguring the two single-ended SAs in CAM mode

into a single differential SA in SRAM mode, total

reconfiguration area overhead is limited to only 7% for

the added column decoder.

B. Logic Operations in Memory

The configurable memory can be used to perform

certain logical operations between the row-wise stored

SRAM words. These logic operations are enabled by

reutilizing the circuits used in the CAM modes.

Logic-in-memory here is defined as the feature of

performing logical operations within the memory

subarray itself, without having to read-out or sense the

individual words being operated upon. The term logic-

in-memory has been used before in other contexts,

such as using memory technology other than CMOS to

realize logic on a dedicated memory layer [19], or

dedicated logic layer in 3-D DRAMs [20], or logic in

the main memory [15], but not within the subarray.

The main difference lies in not sensing the individual

operands to perform the logic.

Fig. 14. Logic operations in memory. Enabled two

rows (rows 1, 3 while rows 2, 4 are masked, i.e.,

disabled), to get an “AND” between data stored in

the two enabled rows. The logic operations reuse

the search circuit for BCAM mode.

In the example shown in Fig. 14, the search string (1,

M, 1, M) is applied, which only activates WLR for

rows 1 and 3. If any bit in row 1 or row 3 is ―0,‖ it will

pull-down the precharged bit-line. As all, WLL

transistors are disabled, all bit-line-bar lines stay high.

Hence, the bit-wise AND of rows 1 and 3 is obtained

at the memory output. More than two words can also

be activated by putting more 1s in the search string.

The bit-wise ―AND‖ operation can thus be executed

for two or more than two words. Table I shows all the

logic operations supported by the proposed

configurable memory.

 Page 830

Similar to the ―AND‖ operation, a NOR operation can

be performed by only activating the WLL access

transistor and by applying 0s at the search string. A

―01‖ combination activates WLL for row A and WLR

for row B, hence it senses the complement of the data

in row A on the bit-line-bar SAs, and simultaneously

senses the data in row B on the bit-line SAs. These two

are then ANDed to produce the result. ―10‖ has the

same operation as ―’01,‖ but changes the location of

the rows activated. A ―01‖ like operation allows two

rows to be read out simultaneously, as the configurable

memory has two single-ended SAs. Thus, this feature

can also be used as a dual read port, where ―A_bar‖ is

read on the bit-line-bar SAs and ―B‖ is read on the bit-

line SAs.

TABLE I LOGIC OPERATIONS IN MEMORY

Note: Only the words to be operated upon get the

search string value while the other words have

WLR=WLL=0, i.e., they are masked.

Similar to the BCAM search robustness issue

discussed in Section IV-D above, logic operations also

activate multiple word-lines. The BCAM search

activates all the word-lines, and hence the probability

of data corruption is higher. To prevent data corruption

in BCAM mode, Vdd_Lo has to be reduced

significantly. During a logic operation on two words,

only two bits are fighting in any column. This allows

Vdd_Lo to rise signifi- cantly; hence the logic mode

for two words can run much faster than the BCAM

mode. For multi-word logic operations, the Vdd_Lo

reduces with the increase in the number of words that

are simultaneously operated upon, and consequently

the frequency of operation reduces.

If an ―AND‖ or ―NOR‖ operation is performed on all

the rows in the array, operation approaches the BCAM

frequency and Vdd_Lo value.

Fig. 15. Configurable memory organization

Fig. 15 is the overall block diagram of the

reconfigurable memory. Notice the additional column

decoder at the top. This ensures that only the column-

under-write is supplied by low Vdd. The column

decoder output also controls the enable of the write

drivers. A common header switch is placed for

wordline drivers to switch between Vdd and Vdd_Lo,

as shown in Fig. 15. Also, most 6T SRAMs at

advanced technology nodes, need some type of

read/write assist techniques.

VI. SIMULATION RESULTS:

Along with the existing and proposed CAM design,

both BCAM and TCAM using 6T Push Rule SRAM

cell, CAMs of size 4 × 4 were implemented in the 65-

nm technology node and postlayout simulation was

performed to measure their performance using DSCH

and Microwind. Following figures shows the DSCH

and Microwind simulation result and the layout of the

proposed CAM cell.

 Page 831

Fig 16: Schematic of 6T SRAM cell

Fig 18: Layout of 6T SRAM cell

Fig 19: Simulation of Layout of 6T SRAM cell

Fig 20: Schematic of Existing 4x4 BCAM array

Fig 21: Layout of Existing 4x4 BCAM array

Fig 22: Schematic of Existing 4x4 TCAM array

Fig 23: Layout of Existing 4x4 TCAM array

Fig 24: Schematic of Proposed 4x4 BCAM array

 Page 832

Fig 25: Layout of Proposed 4x4 BCAM array

Fig 26: Simulation of Layout of Proposed 4x4

BCAM array

Fig 27: Schematic of Proposed 4x4 TCAM array

Fig 28: Layout of Proposed 4x4 TCAM array

Fig 29 Simulation of Layout of Proposed 4x4

TCAM array

CONCLUSION:

A configurable memory with CAM functionality using

standard push-rule SRAM 6T bit cells is presented.

This memory can be used as an area-energy efficient

CAM in search-based applications. In conventional

BCAM required 10T and TCAM required 16T due to

this area and power consumptions are high

comparatively proposed push-rule SRAM 6T based

BCAM and TCAM. It also has lower instantaneous

power because of less number of transistor counts. The

memory can also be used to perform certain logic

operations between two or more rows. This can be

used to off-load computations to the memory,

improving system performance.

REFERENCES:

[1] A. Agarwal et al., ―A 128×128b high-speed wide-

and match-line content addressable memory in 32 nm

CMOS,‖ in Proc. ESSCIRC, 2011, pp. 83–86.

[2] G. Burda, Y. Kolla, J. Dieffenderfer, and F.

Hamdan, ―A 45 nm CMOS 13-port 64-word 41b fully

associative content-addressable register file,‖ in IEEE

Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech.

Papers, 2010, pp. 286–287.

[3] K. Nii et al., ―A 28 nm 400 MHz 4-parallel 1.6

Gsearch/s 80Mb ternary CAM,‖ in IEEE Int. Solid-

State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2014,

pp. 240–241.

 Page 833

[4] K. Pagiamtzis and A. Sheikholeslami, ―Content-

addressable memory (CAM) circuits and architectures:

A tutorial and survey,‖ IEEE J. SolidState Circuits,

vol. 41, no. 3, pp. 712–727, Mar. 2006.

[5] A. T. Do, C. Yin, K. S. Yeo, and T. T. H. Kim,

―Design of a power-efficient CAM using automated

background checking scheme for small match line

swing,‖ in Proc. ESSCIRC, 2013, pp. 209–212.

[6] C.-C. Wang, C.-H. Hsu, C.-C. Huang, and J.-H.

Wu, ―A self-disabled sensing technique for content-

addressable memories,‖ IEEE Trans. Circuits Syst. II:

Exp. Briefs, vol. 57, no. 1, pp. 31–35, Jan. 2010.

[7] B.-D. Yang, Y.-K. Lee, S.-W. Sung, J.-J. Min, J.-

M. Oh, and H.-J. Kang, ―A low power content

addressable memory using low swing search lines,‖

IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 58, no.

12, pp. 2849–2858, Dec. 2011.

[8] C.-C. Wang, J.-S. Wang, and C. Yeh, ―High-speed

and low-power design techniques for TCAM macros,‖

IEEE J. Solid State Circuits, vol. 43, no. 2, pp. 530–

540, Feb. 2008.

[9] R. Ranica et al., ―FDSOI process/design full

solutions for ultra low leakage, high speed and low

voltage SRAMs,‖ in Proc. Symp. VLSI Technol.

(VLSIT’13), 2013, pp. T210–T211.

[10] E. Karl et al., ―A 0.6 V 1.5 GHz 84Mb SRAM

design in 14 nm FinFET CMOS technology,‖ in IEEE

Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech.

Papers, 2015, pp. 1–3.

[11] J. Li, R. K. Montoye, M. Ishii, and L. Chang, ―1

Mb 0.41 µm2 2T-2R cell nonvolatile TCAM with two-

bit encoding and clocked self-referenced sensing,‖

IEEE J. Solid-State Circuits, vol. 49, no. 4, pp. 896–

907, Apr. 2014.

[12] I. Arsovski, T. Chandler, and A. Sheikholeslami,

―A ternary content addressable memory (TCAM)

based on 4T static storage and including a current-race

sensing scheme,‖ IEEE J. Solid-State Circuits, vol. 38,

no. 1, pp. 155–158, Jan. 2003.

[13] S. Jeloka, N. Akesh, D. Sylvester, and D. Blaauw,

―A configurable TCAM/BCAM/SRAM using 28 nm

push-rule 6T bit cell,‖ in Proc. Symp. VLSI Circuits

(VLSIC’15), 2015, pp. C272–C273.

[14] P. Jain, G. E. Suh, and S. Devadas, ―Embedded

intelligent SRAM,‖ in Proc. 40th Ann. Des. Autom.

Conf., 2003, pp. 869–874.

[15] D. Patterson et al., ―A case for intelligent DRAM:

IRAM,‖ IEEE Micro, vol. 17, no. 2, pp. 33–44, Apr.

1997.

[16] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. J.

Dally, and M. Horowitz, ―Smart memories: A modular

reconfigurable architecture,‖ in Proc. 27th Int. Symp.

Comput. Archit. (ISCA’00), 2000, pp. 161–171.

[17] K. Mai et al., ―Architecture and circuit techniques

for a reconfigurable memory block,‖ in IEEE Int.

Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers,

2004, pp. 500–501.

[18] I. Hayashi et al., ―A 250-MHz 18-Mb full ternary

CAM with lowvoltage matchline sensing scheme in

65-nm CMOS,‖ IEEE J. Solid-State Circuits, vol. 48,

no. 11, pp. 2671–2680, Nov. 2013

[19] S. Matsunaga et al., ―MTJ-based nonvolatile

logic-in-memory circuit, future prospects and issues,‖

in Proc. Conf. Des. Autom. Test Eur. (DATE’09),

2009, pp. 433–435.

[20] Q. Zhu et al., ―A 3D-stacked logic-in-memory

accelerator for applicationspecific data intensive

computing,‖ in Proc. IEEE 3D Syst. Integr. Conf.

(3DIC’13), 2013, pp. 1–7.

 Page 834

[21] I. Arsovski, T. Hebig, D. Dobson, and R. Wisort,

―A 32 nm 0.58- fJ/bit/search 1-GHz ternary content

addressable memory compiler using silicon-aware

early-predict late-correct sensing with embedded

deeptrench capacitor noise mitigation,‖ IEEE J. Solid-

State Circuits, vol. 48, no. 4, pp. 932–939, Apr. 2013.

[22] P.-T. Huang and W. Hwang, ―A 65 nm 0.165

fJ/bit/search 256 144 TCAM macro design for IPv6

lookup tables,‖ IEEE J. Solid-State Circuits, vol. 46,

no. 2, pp. 507–519, Feb. 2011.

[23] S. G. Narendra, L. C. Fujino, and K. Smith,

―Through the looking glass? The 2015 edition: Trends

in solid-state circuits from ISSCC,‖ IEEE SolidState

Circuits Mag., vol. 7, no. 1, pp. 14–24, Feb. 2015.

