

A Peer Reviewed Open Access International Journal

Computer Simulations of Natural Convection of Single Phase Nanofluids in Simple Enclosures

Nakkina Mary M.Tech (Thermal Engineering) Kakinada Institute of Technology and Science, Divili, Peddapuram, A.P, India. **B** Nagarjun Reddy, M.Tech

Assistant Professor Kakinada Institute of Technology and Science, Divili, Peddapuram, A.P, India. V.Satya Narayana, M.Tech

Assistant Professor, Kakinada Institute of Technology and Science, Divili, Peddapuram, A.P, India.

ABSTRACT

Recently, employing nanofluids as heattransfer agent becomes an upward trend and aconsiderable alternative to markedly enhance the heattransfer process. Effective heattransfer during heating and cooling streams is anurgent demand in chemicals, petrochemicals, and pharmaceuticals industries.

Obviously, industry relies on computersimulation as a quick and effective tool to test, monitor, analyze, and modify the individual units (e.g. heat exchangers) and the entire process performance well.

In this thesis, the natural convection heat transfer of two nanofluids with different concentrations (0.1, 0.2 and 0.5, vol% of SiC and Al_2O_3 nanoparticles in water) in different enclosures are examined using CFD analysis. Computer simulations are performed to find the Nusselt number and the heat transfer coefficient for natural convection of nanofluids in horizontal square, annulus and triangular enclosure.

3D modeling is done in Pro/Engineer and analysis is done in Ansys.

INTRODUCTION NATURAL CONVECTION

In natural convection, the fluid motion occurs by natural means such as buoyancy. Since the fluid velocity associated with natural convection is relatively low, the heat transfer Coefficient encountered in natural convection is also low.

MECHANISMS OF NATURAL CONVECTION

Consider a hot object exposed to cold air. The temperature of the outside of the object will drop (as a result of heat transfer with cold air), and the temperature of adjacent air to the object will rise. Consequently, the object is surrounded with a thin layer of warmer air and heat will be transferred from this layer to the outer layers of air.

Natural Convection heat transfer from a hot body

The temperature of the air adjacent to the hot object is higher, thus its density is lower. As a result, the heated air rises. This movement is called the natural convection current. Note that in the absence of this movement, heat transfer would be by conduction only and its rate would be much lower.

In a gravitational field, there is a net force that pushes a light fluid placed in a heavier fluid upwards. This force is called the buoyancy

Buoyancy force keeps the ship float in water

A Peer Reviewed Open Access International Journal

The magnitude of the buoyancy force is the weight of the fluid displaced by the body. Fbuoyancy = ρ fluid g Vbodywhere Vbody is the volume of the portion of the body immersed in the fluid. The net force is: Fnet = W-FbuoyancyFnet = $(\rho body-\rho fluid)$ g VbodyNote that the net force is proportional to the difference in the densities of the fluid andthe body. This is known as Archimedes' principle. We all encounter the feeling of "weight loss" in water which is caused by the buoyancyforce. Other examples are hot balloon rising, and the chimney effect.Note that the buoyancy force needs the gravity field, thus in space (where no gravityexists) the buoyancy effects does not exist.Density is a function of temperature, the variation of density of a fluid with temperatureat constant pressure can be expressed in terms of the volume expansion coefficient β , defined as: It can be shown that for an ideal gasideal gas=1/T where T is the absolute temperature. Note that the parameter $\beta \Delta T$ represents thefraction of volume change of a fluid that corresponds to a temperature change ΔT at constant pressure.Since the buoyancy force is proportional to the density difference, the larger thetemperature difference between the fluid and the body, the larger the buoyancy force willbe.Whenever two bodies in contact move relative to each other, a friction force develops at he contact surface in the direction opposite to that of the motion. Under steady conditions, the air flow rate driven by buoyancy is established by balancing the buoyancyforce with the frictional force.

3D MODELS OF ENCLOSURES ANNULAS ENCLOSURE

HORIZONTAL SQUARE ENCLOSURE

Fig - 3D Model & 2D Drawing of Horizontal Square Enclosure

Volume No: 4 (2017), Issue No: 5 (May) www.ijmetmr.com

A Peer Reviewed Open Access International Journal

TRIANGULAR ENCLOSURE

Fig - 3D Model & 2D Drawing of Triangular Enclosure

NOMENCLATURE

ρ_{nf} = Density of nano fluid (Kg/m ³)	
ρ_s = Density of solid material (Kg/m ³)	
$\rho_{\rm w}$ = Density of fluid material (water) (kg/m ³))
ϕ = Volume fraction	
C_{pw} = Specific heat of fluid material (water)	(J/kg-
k)	
$C_{ps} =$ Specific heat of solid material	(J/kg-
k)	
$\mu_w = Viscosity of fluid (water)$ (Kg/m-	s)
$\mu_{nf} = Viscosity of Nano fluid$	
(Kg/m-s)	
K_w = Thermal conductivity of fluid material ((water)
(W/m-k)	

)

 K_s = Thermal conductivity of solid material (W/m-k)

DENSITY OF NANO FLUID

 $\rho_{nf} = \phi \times \rho_s + [(1-\phi) \times \rho_w]$

SPECIFIC HEAT OF NANO FLUID

 $C_{pnf} = \frac{\phi \times \rho s \times Cps + (1 - \phi)(\rho w \times Cpw)}{\phi \times \rho s + (1 - \phi) \times \rho w}$

VISCOSITY OF NANO FLUID $\mu_{nf} = \mu_w (1 + 2.5\phi)$

THERMAL CONDUCTIVITY OF NANO FLUID

 $\mathbf{K}_{nf} = \frac{\mathbf{K}\mathbf{s} + 2\mathbf{K}\mathbf{w} + 2(\mathbf{K}\mathbf{s} - \mathbf{K}\mathbf{w})(1+\beta)^{3} \times \phi}{\mathbf{K}\mathbf{s} + 2\mathbf{K}\mathbf{w} - (\mathbf{K}\mathbf{s} - \mathbf{K}\mathbf{w})(1+\beta)^{3} \times \phi} \times \mathbf{k}_{w}$

 $\beta=0.1$ taken from journal

NANO **SILICON** CARBIDE **FLUID** PROPERTIES

Volume fraction	Thermal Conductivity(W/m-k)	Specific Heat(J/kg-k)	Density(kg/m³)	Viscosity(kg/m-s)
0.1	1.02577	1797.43	1129.98	0.120125
0.2	1.9198544	3684.33072	1361.58	0.14415
0.5	4.4777896	3685.78	2056.38	0.216225

CFD ANALYSIS OF SIMPLE ENCLOSURES BY USING NANO FLUIDS ANNULUS ENCLOSURE FLUID – SILICON CARBIDE **VOLUME FRACTION - 0.1**

Volume No: 4 (2017), Issue No: 5 (May) www.ijmetmr.com

A Peer Reviewed Open Access International Journal

Meshed model

Thermal conductivity		-	0.75w/m-k
Specific heat		-	3142.33
J/kg-k			
Density	-	1282	.38kg/m ³
Viscosity		-	0.00125kg/m-
S			

BOUNDARY CONDITIONS

inlet temperatures(t)	303K
inlet pressure(p)	101325 Pa
inlet velocity(v)	0.1524m/s

Volume No: 4 (2017), Issue No: 5 (May) www.ijmetmr.com

Pressure

Heat Transfer Co Efficient

A Peer Reviewed Open Access International Journal

Nusselt Number Heat Transfer Rate

(W)	Total Heat Transfer Rate
	contact region-src
0	contact region-tro
73252.688	inlet
-73253.336	outlet
0	wall-12
0	wall-13
-0.00061918149	wall-4
0.00083802867	wall-4-shadow
0	wall-solid
-0.64821865	Net

Mass Flow Rate

(kg/s)	Mass Flow Rate
0	contact region-src
9	contact region-trg
8.4310484	inlet
528.67706	interior-fluid
6.8429129e-10	interior-solid
-8.4312506	outlet
9	wall-12
9	wall-13
9	wall-4
9	wall-4-shadow
0	wall-solid
-0.00020217896	Net

HORIZONTAL SQUARE ENCLOSURE FLUID- SILICON CARBIDE VOLUME FRACTION 0.1

Fig – Inlet and Outlet

Pressure

A Peer Reviewed Open Access International Journal

Heat Transfer Co Efficient

Nusselt Number Heat Transfer Rate

Total Heat Transfer Rate	(W)
contact_region-src	
contact_region-trg	0
inlet	101145.45
outlet	-101147.2
wall-12	0
wall-13	0
wall-7	-0.00078287727
wall-7-shadow	-0.00070731324
wall-solid	0
Net	-1.7514902

Mass Flow Rate

Mass Flow Rate	(kg/s)
contact_region-src	0
contact_region-trg	0
inlet	11.641347
interior-fluid	721.78082
interior-solid	8.5813863e-09
outlet	-11.641155
wall-12	0
wall-13	0
wall-7	0
wall-7-shadow	0
wall-solid	0
Net	0.00019168854

TRIANGULAR ENCLOSURE FLUID – SILICON CARBIDE VOLUME FRACTION 0.1

Imported model

Meshed model

Volume No: 4 (2017), Issue No: 5 (May) www.ijmetmr.com

A Peer Reviewed Open Access International Journal

Pressure

Heat Transfer Co Efficient

Volume No: 4 (2017), Issue No: 5 (May) www.ijmetmr.com

Nusselt Number	
Heat Transfer Rate	
Total Heat Transfer Rate	(₩)
contact_region-src	
contact_region-trg	0
inlet	108323.22
outlet	-108321.34
wall-12	0
wall-13	0
wall-7	-0.061507016
wall-7-shadow	-0.0052960888
wall-solid	0
Net	1.8081969

Mass Flow Rate

Mass Flow Rate	(kg/s)
contact region-src	0
contact region-tro	0
inlet	12.467514
interior-fluid	718.83331
interior-solid	0
outlet	-12.4674
wall-12	0
wall-13	0
wall-7	0
wall-7-shadow	0
wall-solid	0
Net	0.00011444092

RESULT TABLES ANNULUS ENCLOSURE

Material	Volume fraction	Pressure (Pa)	Heat transfer coefficient (W/m²-k)	Nusselt number	Heat transfer rate(W)	Mass flow rate(Kg/s)
Sic	0.1	2.31e+01	4.71e+02	2.59e-03	-0.64821865	- 0.00020217 896
	0.2	2.77e+01	8.82e+02	2.81e-03	-5.8901059	- 0.00023365 021
	0.5	4.17e+01	2.06e+03	3.08e-03	-6.2803987	- 0.00031471 252
	0.1	4.01e-01	3.59e+02	3.66e-03	0.094213103	3.8146973e -6
Al ₂ O ₃	0.2	4.82e-01	4.60e+02	3.68e-03	1.610192	1.7166138e -05
	0.5	6.83e-01	9.77e+02	3.95e-03	2.1562943	4.1007996e -05

A Peer Reviewed Open Access International Journal

Material	Volume fraction	Pressure (Pa)	Heat transfer coefficient (W/m²-k)	Nusselt number	Heat transfer rate(W)	Mass flow rate(Kg/s)
	0.1	2.41e+01	1.05e+02	2.12e-03	-1.7514902	0.000191688 54
Sic	0.2	2.18e+02	4.98e+02	2.12e-03	-7.2031256	- 0.000326156 62
	0.5	4.88e+02	6.99e+02	3.72e-03	-40.031336	- 0.000528335 57
	0.1	4.15e-01	3.78e+02	3.41e-03	1.3313311	1.9073486e- 06
Al_2O_3	0.2	4.99e-01	4.85e+02	3.62e-03	6.7021713	3.6239624e- 05
	0.5	7.07e-01	1.03e+03	4.47e-03	8.4210931	-4.0054321e- 05

HORIZONTAL SQUARE ENCLOSURE

TRIANGULAR ENCLOSURE

Material	Volume fraction	Pressure (Pa)	Heat transfer coefficient (W/m²-k)	Nusselt number	Heat transfer rate(W)	Mass flow rate(kg/s)
Sic	0.1	3.69e+01	3.91e+01	9.13e-03	1.8081969	0.000114440 92
	0.2	3.38e+02	5.8e+01	9.88e-03	-1.9386105	0.000122070 31
	0.5	7.60e+02	2.78e+02	1.58e -02	-2.1967844	- 0.000196459 1
Al ₂ O ₃	0.1	6.39e-01	2.12e+02	7.93e-03	0.05409945 7 -	1.9073486e- 05
	0.2	7.65e-01	2.71e+02	9.21e-03	0.27699082	4.3869019e- 05
	0.5	1.09e+00	5.77e+02	1.10e-02	1.8649901	4.9591064e- 05

CONCLUSION

Computer simulations are performed to find the Nusselt number and the heat transfer coefficient for natural convection of nano fluids in horizontal square, annulus and triangular enclosure. The output values considered for comparison are pressure, heat transfer coefficient, heat transfer rate, nusselt number and mass flow rate.

By observing the results, the heat transfer coefficient, Nusselt number and heat transfer rate are increasing by increasing the volume fractions. By comparing the results between different enclosures, the heat transfer coefficient, Nusselt number and heat transfer rate are more when horizontal square enclosure is taken when SiC is used. By comparing the results between fluids, the values are better for Al_2O_3 than SiC.

So it can be concluded that using horizontal square enclosure and fluid SiC is better.

REFERENCES

[1] RajKumarBodakuntla, RajuRaoPeralaand Srinivasulu P, IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 3 Issue 8, August 2016 ISSN (Online) 2348 – 7968 | Impact Factor (2015) - 4.332.

[2] Mohamed H. Shedid, Proceedings of the International Conference on Heat Transfer and Fluid FlowPrague, Czech Republic, August 11-12, 2014Paper No. 206.

[3] M. A., A. Karimipour, Jorfian, A. Darisavi S.N. Kazi ,M.Goodarzi, H. Bohlooli, S. Gharehkhani.

[4]ArashKarimipour, Mohammad HemmatEsfe, Mohammad Reza Safaei,DavoodToghraieSemiromi, SaeedJafari, S.N. Kazi, Physic A 402 (2014) 150–168.

[5] G.S. Aglietti, and C. Schwingshackl, School of Engineering Sciences, Aeronautics and Astronautics, University of Southampton, UK.

[6] Joseph E. Blanks, William R. Saunders, Chairman Harry H. Robertshaw Douglas J. Nelson February 7, 1997 Blacksburg, Virginia.

Author Details

Nakkina Mary, received the B.tech in mechanical Gudlavalleru Engineering engineering from College, JNTU, Kakinada, Andhra Pradesh, India, in 2012 persuing THERMAL vear and M.tech in ENGINEERING from Kakinada Institute of Technology and Science, Divili, Peddapuram, Andhra pradesh, India

Sri B Nagarjun Reddy, M.Tech, Assistant Professor,Kakinada Institute of Technology And Science

Sri V.Satya Narayana, M.Tech, Assistant Professor,Kakinada Institute of Technology And Science