
 

 Page 207 
 

A Routing-Driven Elliptic Curve Cryptography Based Key 

Management Scheme for Heterogeneous Sensor Networks 
Dr.S.Makbul Hussain 

Associate Professor of Mathematics, 

Osmania College (Autonomous), Kurnool. 

G. Mahaboob Basha 

Associate Professor of Physics, 

Osmania College (Autonomous), Kurnool. 

 

ABSTRACT: 

In an olden research on sensor network security mainly 

considers homogeneous sensor networks, where all 

sensor nodes have the same capabilities. Research has 

shown that homogeneous ad hoc networks have poor 

performance and scalability. The many-to-one traffic 

pattern dominates in sensor networks, and hence a 

sensor may only communicate with a small portion of 

its neighbors. Most existing key management schemes 

try to establish shared keys for all pairs of neighbor 

sensors, no matter whether these nodes communicate 

with each other or not, and this causes large overhead. 

We propose a novel routing-driven key management 

scheme, which only establishes shared keys for 

neighbor sensors that communicate with each other. 

The performance evaluation and security analysis 

show that can provide better security with significant 

reductions on communication overhead, storage space 

and energy consumption than other key management 

schemes. 

 

INTRODUCTION: 

Wireless sensor networks have applications in many 

areas, such as military, homeland security, health care, 

environment, agriculture, manufacturing, and so on. In 

the past several years, sensor networks have been a 

very active research area. Most previous research 

efforts consider homogeneous sensor networks, where 

all sensor nodes have the same capabilities. However, 

a homogeneous ad hoc network suffers from poor 

fundamental limits and performance. Research has 

demonstrated its performance bottleneck both 

theoretically  and through simulation experiments and 

testbed measurements.  

 

 

 

Several recent work studied Heterogeneous Sensor 

Networks (HSNs), where sensor nodes have different 

capabilities in terms of communication, computation, 

energy supply, storage space, reliability and other 

aspects. Security is critical to sensor networks 

deployed in hostile environments, such as military 

battle field and security monitoring. A number of 

literatures have studied security issues in 

homogeneous sensor networks. Key management is an 

essential cryptographic primitive upon which other 

security primitives are built. Due to resource 

constraints, achieving such key agreement in wireless 

sensor networks is non-trivial. Eschenauer and Gligor 

first present a key management scheme for sensor 

networks based on probabilistic key predistribution. 

Several other key pre-distribution schemes have been 

proposed.  

 

Probabilistic key pre-distribution is a promising 

scheme for key management in sensor networks. To 

ensure such a scheme works well, the probability that 

each sensor shares at least one key with a neighbor 

sensor (referred to as key-sharing probability) should 

be high. For the key pre-distribution scheme In each 

sensor randomly selects its key ring from a key pool of 

size P. When the key pool size is large, each sensor 

needs to pre-load a large number of keys to achieve a 

high key-sharing probability. For example, when P is 

10,000, each sensor needs to pre-load more than 150 

keys for a key-sharing probability of 0.9. If the key 

length is 256 bits, then 150 keys require a storage 

space of 4,800 bytes. Such a storage requirement is too 

large for many sensor nodes. For example, a smart dust 

sensor has only 8K bytes of program memory and 512 

bytes of data memory.  



 

 Page 208 
 

The above discussion shows that many existing key 

management schemes require a large storage space for 

key predistribution and are not suitable for small 

sensor nodes. In this paper, we present an efficient key 

management scheme that only needs small storage s 

pace. The scheme achieves significant storage saving 

by utilizing 1) the fact that most sensor nodes only 

communicate with a small portion of their neighbors; 

2) an efficient public-key cryptography. Below we 

briefly discuss the two issues. More details are given 

in Sections II and III. Most existing sensor key 

management schemes are designed to set up shared 

keys for all pairs of neighbor sensors, without 

considering the actual communication pattern. In many 

sensor networks, sensor nodes are densely deployed in 

the field. One sensor could have as many as 30 or 

more neighbors. The many-to-one traffic pattern 

dominates in most sensor networks, where all sensors 

send data to one sink. Due to the many-to one traffic 

pattern, a sensor node may only communicate with 

a small portion of its neighbors, for example, neighbor 

sensors that are in the routes from itself to the sink. 

This means that a sensor node does not need shared 

keys with all neighbors. Below we give a definition 

that considers the fact. 

 

EXISTING SYSTEM: 

 An asynchronous message-passing system is 

characterized by no message transfer delay and no 

maximal round-trip delay. 

 Even if a process is allowed to use timers, there is 

no way to detect a process crash, whatever the 

time-out values it uses.  

 It is impossible to design a protocol that provides 

each process with the set of processes that are 

currently alive. 

 

DISADVANTAGE: 

 It is impossible to distinguish a crashed process 

from an active process and even it is difficult to 

identify a single process failure. 

 It is difficult to identify whether a process is 

crashed or communications are very slow.  

 No protocol is suitable  

 

PROPOSED SYSTEM: 

 The proposed model replaces the existing system 

problem by assuming on the maximum number of 

processes that could crash during a given time 

duration. 

 The assumption is processes are provided with 

non-synchronized local clocks and duration time. 

 If the processes are failed to do a message transfer 

within duration then a process is consider as 

crashed. 

 

ADVANTAGES:  

 The processes are provided with non-synchronized 

local clocks 

 The protocol is based on a simple query-response 

mechanism and the local clock of the querying 

process 

The protocol that allows to deal with heterogeneous 

networks 

 

Find the list of Processes: 

On System startup all processes are active. Every 

processes get all processes address at initial state and 

also form a group of subset. 

 

Message Transfer 

An Active Process may send a message to set of 

processes or to a single process. 

 

Detecting a crashed Processes 

A process does not response an arrived is considered 

as a crashed process. An estimate of the set of crashed 

processes can easily be computed by subtracting from 

this set. 

 

 Message Transfer to Alive  

 A process does response an arrived is considered as an 

Alive and also doing its current execution. 

 

 

 



 

 Page 209 
 

A Local Clock-Based Protocol 

This section adapts the previous protocol to a setting 

without a global clock, each process being provided 

only with a local clock. As the local clocks are not 

synchronized, each clock is a “purely” local object 

(which means that the value of a given clock is 

meaningless outside its process). The problem 

consists, for each process pi, in associating a local date 

_i with each set esti:set, such that _i is as recent as 

possible, and all the processes that belong to esti:set 

were alive at time _i (assuming an external observer 

that uses the local clock of pi to timestamp all the 

events that occur in the system). As soon as such a 

time value is determined, pican use it to compute an 

approximation of the number of processes that can 

have crashed since the last computationof esti:set (as 

done at lines 03 and 04 of the global timebased 

protocol described in Fig. 1). Local Variables. To 

attain the previous goal, each process is provided with 

some of the previous data structures plus new ones.  

esti: This local variable is the same as the previous.  

 

It has two fields esti:set and esti:date with the same 

meaning. The only difference is that now esti:date 

refers to a local date defined from the local clock of 

pi.. rec fromi: This local variable is now a simple set 

whose meaning is the same as rec fromi:set in the 

previous protocol. Each process maintains two 

additional local arrays, denoted helping datei½1::n_ 

and last datei½1::n_. Their meaning is the following: 

When a process pj returns a response to a query issued 

by pi, it sends its current local time value  When it 

receives that time value (that is meaningful only for 

pj), pi stores it as last datei½j_ (line 05). In that way, 

pi is able to indicate to pj the date (measured with pj’s 

local clock) at which pj sent itslast response to pi. 

Unfortunately (as we will see in Theorem 4), this is not 

sufficient to guarantee the property stated above 

relating esti:set and esti:date (all the processes of 

esti:set were alive at _i ¼ esti:date). We need to send 

back to pj not the last date, but the previous one. That 

date is kept by pi in helping datei½j_. Process 

Behavior. The behavior of pi is described in Fig. 2. 

It is nearly the same as the behavior defined for the 

global time-based protocol. When pi sends a response 

message to pj, it sends the current value of the set rec 

fromi, the current value of its local clock (to be 

helped). 

 

The routing structure in Hsns: 

In this Section, we present an efficient key 

management scheme for HSNs which utilizes the 

special communication pattern in sensor networks and 

ECC. The scheme is referred to as ECC-based key 

management scheme. We consider an HSN consisting 

of two types of sensors: a small number of high-end 

sensors (H-sensors) and a large number of low-end 

sensors (L-sensors). Both H-sensors and L-sensors are 

powered by batteries and have limited energy supply. 

Clusters are formed in an HSN. For an HSN, it is 

natural to let powerful H-sensors serve as cluster heads 

and form clusters around them. First, we list the 

assumptions of HSNs below.  

 

1) Due to cost constraints, L-sensors are NOT 

equipped with tamper-resistant hardware. Assume that 

if an adversary compromises an L-sensor, she can 

extract all 

key material, data, and code stored on that node. 

 

2) H-sensors are equipped with tamper-resistant 

hardware. It is reasonable to assume that powerful H-

sensors are equipped with the technology. In addition, 

the number of H-sensors in an HSN is small (e.g., 20 

H-sensors and 1,000 L-sensors in an HSN). Hence, the 

total cost of tamper-resistant hardware in an HSN is 

low. 

 

3) Each L-sensor (and H-sensor) is static and aware of 

its own location. Sensor nodes can use a secure 

location service such as to estimate their locations, and 

no GPS receiver is required at each node. 

 

4) Each L-sensor (and H-sensor) has a unique node ID. 

 

 



 

 Page 210 
 

CONCLUSION: 

The fly determination of which processes are alive in 

an asynchronous-distributed system. To that end, the 

paper proposes to replace the traditional parameter t 

(that is assumed to define an upper bound on the 

number of processes that can crash during an 

execution) by a function that returns an estimate of the 

number of processes that can crash during a period of 

_ time units. The paper has proposed two protocols. 

The first is based on a global clock. The second uses 

only nonsynchronized local clocks (a local clock is 

used only to allow a process to measure durations). A 

simulation study has shown that these protocols ensure 

a pretty good quality of service in the sense that an 

alive process never remains suspected for a long time, 

while the crashed processes are quickly suspected. 

 

REFERENCES: 

[1] M. Ben-Or, “Another Advantage of Free Choice: 

Completely Asynchronous Agreement Protocols,” 

Proc. Second ACM Symp. Principles of Distributed 

Computing. 

 

[2] N.A. Lynch, Distributed Algorithms, p. 872. 

Morgan Kaufmann Publishers, 1996. 

 

[3] T. Chandra and S. Toueg, “Unreliable Failure 

Detectors for Reliable Distributed Systems,”. 

 

[4] F. Cristian and C. Fetzer, “The Timed 

Asynchronous Distributed System Model,”. 

 

[5] C. Dwork, N. Lynch, and L. Stockmeyer, 

“Consensus in the Presence of Partial Synchrony,”. 


