

 Page 698

An Efficient Evaluation Scalable Management of RDF Data in the

Cloud
Swapna Gangapuram

HOD,

Department of CSE,

Siddhartha Institute of Technology & Sciences.

B.Pragathi

M.Tech Student,

Department of CSE,

Siddhartha Institute of Technology & Sciences.

Abstract:

Despite recent advances in distributed Resource

Description Frame work (RDF) data management,

processing large-amounts of RDF data in the cloud is

still very challenging. In spite of its seemingly simple

data model, RDF actually encodes rich and complex

graphs mixing both instance and schema-level data.

Sharing such data using classical techniques or

partitioning the graph using traditional min-cut

algorithms leads to very inefficient distributed

operations and to a high number of joins. In this paper,

we describe Diplo Cloud, an efficient and scalable

distributed RDF data management system for the

cloud. Contrary to previous approaches, Diplo Cloud

runs a physiological analysis of both instance and

schema information prior to partitioning the data. In

this paper, we describe the architecture of Diplo

Cloud, its main data structures, as well as the new

algorithms we use to partition and distribute data. We

also present an extensive evaluation of Diplo Cloud

showing that our system is often two orders of

magnitude faster than state-of-the-art systems on

standard workloads.

Keywords:

RDF, triple stores, cloud computing, Big data

Introduction:

The advent of cloud computing enables to easily and

cheaply provision computing resources, for example to

test a new application or to scale a current software

installation elastically. The complexity of scaling out

an application in the cloud (i.e., adding new computing

nodes to accommodate the growth of some process)

very much depends on the process to be scaled.

Often, the task at hand can be easily split into a large

series of subtasks to be run independently and

concurrently. Such operations are commonly called

embarrassingly parallel. Embarrassingly parallel

problems can be relatively easily scaled out in the

cloud by launching new processes on new commodity

machines. There are however many processes that are

much more difficult to parallelize, typically because

they consist of sequential processes (e.g., processes

based on numerical methods such as Newton’s

method). Such processes are called inherently

sequential as their running time cannot be sped up

significantly regardless of the number of processors or

machines used. Some problems, finally, are not

inherently sequential per se but are difficult to

parallelize in practice because of the profusion of

inter-process traffic they generate.

Scaling out structured data processing often falls in the

third category. Traditionally, relational data processing

is scaled out by partitioning the relations and rewriting

the query plans to reorder operations and use

distributed versions of the operators enabling intra-

operator parallelism. While some operations are easy

to parallelize (e.g., large scale, distributed counts),

many operations, such as distributed joins, are more

complex to parallelize because of the resulting traffic

they potentially generate. While much more recent

than relational data management, RDF data

management has borrowed many relational techniques;

Many RDF systems rely on hash-partitioning (on triple

or property tables) and on distributed selections,

projections, and joins. Our own Grid- Vine system was

one of the first systems to do so in the context of large-

scale decentralized RDF management.

 Page 699

Hash partitioning has many advantages, including

simplicity and effective load-balancing. However, it

also generates much inter-process traffic, given that

related triples (e.g., that must be selected and then

joined) end up being scattered on all machines. In this

article, we propose DiploCloud, an efficient,

distributed and scalable RDF data processing system

for distributed and cloud environments. Contrary to

many distributed systems, DiploCloud uses a

resolutely non-relational storage format, where

semantically related data patterns are mined both from

the instance-level and the schema-level data and get

co-located to minimize inter-node operations.

The main contributions of this article are:

 a new hybrid storage model that efficiently and

effectively partitions an RDF graph and physically

co-locates related instance data; · a new system

architecture for handling fine-grained RDF

partitions in large-scale;

 novel data placement techniques to co-locate

semantically related pieces of data; new data

loading and query execution strategies taking

advantage of our system’s data partitions and

indices;

 an extensive experimental evaluation showing that

our system is often two orders of magnitude faster

than state-of-the-art systems on standard

workloads . DiploCloud builds on our previous

approach diplodocus ½RDF, an efficient single

node triple store. The system was also extended in

TripleProv to support storing, tracking, and

querying provenance in RDF query processing.

Related Work:

Many approaches have been proposed to optimize

RDF storage and SPARQL query processing; we list

below a few of the most popular approaches and

systems. We refer the reader to recent surveys of the

field for a more comprehensive coverage. Approaches

for storing RDF data can be broadly categorized in

three subcategories: triple-table approaches, property-

table approaches, and graph-based approaches.

Since RDF data can be seen as sets of subject-

predicate-object triples, many early approaches used a

giant triple table to store all data. Hexastore suggests

to index RDF data using six possible indices, one for

each permutation of the set of columns in the triple

table. RDF-3X and YARS follow a similar approach.

BitMat maintains a three-dimensional bit-cube where

each cell represents a unique triple and the cell value

denotes presence or absence of the triple. Various

techniques propose to speed-up RDF query processing

by considering structures clustering RDF data based on

their properties. Wilkinson et al. propose the use of

two types of property tables: one containing clusters of

values for properties that are often co-accessed

together, and one exploiting the type property of

subjects to cluster similar sets of subjects together in

the same table.

Owens et al. propose to store data in three B+-tree

indexes. They use SPO, POS, and OSP permutations,

where each index contains all elements of all triples.

They divide a query to basic graph patterns which are

then matched to the stored RDF data. A number of

further approaches propose to store RDF data by

taking advantage of its graph structure. Yan et al.

suggest to divide the RDF graph into subgraphs and to

build secondary indices (e.g., Bloom filters) to quickly

detect whether some information can be found inside

an RDF subgraph or not.

Ding et al. suggest to split RDF data into subgraphs

(molecules) to more easily track provenance data by

inspecting blank nodes and taking advantage of a

background ontology and functional properties .Das et

al. in their system called gStore organize data in

adjacency list tables. Each vertex is represented as an

entry in the table with a list of its outgoing edges and

neighbors. To index vertices, they build an S-tree in

their adjacency list table to reduce the search space.

Brocheler et al. propose a balanced binary tree where

each node containing a sub graph is located on one

disk page.

 Page 700

Distributed RDF query processing is an active field of

research. Beyond SPARQL federations approaches

(which are outside of the scope of this paper), we cite a

few popular approaches below. Like an increasing

number of recent systems, The Hadoop Distributed

RDF Store (HDRS) uses Map Reduce to process

distributed RDF data. RAPID+ extends Apache Pig

and enables more efficient SPARQL query processing

on Map Reduce using an alternative query algebra.

Their storage model is a nested hash-map. Data is

grouped around a subject which is a first level key in

the map i.e. the data is co-located for a shared subject

which is a hash value in the map. The nested element

is a hash map with predicate as a key and object as a

value.

Sempala builds on top of Impala stores data in a wide

unified property tables keeping one star-like shape per

row. The authors split SPARQL queries to simple

Basic Graph Patterns and rewrite them to SQL,

following they compute a natural join if needed. Jena

HBase2 uses the HBase popular wide-table system to

implement both triple-table and property-table

distributed storage. Its data model is a column oriented

,sparse, multi-dimensional sorted map. Columns are

grouped into column families and timestamps add an

additional dimension to each cell. Cumulus RDF3 uses

Cassandra and hash-partitioning to distribute the RDF

tiples.

It stores data as four indices (SPO, PSO, OSP, CSPO)

to support a complete index on triples and lookups on

named graphs (contexts). We recently worked on an

empirical evaluation to determine the extent to which

such noSQL systems can be used to manage RDF data

in the cloud4 . Our previous Grid Vine system uses a

triple-table storage approach and hash-partitioning to

distribute RDF data over decentralized P2P networks.

YARS2,5 Virtuoso6 , 4store , and SHARD hash

partition triples across multiple machines and

parallelize the query processing. Virtuoso by Erlin et

al. stores data as RDF quads consisting of the

following elements: graph, subject, predicate, and

object. All the quads are persisted in one table and the

data is partitioned based on the subject. Virtuoso

implements two indexes. The default index (set as a

primary key) is GSPO (Graph, Subject, Predicate,

Object) and an auxiliary bitmap index (OPGS). A

similar approach is proposed by Harris et al., where

they apply a simple storage model storing quads of

(model, subject, predicate, object). Data is partitioned

as non overlapping sets of records among segments of

equal subjects; segments are then distributed among

nodes with a round-robin algorithm.

They maintain a hash table of graphs where each entry

points to a list of triples in the graph. Additionally, for

each predicate, two radix tries are used where the key

is either subject or object, and respectively object or

subject and graph are stored as entries (they hence can

be seen as traditional P:OS and P:SO indices). Literals

are indexed in a separate hash table and they are

represented as (S,P, O/Literal). SHARD keeps data on

HDFS as star-like shape centering around a subject

and all edges from this node. It introduces a clause

iteration algorithm the main idea of which is to iterate

over all clauses and incrementally bind variables and

satisfy constrains.

Storage Model

Our storage system in DiploCloud can be seen as a

hybrid structure extending several of the ideas from

above. Our system is built on three main structures:

RDF molecule clusters (which can be seen as hybrid

structures borrowing both from property tables and

RDF subgraphs), template lists (storing literals in

compact lists as in a column-oriented database system)

and an efficient key index indexing URIs and literals

based on the clusters they belong to. Contrary to the

property-table and column-oriented approaches, our

system based on templates and molecules is more

elastic, in the sense that each template can be modified

dynamically, for example following the insertion of

new data or a shift in the workload, without requiring

to alter the other templates or molecules.

 Page 701

In addition, we introduce a unique combination of

physical structures to handle RDF data both

horizontally (to flexibly co-locate entities or values

related to a given instance) as well as vertically (to co-

locate series of entities or values attached to similar

instances). Molecule clusters are used in two ways in

our system: to logically group sets of related URIs and

literals in the hash table (thus, pre-computing joins),

and to physically co-locate information relating to a

given object on disk and in main memory to reduce

disk and CPU cache latencies. Template lists are

mainly used for analytics and aggregate queries, as

they allow to process long lists of literals efficiently.

Key Index:

The Key Index is the central index in DiploCloud; it

uses a lexicographical tree to parse each incoming URI

or literal and assign it a unique numeric key value. It

then stores, for every key and every template ID, an

ordered list of all the clusters IDs containing the key

(e.g., ―key 10011, corresponding to a Course object

[template ID], appears in clusters 1011, 1100 and

1101‖. This may sound like a pretty peculiar way of

indexing values, but we show below that this actually

allows us to execute many queries very efficiently

simply by reading or intersecting such lists in the hash

table directly. The key index is responsible for

encoding all URIs and literals appearing in the triples

into a unique system id (key),and back. We use a

tailored lexicographic tree to parse URI sand literals

and assign them a unique numeric ID.

The lexicographic tree we use is basically a prefix tree

splitting the URIs or literals based on their common

prefixes (since many URIs share the same prefixes)

such that each substring prefix is stored once and only

once in the tree. A key ID is stored at every leaf, which

is composed of a type prefix (encoding the type of the

element, e.g., Student or xsd : date) and of an auto-

incremented instance identifier. This prefix trees allow

us to completely avoid potential collisions (caused for

instance when applying hash functions on very large

datasets),and also let us compactly co-locate both type

and instance ids into one compact key. A second

structure translates the keys back into their original

form. It is composed of a set of inverted indices (one

per type), each relating an instance ID to its

corresponding URI / literal in the lexicographic tree in

order to enable efficient key look-ups.

Templates:

One of the key innovations of DiploCloud revolves

around the use of declarative storage patterns [36] to

efficiently collocate large collections of related values

on disk and in main-memory. When setting up a new

database, the database administrator may give

DiploCloud a few hints as to how to store the data on

disk: the administrator can give a list of triple patterns

to specify the root nodes, both for the template lists

and the molecule clusters (see for instance Fig. 1,

where ―Student‖ is the root node of the molecule, and

―Student ID‖ is the root node for the template list).

Cluster roots are used to determine which clusters to

create: a new cluster is created for each instance of a

root node in the database. The clusters contain all

triples departing from the root node when traversing

the graph, until another instance of a root node is

crossed (thus, one can join clusters based on their root

nodes).

Template roots are used to determine which literals to

store in template lists. Based on the storage patterns,

the system handles two main operations in our system:

i) it maintains a schema of triple templates in main-

memory and ii) it manages template lists. Whenever a

new triples enters the system, it associates template

IDs corresponding to the triple by considering the type

of the subject, the predicate, and the type of the object.

Each distinct list of ―(subject-type, predicate, object

type)‖ defines a new triple template. The triple

templates play the role of an instance-based RDF

schema in our system. We don’t rely on the explicit

RDF schema to define the templates, since a large

proportions of constraints (e.g., domains, ranges) are

often omitted in the schema (as it is for example the

case for the data we consider in our experiments).

 Page 702

In case a new template is detected (e.g., a new

predicate is used), then the template manager updates

its in-memory triple template schema and inserts new

template IDs to reflect the new pattern it discovered. In

case of very inhomogeneous data sets containing

millions of different triple templates, wildcards can be

used to regroup similar templates (e.g., ―Student - likes

- *‖). Note that this is very rare in practice, since all

the datasets we encountered so far (even those in the

LOD cloud) typically consider a few thousands triple

templates at most. Afterwards, the system inserts the

triple in one or several molecules. If the triple’s object

corresponds to a root. A template list, the object is

also inserted into the template list corresponding to its

template ID. Templates lists store literal values along

with the key of their corresponding cluster root. They

are stored compactly and segmented in sub lists, both

on disk and in main-memory. Template lists are

typically sorted by considering a lexical order on their

literal values—though other orders can be specified by

the database administrator when he declares the

template roots. In that sense, template lists are

reminiscent of segments in a column-oriented database

system.

System Overview

Diplo-Cloud is a native, RDF database system. It was

designed to run on clusters of commodity machines in

order to scale out gracefully when handling bigger

RDF datasets. Our system design follows the

architecture of many modern cloud based distributed

systems (e.g., Google’s Big Table), where one

(Master) node is responsible for interacting with the

clients and orchestrating the operations performed by

the other (Worker) nodes.

Master Node:

The Master node is composed of three main sub

components: a key index (c.f.), in charge of encoding

URIs and literals into compact system identifiers and

of translating them back, a partition manager (c.f.),

responsible for partitioning the RDF data into

recurring subgraphs, and a distributed query executor

(c.f.), responsible for parsing the incoming query,

rewriting the query plans for the Workers, collecting

and finally returning the results to the client. Note that

the Master node can be replicated whenever necessary

to insure proper query load-balancing and fault

tolerance. The Master can also be duplicated to scale

out the key index for extremely large datasets, or to

replicate the dataset on the Workers using different

partitioning schemes (in that case, each new instance

of the Master is responsible for one partitioning

scheme).

Worker Nodes:

The Worker nodes hold the partitioned data and its

corresponding local indices, and are responsible for

running sub queries and sending results back to the

Master node. Conceptually, the Workers are much

simpler than the Master node and are built on three

main data structures: i) a type index, clustering all keys

based on their types ii) a series of RDF molecules,

storing RDF data as very compact sub graphs, and iii)

a molecule index, storing for each key the list of

molecules where the key can be found.

DATA PARTITIONING AND ALLOCATION

Triple-table and property-table hash-partitioning are

currently the most common partitioning schemes for

distributed RDF systems. While simple, such hash-

partitioning almost systematically implies some

distributed coordination overhead (e.g., to execute

joins/path traversals on the RDF graph), thus making it

inappropriate for most large-scale clusters and cloud

computing environments exhibiting high network

latencies. The other two standard relational

partitioning techniques, (tuple) round-robin and range

partitioning, are similarly flawed for the data and

setting we consider, since they would partition triples

either at random or based on the subject URI/type,

hence seriously limiting the parallelism of most

operators (e.g., since many instances sharing the same

type would end up on the same node). Partitioning

RDF data based on standard graph partitioning

techniques is also from our perspective inappropriate

 Page 703

in a cloud context, for three main reasons: Loss of

semantics: standard graph partitioning tools consider

unlabeled graphs mostly, and hence are totally

agnostic to the richness of an RDF graph including

classes of nodes and edges. Loss of parallelism:

partitioning an RDF graph based, for instance, on a

min-cut algorithm will lead to very coarse partitions

where a high number of related instances (for instance

linked to the same type or sharing links to the same

objects) will be co-located, thus drastically limiting the

degree of parallelism of many operators (e.g.,

projections or selections on certain types of

instances).Limited scalability: finally, attempting to

partition very large RDF graphs is unrealistic in cloud

environments, given that state-of-the-art graph

partitioning techniques are inherently centralized and

data/CPU intensive (as an anecdotal evidence, we had

to borrow a powerful server and let it run for several

hours to partition the largest dataset we use in

METIS).DiploCloud has been conceived from the

ground up to support distributed data partitioning and

co-location schemes in an efficient and flexible way.

DiploCloud adopts an intermediate solution between

tuple-partitioning and graph-partitioning by opting for

a recurring, fine-grained graph-partitioning technique

taking advantage of molecule templates. Diplo Cloud’s

molecule templates capture recurring patterns

occurring in the RDF data naturally, by inspecting both

the instance-level (physical) and the schema-level

(logical) data, hence the expression physiological9

partitioning.

Physiological Data Partitioning:

We now define the three main molecule-based data

partitioning techniques supported by our system:

Scope-k molecules. The simplest method is to

manually define a number of template types (by

default the system considers all types) serving as root

nodes for the molecules, and then to co-locate all

further nodes that are directly or indirectly connected

to the roots, up to given scope k.Scope-1 molecules,

for example, co-locate in the molecules all root nodes

with their direct neighbors (instances or literals) as

defined by the templates. Scope-2 or 3 molecules

concatenate compatible templates from the root node

(e.g.,ð student; takes; courseÞ and ðcourse; hasid; xsd :

integerÞ) recursively up to depth k to materialize the

joins around each root, at the expense of rapidly

increasing storage costs since much data is typically

replicated in that case. The scope of the molecules is

defined in this case manually and involves data

duplication. All data above Scope-1 is duplicated; this

is the price to pay in order to benefit from pre-

computed joins inside the molecules, which

significantly increases query execution performance as

we show in the following. Manual partitioning. Root

nodes and the way to concatenate the various

templates can also be specified by hand by the

database administrator, who just has to write a

configuration file specifying the roots and the way

templates should be concatenated to define the generic

shape of each molecule type. Using this technique, the

administrator basically specifies, based on resource

types, the exact path following which molecules

should be physically extended.

Fig.. A molecule template (i) along with one of its

RDF molecules (ii).

 Page 704

The system then automatically duplicates data

following the administrator’s specification and pre-

computes all joins inside the molecules. This is

typically the best solution for relatively stable datasets

and workloads whose main features are well-known.

Adaptive partitioning. Finally, Diplo Cloud’s most

flexible partitioning algorithm starts by defining

scope-1 molecules by default, and then adapts the

templates following the query workload. The system

maintains a sliding-window w tracking the recent

history of the workload, as well as related statistics

about the number of joins that had to be performed and

the incriminating edges (e.g., missing co-location

between students and courses causing a large number

of joins). Then at each time epoch , the system: i)

expands one molecule template by selectively

concatenating the edges (rules) that are responsible for

the most joins up to a given threshold for their

maximal depth and ii) decreases (up to scope-1) all

extended molecules whose extensions were not

queried during the last epoch.

In that way, our system slowly adapts to the workload

and materializes frequent paths in the RDF graph

while keeping the overall size of the molecules small.

Similarly to the two previous techniques, when the

scope of a molecule is extended, the system duplicates

the relevant pieces of data and pre-computes the joins.

The advantage of this method is that it begins with

relatively simple and compact data structures and then

automatically adapts to the dynamic workload by

increasing and decreasing the scope of specific

molecules, i.e., by adding and removing pre-computed

paths based on template specifications. In the case of a

very dynamic workload, the system will not adapt the

structures in order to avoid frequent rewriting costs

that would not by easily amortized by the

improvement in query processing.

Conclusion:

DiploCloud is an efficient and scalable system for

managing RDF data in the cloud.

From our perspective, it strikes an optimal balance

between intra-operator parallelism and data co-location

by considering recurring, fine-grained physiological

RDF partitions and distributed data allocation

schemes, leading however to potentially bigger data

(redundancy introduced by higher scopes or adaptive

molecules) and to more complex inserts and updates.

DiploCloud is particularly suited to clusters of

commodity machines and cloud environments where

network latencies can be high, since it systematically

tries to avoid all complex and distributed operations

for query execution. Our experimental evaluation

showed that it very favorably compares to state-of-the-

art systems in such environments. We plan to continue

developing DiploCloud in several directions: First, we

plan to include some further compression mechanisms

(e.g., HDT). We plan to work on an automatic

templates discovery based on frequent patterns and un-

typed elements. Also, we plan to work on integrating

an inference engine into DiploCloud to support a

larger set of semantic constraints and queries natively.

Finally, we are currently testing and extending our

system with several partners in order to manage

extremely-large scale, distributed RDF datasets in the

context of bioinformatics applications.

Future Enhancement:

Many RDF systems rely on hash-partitioning and on

distributed selections, projections, and joins. Our own

Grid Vine system was one of the first systems to do so

in the context of large-scale decentralized RDF

management.

References:

[1] K. Aberer, P. Cudre-Mauroux, M. Hauswirth, and

T. van Pelt, ―GridVine: Building Internet-scale

semantic overlay networks,‖ in Proc. Int. Semantic

Web Conf., 2004, pp. 107–121.

[2] P. Cudr_e-Mauroux, S. Agarwal, and K. Aberer,

―GridVine: An infrastructure for peer information

management,‖ IEEE Internet Comput., vol. 11, no. 5,

pp. 36–44, Sep./Oct. 2007.

 Page 705

[3] M. Wylot, J. Pont, M. Wisniewski, and P. Cudr_e-

Mauroux. (2011). dipLODocus[RDF]: Short and long-

tail RDF analytics for massive webs of data. Proc. 10th

Int. Conf. Semantic Web - Vol. Part I, pp. 778–793

[Online]. Available:

http://dl.acm.org/citation.cfm? id=2063016.2063066

[4] M. Wylot, P. Cudre-Mauroux, and P. Groth,

―TripleProv: Efficient processing of lineage queries in

a native RDF store,‖ in Proc. 23
rd

 Int. Conf. World

Wide Web, 2014, pp. 455–466.

[5] M. Wylot, P. Cudr_e-Mauroux, and P. Groth,

―Executing provenance- enabled queries over web

data,‖ in Proc. 24th Int. Conf. World Wide Web, 2015,

pp. 1275–1285.

[6] B. Haslhofer, E. M. Roochi, B. Schandl, and S.

Zander. (2011). Europeana RDF store report. Univ.

Vienna, Wien, Austria, Tech. Rep. [Online].

Available:

http://eprints.cs.univie.ac.at/2833/1/europeana_ts_repo

rt.pdf

[7] Y. Guo, Z. Pan, and J. Heflin, ―An evaluation of

knowledge base systems for large OWL datasets,‖ in

Proc. Int. Semantic Web Conf., 2004, pp. 274–288.

[8] Faye, O. Cure, and Blin, ―A survey of RDF storage

approaches,‖ ARIMA J., vol. 15, pp. 11–35, 2012.

[9] B. Liu and B. Hu, ―An Evaluation of RDF Storage

Systems for Large Data Applications,‖ in Proc. 1st Int.

Conf. Semantics, Knowl. Grid, Nov. 2005, p. 59.

[10] Z. Kaoudi and I. Manolescu, ―RDF in the clouds:

A survey,‖ VLDB J. Int. J. Very Large Data Bases,

vol. 24, no. 1, pp. 67–91, 2015.

[11] C. Weiss, P. Karras, and A. Bernstein,

―Hexastore: sextuple indexing for semantic web data

management,‖ Proc. VLDB Endowment, vol. 1, no. 1,

pp. 1008–1019, 2008.

[12] T. Neumann and G. Weikum, ―RDF-3X: A RISC-

style engine for RDF,‖ Proc. VLDB Endowment, vol.

1, no. 1, pp. 647–659, 2008.

[13] A. Harth and S. Decker, ―Optimized index

structures for querying RDF from the web,‖ in Proc.

IEEE 3rd Latin Am. Web Congr., 2005, pp. 71–80.

[14] M. Atre and J. A. Hendler, ―BitMat: A main

memory bit-matrix of RDF triples,‖ in Proc. 5th Int.

Workshop Scalable Semantic Web Knowl. Base Syst.,

2009, p. 33.

[15] K. Wilkinson, C. Sayers, H. A. Kuno, and D.

Reynolds, ―Efficient RDF Storage and Retrieval in

Jena2,‖ in Proc. 1st Int. Workshop Semantic Web

Databases, 2003, pp. 131–150.

http://dl.acm.org/citation.cfm

