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Abstract: 

Despite recent advances in distributed Resource 

Description Frame work (RDF) data management, 

processing large-amounts of RDF data in the cloud is 

still very challenging. In spite of its seemingly simple 

data model, RDF actually encodes rich and complex 

graphs mixing both instance and schema-level data. 

Sharing such data using classical techniques or 

partitioning the graph using traditional min-cut 

algorithms leads to very inefficient distributed 

operations and to a high number of joins. In this paper, 

we describe Diplo Cloud, an efficient and scalable 

distributed RDF data management system for the 

cloud. Contrary to previous approaches, Diplo Cloud 

runs a physiological analysis of both instance and 

schema information prior to partitioning the data. In 

this paper, we describe the architecture of Diplo 

Cloud, its main data structures, as well as the new 

algorithms we use to partition and distribute data. We 

also present an extensive evaluation of Diplo Cloud 

showing that our system is often two orders of 

magnitude faster than state-of-the-art systems on 

standard workloads.  
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Introduction: 

The advent of cloud computing enables to easily and 

cheaply provision computing resources, for example to 

test a new application or to scale a current software 

installation elastically. The complexity of scaling out 

an application in the cloud (i.e., adding new computing 

nodes to accommodate the growth of some process) 

very much depends on the process to be scaled.  

 

Often, the task at hand can be easily split into a large 

series of subtasks to be run independently and 

concurrently. Such operations are commonly called 

embarrassingly parallel. Embarrassingly parallel 

problems can be relatively easily scaled out in the 

cloud by launching new processes on new commodity 

machines. There are however many processes that are 

much more difficult to parallelize, typically because 

they consist of sequential processes (e.g., processes 

based on numerical methods such as Newton’s 

method). Such processes are called inherently 

sequential as their running time cannot be sped up 

significantly regardless of the number of processors or 

machines used. Some problems, finally, are not 

inherently sequential per se but are difficult to 

parallelize in practice because of the profusion of 

inter-process traffic they generate.  

 

Scaling out structured data processing often falls in the 

third category. Traditionally, relational data processing 

is scaled out by partitioning the relations and rewriting 

the query plans to reorder operations and use 

distributed versions of the operators enabling intra-

operator parallelism. While some operations are easy 

to parallelize (e.g., large scale, distributed counts), 

many operations, such as distributed joins, are more 

complex to parallelize because of the resulting traffic 

they potentially generate. While much more recent 

than relational data management, RDF data 

management has borrowed many relational techniques; 

Many RDF systems rely on hash-partitioning (on triple 

or property tables) and on distributed selections, 

projections, and joins. Our own Grid- Vine system was 

one of the first systems to do so in the context of large-

scale decentralized RDF management.  
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Hash partitioning has many advantages, including 

simplicity and effective load-balancing. However, it 

also generates much inter-process traffic, given that 

related triples (e.g., that must be selected and then 

joined) end up being scattered on all machines. In this 

article, we propose DiploCloud, an efficient, 

distributed and scalable RDF data processing system 

for distributed and cloud environments. Contrary to 

many distributed systems, DiploCloud uses a 

resolutely non-relational storage format, where 

semantically related data patterns are mined both from 

the instance-level and the schema-level data and get 

co-located to minimize inter-node operations. 

 

The main contributions of this article are:  

 a new hybrid storage model that efficiently and 

effectively partitions an RDF graph and physically 

co-locates related instance data; · a new system 

architecture for handling fine-grained RDF 

partitions in large-scale;  

 novel data placement techniques to co-locate 

semantically related pieces of data; new data 

loading and query execution strategies taking 

advantage of our system’s data partitions and 

indices;  

 an extensive experimental evaluation showing that 

our system is often two orders of magnitude faster 

than state-of-the-art systems on standard 

workloads . DiploCloud builds on our previous 

approach diplodocus ½RDF, an efficient single 

node triple store. The system was also extended in 

TripleProv to support storing, tracking, and 

querying provenance in RDF query processing. 

 

Related Work: 

Many approaches have been proposed to optimize 

RDF storage and SPARQL query processing; we list 

below a few of the most popular approaches and 

systems. We refer the reader to recent surveys of the 

field for a more comprehensive coverage. Approaches 

for storing RDF data can be broadly categorized in 

three subcategories: triple-table approaches, property- 

table approaches, and graph-based approaches.  

Since RDF data can be seen as sets of subject-

predicate-object triples, many early approaches used a 

giant triple table to store all data. Hexastore  suggests 

to index RDF data using six possible indices, one for 

each permutation of the set of columns in the triple 

table. RDF-3X  and YARS  follow a similar approach. 

BitMat maintains a three-dimensional bit-cube where 

each cell represents a unique triple and the cell value 

denotes presence or absence of the triple. Various 

techniques propose to speed-up RDF query processing 

by considering structures clustering RDF data based on 

their properties. Wilkinson et al.  propose the use of 

two types of property tables: one containing clusters of 

values for properties that are often co-accessed 

together, and one exploiting the type property of 

subjects to cluster similar sets of subjects together in 

the same table.  

 

Owens et al. propose to store data in three B+-tree 

indexes. They use SPO, POS, and OSP permutations, 

where each index contains all elements of all triples. 

They divide a query to basic graph patterns  which are 

then matched to the stored RDF data. A number of 

further approaches propose to store RDF data by 

taking advantage of its graph structure. Yan et al.  

suggest to divide the RDF graph into subgraphs and to 

build secondary indices (e.g., Bloom filters) to quickly 

detect whether some information can be found inside 

an RDF subgraph or not.  

 

Ding et al.  suggest to split RDF data into subgraphs 

(molecules) to more easily track provenance data by 

inspecting blank nodes and taking advantage of a 

background ontology and functional properties .Das et 

al. in their system called gStore  organize data in 

adjacency list tables. Each vertex is represented as an 

entry in the table with a list of its outgoing edges and 

neighbors. To index vertices, they build an S-tree in 

their adjacency list table to reduce the search space.  

 

Brocheler et al. propose a balanced binary tree where 

each node containing a sub graph is located on one 

disk page.  
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Distributed RDF query processing is an active field of 

research. Beyond SPARQL federations approaches 

(which are outside of the scope of this paper), we cite a 

few popular approaches below. Like an increasing 

number of recent systems, The Hadoop Distributed 

RDF Store (HDRS) uses Map Reduce to process 

distributed RDF data. RAPID+ extends Apache Pig 

and enables more efficient SPARQL query processing 

on Map Reduce using an alternative query algebra. 

Their storage model is a nested hash-map. Data is 

grouped around a subject which is a first level key in 

the map i.e. the data is co-located for a shared subject 

which is a hash value in the map. The nested element 

is a hash map with predicate as a key and object as a 

value.  

 

Sempala  builds on top of Impala stores data in a wide 

unified property tables keeping one star-like shape per 

row. The authors split SPARQL queries to simple 

Basic Graph Patterns and rewrite them to SQL, 

following they compute a natural join if needed. Jena 

HBase2 uses the HBase popular wide-table system to 

implement both triple-table and property-table 

distributed storage. Its data model is a column oriented 

,sparse, multi-dimensional sorted map. Columns are 

grouped into column families and timestamps add an 

additional dimension to each cell. Cumulus RDF3 uses 

Cassandra and hash-partitioning to distribute the RDF 

tiples.  

 

It stores data as four indices  (SPO, PSO, OSP, CSPO) 

to support a complete index on triples and lookups on 

named graphs (contexts). We recently worked on an 

empirical evaluation to determine the extent to which 

such noSQL systems can be used to manage RDF data 

in the cloud4 . Our previous Grid Vine system uses a 

triple-table storage approach and hash-partitioning to 

distribute RDF data over decentralized P2P networks. 

YARS2,5 Virtuoso6 , 4store , and SHARD  hash 

partition triples across multiple machines and 

parallelize the query processing. Virtuoso  by Erlin et 

al. stores data as RDF quads consisting of the 

following elements: graph, subject, predicate, and 

object. All the quads are persisted in one table and the 

data is partitioned based on the subject. Virtuoso 

implements two indexes. The default index (set as a 

primary key) is GSPO (Graph, Subject, Predicate, 

Object) and an auxiliary bitmap index (OPGS). A 

similar approach is proposed by Harris et al., where 

they apply a simple storage model storing quads of 

(model, subject, predicate, object). Data is partitioned 

as non overlapping sets of records among segments of 

equal subjects; segments are then distributed among 

nodes with a round-robin algorithm.  

 

They maintain a hash table of graphs where each entry 

points to a list of triples in the graph. Additionally, for 

each predicate, two radix tries are used where the key 

is either subject or object, and respectively object or 

subject and graph are stored as entries (they hence can 

be seen as traditional P:OS and P:SO indices). Literals 

are indexed in a separate hash table and they are 

represented as (S,P, O/Literal). SHARD keeps data on 

HDFS as star-like shape centering around a subject 

and all edges from this node. It introduces a clause 

iteration algorithm the main idea of which is to iterate 

over all clauses and incrementally bind variables and 

satisfy constrains. 

 

Storage Model 

Our storage system in DiploCloud can be seen as a 

hybrid structure extending several of the ideas from 

above. Our system is built on three main structures: 

RDF molecule clusters (which can be seen as hybrid 

structures borrowing both from property tables and 

RDF subgraphs), template lists (storing literals in 

compact lists as in a column-oriented database system) 

and an efficient key index indexing URIs and literals 

based on the clusters they belong to. Contrary to the 

property-table and column-oriented approaches, our 

system based on templates and molecules is more 

elastic, in the sense that each template can be modified 

dynamically, for example following the insertion of 

new data or a shift in the workload, without requiring 

to alter the other templates or molecules.  
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In addition, we introduce a unique combination of 

physical structures to handle RDF data both 

horizontally (to flexibly co-locate entities or values 

related to a given instance) as well as vertically (to co-

locate series of entities or values attached to similar 

instances). Molecule clusters are used in two ways in 

our system: to logically group sets of related URIs and 

literals in the hash table (thus, pre-computing joins), 

and to physically co-locate information relating to a 

given object on disk and in main memory to reduce 

disk and CPU cache latencies. Template lists are 

mainly used for analytics and aggregate queries, as 

they allow to process long lists of literals efficiently.  

 

Key Index: 

The Key Index is the central index in DiploCloud; it 

uses a lexicographical tree to parse each incoming URI 

or literal and assign it a unique numeric key value. It 

then stores, for every key and every template ID, an 

ordered list of all the clusters IDs containing the key 

(e.g., ―key 10011, corresponding to a Course object 

[template ID ], appears in clusters 1011, 1100 and 

1101‖. This may sound like a pretty peculiar way of 

indexing values, but we show below that this actually 

allows us to execute many queries very efficiently 

simply by reading or intersecting such lists in the hash 

table directly. The key index is responsible for 

encoding all URIs and literals appearing in the triples 

into a unique system id (key),and back. We use a 

tailored lexicographic tree to parse URI sand literals 

and assign them a unique numeric ID.  

 

The lexicographic tree we use is basically a prefix tree 

splitting the URIs or literals based on their common 

prefixes (since many URIs share the same prefixes) 

such that each substring prefix is stored once and only 

once in the tree. A key ID is stored at every leaf, which 

is composed of a type prefix (encoding the type of the 

element, e.g., Student or xsd : date) and of an auto-

incremented instance identifier. This prefix trees allow 

us to completely avoid potential collisions (caused for 

instance when applying hash functions on very large 

datasets),and also let us compactly co-locate both type 

and instance ids into one compact key. A second 

structure translates the keys back into their original 

form. It is composed of a set of inverted indices (one 

per type), each relating an instance ID to its 

corresponding URI / literal in the lexicographic tree in 

order to enable efficient key look-ups.  

 

Templates: 

One of the key innovations of DiploCloud revolves 

around the use of declarative storage patterns [36] to 

efficiently collocate large collections of related values 

on disk and in main-memory. When setting up a new 

database, the database administrator may give 

DiploCloud a few hints as to how to store the data on 

disk: the administrator can give a list of triple patterns 

to specify the root nodes, both for the template lists 

and the molecule clusters (see for instance Fig. 1, 

where ―Student‖ is the root node of the molecule, and 

―Student ID‖ is the root node for the template list). 

Cluster roots are used to determine which clusters to 

create: a new cluster is created for each instance of a 

root node in the database. The clusters contain all 

triples departing from the root node when traversing 

the graph, until another instance of a root node is 

crossed (thus, one can join clusters based on their root 

nodes).  

 

Template roots are used to determine which literals to 

store in template lists. Based on the storage patterns, 

the system handles two main operations in our system: 

i) it maintains a schema of triple templates in main-

memory and ii) it manages template lists. Whenever a 

new triples enters the system, it associates template 

IDs corresponding to the triple by considering the type 

of the subject, the predicate, and the type of the object. 

Each distinct list of ―(subject-type, predicate, object 

type)‖ defines a new triple template. The triple 

templates play the role of an instance-based RDF 

schema in our system. We don’t rely on the explicit 

RDF schema to define the templates, since a large 

proportions of constraints (e.g., domains, ranges) are 

often omitted in the schema (as it is for example the 

case for the data we consider in our experiments). 
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In case a new template is detected (e.g., a new 

predicate is used), then the template manager updates 

its in-memory triple template schema and inserts new 

template IDs to reflect the new pattern it discovered. In 

case of very inhomogeneous data sets containing 

millions of different triple templates, wildcards can be 

used to regroup similar templates (e.g., ―Student - likes 

- *‖). Note that this is very rare in practice, since all 

the datasets we encountered so far (even those in the 

LOD cloud) typically consider a few thousands triple 

templates at most. Afterwards, the system inserts the 

triple in one or several molecules. If the triple’s object 

corresponds to a root. A  template list, the object is 

also inserted into the template list corresponding to its 

template ID. Templates lists store literal values along 

with the key of their corresponding cluster root. They 

are stored compactly and segmented in sub lists, both 

on disk and in main-memory. Template lists are 

typically sorted by considering a lexical order on their 

literal values—though other orders can be specified by 

the database administrator when he declares the 

template roots. In that sense, template lists are 

reminiscent of segments in a column-oriented database 

system.  

 

System Overview 

Diplo-Cloud is a native, RDF database system. It was 

designed to run on clusters of commodity machines in 

order to scale out gracefully when handling bigger 

RDF datasets. Our system design follows the 

architecture of many modern cloud based distributed 

systems (e.g., Google’s Big Table), where one 

(Master) node is responsible for interacting with the 

clients and orchestrating the operations performed by 

the other (Worker) nodes.  

 

Master Node: 

The Master node is composed of three main sub 

components: a key index (c.f.), in charge of encoding 

URIs and literals into compact system identifiers and 

of translating them back, a partition manager (c.f.), 

responsible for partitioning the RDF data into 

recurring subgraphs, and a distributed query executor 

(c.f.), responsible for parsing the incoming query, 

rewriting the query plans for the Workers, collecting 

and finally returning the results to the client. Note that 

the Master node can be replicated whenever necessary 

to insure proper query load-balancing and fault 

tolerance. The Master can also be duplicated to scale 

out the key index for extremely large datasets, or to 

replicate the dataset on the Workers using different 

partitioning schemes (in that case, each new instance 

of the Master is responsible for one partitioning 

scheme).  

 

Worker Nodes: 

The Worker nodes hold the partitioned data and its 

corresponding local indices, and are responsible for 

running sub queries and sending results back to the 

Master node. Conceptually, the Workers are much 

simpler than the Master node and are built on three 

main data structures: i) a type index, clustering all keys 

based on their types ii) a series of RDF molecules, 

storing RDF data as very compact sub graphs, and iii) 

a molecule index, storing for each key the list of 

molecules where the key can be found.  

 

DATA PARTITIONING AND ALLOCATION 

Triple-table and property-table hash-partitioning are 

currently the most common partitioning schemes for 

distributed RDF systems. While simple, such hash-

partitioning almost systematically implies some 

distributed coordination overhead (e.g., to execute 

joins/path traversals on the RDF graph), thus making it 

inappropriate for most large-scale clusters and cloud 

computing environments exhibiting high network 

latencies. The other two standard relational 

partitioning techniques, (tuple) round-robin and range 

partitioning, are similarly flawed for the data and 

setting we consider, since they would partition triples 

either at random or based on the subject URI/type, 

hence seriously limiting the parallelism of most 

operators (e.g., since many instances sharing the same 

type would end up on the same node). Partitioning 

RDF data based on standard graph partitioning 

techniques  is also from our perspective inappropriate 
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in a cloud context, for three main reasons: Loss of 

semantics: standard graph partitioning tools consider 

unlabeled graphs mostly, and hence are totally 

agnostic to the richness of an RDF graph including 

classes of nodes and edges. Loss of parallelism: 

partitioning an RDF graph based, for instance, on a 

min-cut algorithm will lead to very coarse partitions 

where a high number of related instances (for instance 

linked to the same type or sharing links to the same 

objects) will be co-located, thus drastically limiting the 

degree of parallelism of many operators (e.g., 

projections or selections on certain types of 

instances).Limited scalability: finally, attempting to 

partition very large RDF graphs is unrealistic in cloud 

environments, given that state-of-the-art graph 

partitioning techniques are inherently centralized and 

data/CPU intensive (as an anecdotal evidence, we had 

to borrow a powerful server and let it run for several 

hours to partition the largest dataset we use in 

METIS).DiploCloud has been conceived from the 

ground up to support distributed data partitioning and 

co-location schemes in an efficient and flexible way. 

DiploCloud adopts an intermediate solution between 

tuple-partitioning and graph-partitioning by opting for 

a recurring, fine-grained graph-partitioning technique 

taking advantage of molecule templates. Diplo Cloud’s 

molecule templates capture recurring patterns 

occurring in the RDF data naturally, by inspecting both 

the instance-level (physical) and the schema-level 

(logical) data, hence the expression physiological9 

partitioning.  

 

Physiological Data Partitioning: 

We now define the three main molecule-based data 

partitioning techniques supported by our system: 

Scope-k molecules. The simplest method is to 

manually define a number of template types (by 

default the system considers all types) serving as root 

nodes for the molecules, and then to co-locate all 

further nodes that are directly or indirectly connected 

to the roots, up to given scope k.Scope-1 molecules, 

for example, co-locate in the molecules all root nodes 

with their direct neighbors (instances or literals) as 

defined by the templates. Scope-2 or 3 molecules 

concatenate compatible templates from the root node 

(e.g.,ð student; takes; courseÞ and ðcourse; hasid; xsd : 

integerÞ) recursively up to depth k to materialize the 

joins around each root, at the expense of rapidly 

increasing storage costs since much data is typically 

replicated in that case. The scope of the molecules is 

defined in this case manually and involves data 

duplication. All data above Scope-1 is duplicated; this 

is the price to pay in order to benefit from pre-

computed joins inside the molecules, which 

significantly increases query execution performance as 

we show in the following. Manual partitioning. Root 

nodes and the way to concatenate the various 

templates can also be specified by hand by the 

database administrator, who just has to write a 

configuration file specifying the roots and the way 

templates should be concatenated to define the generic 

shape of each molecule type. Using this technique, the 

administrator basically specifies, based on resource 

types, the exact path following which molecules 

should be physically extended.  

 

 
Fig.. A molecule template (i) along with one of its 

RDF molecules (ii). 
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The system then automatically duplicates data 

following the administrator’s specification and pre-

computes all joins inside the molecules. This is 

typically the best solution for relatively stable datasets 

and workloads whose main features are well-known. 

Adaptive partitioning. Finally, Diplo Cloud’s most 

flexible partitioning algorithm starts by defining 

scope-1 molecules by default, and then adapts the 

templates following the query workload. The system 

maintains a sliding-window w tracking the recent 

history of the workload, as well as related statistics 

about the number of joins that had to be performed and 

the incriminating edges (e.g., missing co-location 

between students and courses causing a large number 

of joins). Then at each time epoch , the system: i) 

expands one molecule template by selectively 

concatenating the edges (rules) that are responsible for 

the most joins up to a given threshold for their 

maximal depth and ii) decreases (up to scope-1) all 

extended molecules whose extensions were not 

queried during the last epoch.  

 

In that way, our system slowly adapts to the workload 

and materializes frequent paths in the RDF graph 

while keeping the overall size of the molecules small. 

Similarly to the two previous techniques, when the 

scope of a molecule is extended, the system duplicates 

the relevant pieces of data and pre-computes the joins. 

The advantage of this method is that it begins with 

relatively simple and compact data structures and then 

automatically adapts to the dynamic workload by 

increasing and decreasing the scope of specific 

molecules, i.e., by adding and removing pre-computed 

paths based on template specifications. In the case of a 

very dynamic workload, the system will not adapt the 

structures in order to avoid frequent rewriting costs 

that would not by easily amortized by the 

improvement in query processing. 

 

Conclusion: 

DiploCloud is an efficient and scalable system for 

managing RDF data in the cloud.  

From our perspective, it strikes an optimal balance 

between intra-operator parallelism and data co-location 

by considering recurring, fine-grained physiological 

RDF partitions and distributed data allocation 

schemes, leading however to potentially bigger data 

(redundancy introduced by higher scopes or adaptive 

molecules) and to more complex inserts and updates. 

DiploCloud is particularly suited to clusters of 

commodity machines and cloud environments where 

network latencies can be high, since it systematically 

tries to avoid all complex and distributed operations 

for query execution. Our experimental evaluation 

showed that it very favorably compares to state-of-the-

art systems in such environments. We plan to continue 

developing DiploCloud in several directions: First, we 

plan to include some further compression mechanisms 

(e.g., HDT). We plan to work on an automatic 

templates discovery based on frequent patterns and un-

typed elements. Also, we plan to work on integrating 

an inference engine into DiploCloud to support a 

larger set of semantic constraints and queries natively. 

Finally, we are currently testing and extending our 

system with several partners in order to manage 

extremely-large scale, distributed RDF datasets in the 

context of bioinformatics applications. 

 

Future Enhancement: 

Many RDF systems rely on hash-partitioning and on 

distributed selections, projections, and joins. Our own 

Grid Vine system was one of the first systems to do so 

in the context of large-scale decentralized RDF 

management. 
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