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Abstract 

Remotely sensed images usually require segmentation 

in presence of uncertainty, because of factors like 

environmental conditions, poor resolution and poor 

illumination. Therefore, to obtain an efficient algorithm 

for remotely sensed images is a challenging task. In this 

paper, an online classification strategy is adopted where 

a classifier is built incrementally using the streaming 

damage labels from various sources as training samples, 

i.e., without retraining it from the scratch when new 

samples stream in. The Passive-Aggressive online 

classifier is used for the classification process. Apart 

from the classifier, the choice of image features plays a 

crucial role in the performance of the classification. The 

features extracted using recently reported deep learning 

approaches such as Convolutional Neural Networks 

(CNN), which learns features directly from images, 

have been reported to be more effective than 

conventional handcrafted features such as gray level co-

occurrence matrix and Gabor wavelets. Thus, in this 

study, the potential of CNN features is explored for 

online classification of satellite image to detect 

structural damage, and is compared against handcrafted 

features. The feature extraction and classification 

process are carried out at an object level, where the 

objects are obtained by over-segmentation of the 

satellite image.  

 

Keywords: CNN features, building damage, satellite 

imagery, streaming training samples  

  

1.Introduction  

Very high-resolution satellite images, which are usually 

made available within a few hours after a disaster event 

such as an earthquake, serve as an ideal data source for 

rapid damage assessment over large areas for fast 

response actions [1]. Though many automated methods 

have been proposed for damage mapping using satellite 

imagery, in practice operational damage mapping 

continues to be based on manual interpretation of 

satellite images, which is time- and labour- intensive. 

There are many reasons for automated methods not yet 

being adopted for automatic processing, including the 

limited spatial resolution of satellite imagery compared 

to increasingly available aerial alternatives, and the 

complexity of the scene. However, the primary reason is 

that most of the automated methods are based on 

supervised learning approaches that require a large 

volume of training samples to build accurate models 

which are often not readily available [2]. Also adopting 

a pre-trained supervised model that was previously 

developed for a different geographic area or image data 

type typically has limited transferability. In such cases 

at least a small number of training samples reflecting 

the study area is required to fine-tune the pre-trained 

model. Either for constructing a new model or for 

calibrating the existing model, a significant number of 

study-area-specific training samples is required.  

 

However, training samples representing the 

distribution of damage characteristics of the study area, 

are usually not readily available. Moreover, manual 

construction of a new training dataset with a large 

number of samples is not feasible at the time of 

emergency.  
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With the advancement in technologies, local and 

detailed damage assessments for individual buildings 

are made available from various sources. For example, 

it is becoming increasingly common to assess damages 

locally after an earthquake. UAV images substantially 

exceed satellite images in terms of spatial resolution 

and multi-perspective coverage of individual buildings 

[3]. Therefore, automated damage estimation based on 

UAV images can be more accurate and reliable. 

Furthermore, damage information for specific locations 

is made available on-line from many other sources 

such as buildings equipped with automated monitoring 

system [4] and crowdsourcing. Local damage estimates 

from such sources could be used to construct the study-

area-specific training data for building a required 

supervised classifier. However, two major challenges 

need to be addressed when constructing a supervised 

classifier with such training data: 

 

1) Handling streaming training samples: In the 

considered scenario damage assessment results from 

the aforementioned sources arrive at different points 

in time, also depending on whether data processing 

takes place locally or remotely. Therefore, a classifier 

is needed that can be trained dynamically, i.e., when 

new samples arrive the classifier should learn without 

retraining from scratch, and reclassify the image if 

required. This kind of learning is referred to as 

incremental or on-line learning (i.e. learning without 

having access to all the samples at once) [5]. 

Conventional batch-learning methods such as Random 

Forests or Support Vector Machines (SVM) are not 

suitable for this kind of learning. Many on-line 

learning algorithms have been developed, and have 

been shown to perform similarly to batch-learning 

methods [6].  

 

2) Data-specific feature for damage classification: 

Even when a large number of training samples is 

available, it is critical to choose the features and a 

representation strategy that is suitable for the specific 

data, study area and application. For example, in 

earlier work we examined various image features for 

identifying damage using images from various 

geographic locations. It was observed that specific 

features are performing well for specific study areas. 

Hence, selection of appropriate features specific to the 

study area is crucial for improved assessment. Recent 

research revealed that supervised feature learning 

methods such as Convolutional Neural Networks 

(CNN) could learn the data-specific features and their 

representation directly from the image pixel values 

[7]. These features are found to be far superior to 

conventional handcrafted features, which are 

described in the later section.  

 

Generally, the regions corresponding to heavy damage 

are determined through the identification of damage 

patterns corresponding to rubbles piles, debris and 

spalling in an image [8]. The recognition process of 

those damage patterns can be performed by analysing 

features extracted either at pixel or region level. 

However, the pixel level analysis is not meaningful for 

very high spatial resolution images, particularly in the 

context of damage assessment, as the evidences are 

identified based on the characteristics of their 

radiometric distribution pattern, which can be captured 

more precisely at a region- or object-level. Therefore, 

super-pixels or segments derived from object-based 

image analysis approaches are considered as the 

primary entity for performing feature extraction and 

classification. Moreover, this kind of segment based 

(super-pixels) approach has been demonstrated as a 

more efficient approach in several studies compared to 

pixel-based methods, particularly in applications 

dealing with very high resolution images.  

 

Another challenging task is how to compile 

information from various sources to label each super-

pixel as damaged or undamaged. However, this is not 

the focus of this paper. Instead we center on how to 

build an incremental classifier if the labels for super-

pixels are made available from streaming data sources. 

Hence, in this study the labels for super-pixels are 

manually annotated and they are synthetically framed 
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as a stream of training labels obtained from various 

sources to carry out the online-classification.   

To the best of our knowledge online classification with 

CNN features has not yet been tested for remote 

sensing applications, particularly for damage 

assessment. Thus the objective is to develop a 

framework to use online-learning and CNN together to 

build an incremental classifier with data-specific 

features for automated satellite image-based damage 

classification from streaming samples.  

 

2. METHODOLOGY     

The proposed methodology comprises three pipeline 

processes. As a first step, the satellite image is split into 

super-pixels using an over-segmentation approach. In 

the second step, feature extraction is carried for the 

super-pixels, and as a step 3 an online classifier is 

constructed based on the extracted features, by 

considering them as streaming training samples.   

  

Step 1: Over-segmentation of image  

Super pixel construction is a mandatory pre-processing 

step in many image processing applications. For that a 

range of methods has been reported. Among them 

Simple Linear Iterative Clustering (SLIC) (cf. Achanta 

et al. (2012)) [11] is widely used and reported to be 

effective for obtaining objects in uniform size, which is 

suitable to create rectangular image patches, the input 

format required by common CNN implementation for 

extracting features.  

   

Step 2: Feature extraction   

Many kinds of feature extraction techniques, such as 

statistical, filtering and morphological operations, have 

been reported for image processing applications. 

Among them filtering is recognized as the most 

effective approach. For example, many popular features 

such as Gabor-, Sobel-, Gaussian- and wavelet features 

are based on filtering techniques. Such filtering-based 

features have proved to be effective for many image 

processing applications, particularly for image 

classification (Arivazhagan et al., 2006; Tian, 2013) 

[12]. These filters are designed based on standard 

mathematical functions and they are referred to as 

handcrafted features. However, these features are not 

especially designed for specific data types or 

applications. It is challenging to choose appropriate 

features, i.e. designing filters with appropriate weights 

that give the best image representation for a specific 

application. CNN is one of the deep learning approaches 

where the filters’ weights are learned directly from the 

images chosen for a specific application, instead of 

using a mathematical function. It has been reported that 

filters that are directly learned from images outperform 

conventional handcrafted features.   

  

In this study, both hand-crafted- and CNN features are 

examined and compared for the damage classification 

capacity.    

  

a) Hand-crafted features: Two kinds of hand-

crafted texture features that have been widely reported 

as effective features for damage classification are 

considered. They are 1) features based on gray-level co-

occurrence matrix (GLCM) and 2) Gabor wavelet 

features. Details about the extraction of  GLCM- and 

Gabor wavelet- features can be found in Preethi and 

Sornagopal (2014) [13], respectively.    

  

b) Deep learning features based on CNN: CNN can 

be used for classification in three different 

scenarios:    

1) Training from scratch: Designing and training 

of new CNN requires a large amount of training 

data to avoid overfitting. This method can be 

adopted if large number of training sample is 

available.   

2) Tuning a pre-trained model: Another common 

approach is to adopt a pre-trained CNN model 

that is trained for a related domain (e.g., general 

image classification) using a large amount of 

training samples: the network weights of a pre-

trained model are fine-tuned using a domain 

specific training samples. This approach also 

requires relatively many training samples.   
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3) Pre-trained model without tuning: If only a 

small amount of training sample is available for 

the designated application (here damage 

classification), then a common approach is to 

extract the features using the pre-trained model 

and use them to perform classification based on 

any supervised classifier such as SVM.  The 

activations of one of the fully connected layers 

in CNN architecture are considered as the CNN 

features for a given image patch (super-pixels). 

For more details about the layers in CNN 

architecture.   

  

The third approach is most suitable for our application 

where it is usually common to obtain only small 

amount of training samples from the aforementioned 

sources i.e., few hundreds to thousands of samples 

depending on the nature of the disaster event. 

Moreover, this approach has been reported to be 

effective for image classification in various domains, 

including remote sensing applications such as land 

cover classification using very high resolution images 

(Hu et al., 2015) [14]. Hence, this approach is adopted 

in this study where the features for super-pixels are 

obtained using the pre-trained model and using these 

features an independent supervised classifier is built 

for performing the final classification.   

  

Step 3: online classification   

Many online-learning algorithms have been proposed 

and among them the widely used Passive-Aggressive 

(PA) algorithm is adopted here for building the online 

classifier. The classifier is built incrementally by 

providing one sample at a time, where it predicts the 

label and confidence rate of the provided unseen 

sample. Further, the classifiers gets updated for each 

wrong and low confidence prediction. The details of 

the PA algorithm can be found in Crammer et al. 

(2006) [15].  

  

The overall work flow is depicted in Figure 1.   

 
Figure 1. Overall workflow 

3. EXPERIMENTS   

3.1 Data used:  

A subset of a Geoeye satellite image with 50 cm 

nominal ground resolution of Port-au-Prince captured 

after the 2010 Haiti earthquake was considered for this 

experiment. The damaged and undamaged regions in the 

image were manually delineated using a polygon and 

annotated as damaged and undamaged, respectively, to 

generate the training samples for building the classifier. 

These polygons are considered as the streaming ground 

truth information for analyzing the proposed online 

classifier.   

  

3.2 Experimental steps and implementation details:   

Step 1: The super-pixels were generated for the selected 

image subset using SLIC method. As stated earlier, we 

need superpixels with more uniform size and shape. To 

achieve this, the parameter 'm' in SLIC that controls the 

compactness of a superpixel was empirically determined 

as 40.  

  

Step 2: The manually delineated polygons annotated 

with damage labels were overlaid on the super-pixels of 

the image. The super-pixels having at least 50% of their 
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area overlapping with a polygon were assigned with 

corresponding polygon’s label, and considered for 

training and testing the classifier. In total, 2553 super-

pixels were labelled, of which 70% of the samples were 

considered for building the classifier, while the 

remaining 30% samples were used for testing.   

  

Step 3: Three kinds of features (GLCM, Gabor and 

CNN features) as described in the methodology section 

were extracted for the selected super-pixels. The CNN 

features were extracted using a pre-trained CNN model 

‘imagenet-caffe-alex’. This model demands the input of 

image patch with size 227x227x3. Hence the super-

pixels were converted into rectangular patches and then 

scaled to above said dimension. In general, the images 

are scaled to larger size using an interpolation technique 

that significantly degrades the quality of the image. This 

might have an impact on the quality of the CNN 

features. Hence, in this study the image patches based 

on super-pixels were resized to aforementioned 

dimensions using two approaches: 1) images resized 

based on interpolation techniques and 2) images resized 

based on zero padding. CNN features from image 

patches obtained based on these two approaches are 

compared as well.   

  

In total four different features – GLCM, Gabor, 

CNN_pad (image resized by zero padding) and 

CNN_nopad (image resized by interpolation technique) 

are analyzed independently by fitting the PA online 

classifier.   

  

3.3 Results  

The results of the online classification are shown in 

Figure 2, which depicts the cumulative error rate for 

each feature. Also this figure implicitly shows the 

number of times the classifier gets updated. The overall 

accuracy estimated based on their error rates for 

GLCM, Gabor, CNN_pad and CNN_nopad are 66.5%,  

70.0%, 71.0% and 74.5%, respectively.   

  

It is evident that the online learning algorithm does not 

need to be re-trained from scratch every time a sample 

streams in, leading to significantly superior time and 

memory efficiency. However, this might adversely 

affect the accuracy of the model. Hence, we intend to 

determine whether the accuracy diminishes in the online 

learning setting, and if so, how significant would that 

be. To this end, we compare the online classifier with 

canonical batch classifier SVM, using all 

aforementioned features. The SVM classifier was 

trained using the same 70% of the samples.  

 

Subsequently, both SVM and PA classifiers were 

evaluated using the remaining 30% of samples and the 

accuracies are reported in Table 1.   

 
Figure 2. The cumulative error plot of PA online 

classifiers when associated with GLCM, Gabor and 

CNN features 

 Classifier    Overall accuracy in %  

GLCM  Gabor   CNN_nopad  CNN_pad  

PA  57.3  59.5  68.1  73.2  

SVM  63.4  63.7  70.9  74.7  

Table 1. Overall accuracy of online- and batch- 

classifiers when associated with different 

features.  

4. DISCUSSIONS, CONCLUSIONS AND FUTURE 

WORK 

A framework was developed for automated mapping of 

building damage from satellite imagery, using an online 

classifier that dynamically learns from streaming 

training samples based on local damage assessments 

from different sources. In this study, the potential of 

CNN features from pre-trained model, in combination 

with online PA classifier was explored for automated 

damage classification of satellite imagery. Further, the 
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accuracy retrieved from CNN features was compared 

against the standard hand-crafted features GLCM and 

Gabor by fitting them using the PA classifier. The 

results show that CNN features are performing better 

than both handcrafted features. Moreover, the 

cumulative error graph (cf. Figure 2) shows that CNN 

features generalize better with fewer training samples 

than the handcrafted features. For example, the error 

curve (cf. Figure 2) of CNN tends to be smoother 

(shows better generalization) after being trained with 

1000 samples, while the error curves of handcrafted 

features fluctuates, indicating that it could not learn fast 

and generalize well compared to CNN features. Also the 

error graph shows that the choice of image resizing 

approach used to resize the super-pixel based image 

patch in a dimension required for CNN feature 

extraction have a significant impact on the performance 

of the final classification accuracy. For example, CNN 

features extracted from the image patch resized using an 

interpolation technique were found to be significantly 

inferior to the CNN features extracted from image patch 

resized using zero padding.   

  

The features evaluated in online learning settings were 

also evaluated using the canonical batch mode classifier 

SVM. The results show that the selected online 

classifier performs slightly inferior to the batch 

classifier, irrespective of the features (cf. Table 1). 

However, the difference in accuracy is only around 1% 

concerning CNN features. There is significant 

difference between the accuracies of online and batch 

classifiers when employing the handcrafted features. 

This is because the online classifiers based on the 

handcrafted features could not learn and generalize well. 

The overall conclusion is that the choice of features has 

significant impact on the performance of the online 

classifier. Also it is observed that compared to 

handcrafted features the CNN features are more 

effective and consistent for online classification, as they 

yield similar accuracy when used in the batch learning 

setting.  
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