

 Page 1709

Coverage Driven Verification Environment for AMBA Architecture

B.Saisruthi

M.Tech Student

Sri Sivani College of Engineering,

Chilakapalem, Andhra Pradesh.

V.Swetha

Assistant Professor

Sri Sivani College of Engineering,

Chilakapalem, Andhra Pradesh.

D.Suresh Kumar

Assistant Professor

Sri Sivani College of Engineering,

Chilakapalem, Andhra Pradesh.

Abstract:

Coverage-driven Verification is a verification

methodology in which coverage planning precedes

the rest of the verification process. Coverage

planning means defining a strategy for measuring

verification progress employing functional, code and

assertion coverage and the tactics that will be

employed to implement it. This paper describes the

use of coverage driven verification for AMBA

systems. The first part contains a general discussion

of the digital verification method as of today and the

possible mapping to an AMBA design scenario. The

second part describes a demo example that shows the

coverage driven verification approach for a true

AMBA AXI domain system. The system contains

electrical as well as mechanical and software parts

and is therefore a good representation of today’s

complex system designs.

Keywords: AMBA, AXI, Verification, System Verilog,

Coverage Driven Verification etc…

1 Introduction:

Significant efforts have been made over the past

couple of years to improve the quality and the

productivity of functional digital verification. Only

few years ago engineers wrote directed test cases

which were composed of simple sequence of ‘0’ and

‘1’ as input stimulus for the design. In addition

checking was done manually. It was part of the test

and verification engineer’s task to explicitly predict the

expected response of the DUT for a specific test. In

some cases it required even visual inspection of a

waveform. Since this extra work had to be repeated for

each and very test case in case of a de-sign change,

engineers tended to minimize the amount of hard

coded checks within their tests.

Advanced verification techniques have been developed

and introduced into today’s digital design flows to

overcome most of those limitations and productivity

restrictions. Moreover, the prediction of verification

quality is a major improvement in the state of the art

verification methods. Main components of these

verification techniques are:

 Automated Stimulus Generation

 Automated Self-Checking (Assertions,

Reference Models, etc.)

 Automated Coverage Measurements and

Tracking

There are two contrasting approaches to coverage

driven verification in current use. “Classical”

constrained random verification starts with random

stimulus and gradually tightens the constraints until

coverage goals are met, relying on the brute power of

randomization and compute server farms to cover the

state space. More recently, graph based stimulus

generation (also known as Intelligent Test bench) starts

from an abstract description of the legal transitions

between the high-level states of the DUT, and

automatically enumerates the minimum set of tests

needed to cover the paths through this state space.

To speed up SoC integration and promote IP

reusability, many bus based communication

architecture standards have emerged over the past

several years. Since the first 1990s, many on-chip bus-

based communication architecture standards are

projected to handle the communication needs of

emerging SoC design. Some of the popular standards

include ARM Micro-controller Bus Architecture

(AMBA) versions of 2.0 and 3.0, IBM Core Connect,

STMicroelectronics STBus, Son-ics SMARRT

 Page 1710

Interconnect, Open Cores Wishbone, and Altera

Avalon [2]-[6]. On the other side, the designers simply

integrate their owned IPs with third party IPs into the

SoC to significantly reduce design cycles.

However, the main issue is that a way to efficiently en-

sure the IP functionality, that works properly after

integrating to the corresponding bus architecture. The

AMBA AXI protocol is a standard bus protocol and

most of the semiconductor companies design

interconnects which supports AXI bus interface. AXI

protocol is complex protocol because of its ultra-high-

performance. On current projects, verification

engineers are maxi-mum number designers, with this

ratio reaching 2 or 3 to one for the most complex

designs. Therefore an efficient verification

environment is needed [9]. Verification of such a

complex protocol is challenging. This can be easily

verified using the verification environment. This

verification environment can be reused for other IPs

also.

That means that it does what it is required/specified to

do and does not exceed certain limits, e.g. the gain of

an amplifier must be above 10db. Secondly, it has to

be verified that the system does not do anything “bad”

that might have a negative influence on other

components or the environment. E.g. the amplifier

starts oscillating during power up phase. This second

category covers mostly implicit assumption that are

naturally made but not explicitly specified. Check

specification Avoid “bad” behavior Check corner

conditions:

 Operations mode

 Bus protocol/error

 Vdd, temp, variation

2 Verification Goals and Approaches

Verification has basically two goals (Figure 1): Firstly,

to check that the system fulfills the specification.

Specific simulation runs and tests are required to

implement the verification of those two categories

above. Moreover, it has to be assured that the

verification goals are met in all different operating

modes and corners of the system, such as:

 System’s operation modes

 Different phases of the system operation

•Silicon process variations and device

mismatch

 Varying environment parameters, like

temperature, supply voltage

To ensure this, the tests have to be repeated in those

different constellations.

 Process variation Run specific tests Run

failure tests Sweep/test different conditions,

modes Figure 1: Verification goal and

methods.

It is already obvious that an exhaustive search through

the whole space of different tests, operation modes and

corners might be impossible to do. It is already

obvious that an exhaustive search through the whole

space of different tests, operation modes and corners

might be impossible to do. Tradeoffs have to be made

between the verification effort and the level of

confidence in the correct behavior of the system.

3. AMBA AXI4 Architecture:

The AMBA AXI protocol is aimed towards high

frequency system designs and includes a number of

 Page 1711

features that make it suitable for a high speed

submicrons interconnect.

In this project proposes a feature that supports a

maximum of 256 data transfers per burst. In AMBA

AXI4 system 16 masters and 16 slaves are interfaced.

Every master and slave has their own 4 bit ID tags.

The system consists of master, slave and Interconnect

bus.

The AXI4 protocol supports the following

mechanisms:

 Two kinds of address mode: aligned and

unaligned.

 Three types of burst: FIXED, INCR and

WRAP.

 Sixteen choices of burst length in the range of

1-256.

 Four varieties of response types: OKAY,

EXOKAY, SLVERR and DECERR.

The Advanced Microcontroller Bus Architecture

(AMBA) is a protocol that is used as an open standard;

on-chip interconnects specification for the connection

and management of functional blocks in a system-on-

chip (SoC). The AMBA bus is applied easily to small

scale SoCs. Therefore, the AMBA bus has been the

representative of the SOC market though the bus

efficiency.Three distinct buses are defined within the

AMBA specification:

1. Advanced Peripheral Bus (APB).

2. Advanced High performance Bus (AHB).

3. Advanced extensible Interface Bus (AXI).

The AMBA specification defines all the signals,

transfer modes, structural configuration, and other bus

protocol details for the APB, AHB, and AXI buses.

The AMBA APB is used for interface to any

peripherals which are low bandwidth and do not

require the high performance of a pipelined bus

interface. APB peripherals can be integrated easily into

any design flow, with the following specification:

 Peripheral bus for low-speed devices

 Synchronous, non multiplexed bus

 Single master (bridge)

 8, 16, 32-bit data bus

 32-bit address bus

Non-pipelined AMBA AHB is a new level of bus

which sits above the APB and implements the features

required for high performance, high clock frequency

systems, with the following specification:

 Burst transfers

 Split transactions

 Single cycle bus master handover

 Single clock edge operation

 Wider data bus configurations (64/128 bits)

AXI extends the AHB bus with advanced features to

support the next generation of high performance SoC

designs. The goals of the AXI bus protocol include

supporting high frequency operation without using

complex bridges, flexibility in meeting the interface,

and performance requirements of a diverse set of

components, and backward compatibility with AMBA

AHB and APB interfaces. The features of the AXI

protocol are:

 Separate address/control and data phases

 Support for unaligned data transfers

 Ability to issue multiple outstanding addresses

 Out-of-order transaction completion.

3.1 Design of AXI Protocol:

AMBA AXI4 slave is designed with operating

frequency of 100MHz, which gives each clock cycle of

duration 10ns and it supports a maximum of 256 data

transfers per burst. The AMBA AXI4 system

component consists of a master and a slave as shown

in Figure 2. There are 5 different channels between the

AXI master and AXI slave namely write address

channel, write data channel, read data channel, read

address channel, and write response channel.

 Page 1712

Figure 2: AXI Master Slave Protocol

3.2 Verification Environment of AXI Protocol:

The verification environment for AXI bus is developed

with SystemVerilog, this verification environment is

shown in below Figure 3. This environment is

organized in a hierarchical layered structure which

helps to maintain and reuse it with different designs

under verification.

Figure 3: AXI Verification Environment

3.3 Coverage driven verification flow:

Given that an exhaustive search through the whole

verification space is not practical implies that the

verification process is limited in time. However, the

coverage figure still provides an accurate number of

the verification qual-ity with respect to the defined

goal. Figure 4 assembles the pieces together that have

been discussed above. The simulation results are

automatically checked and problems are being

reported. An automatic stimuli generator creates tests

on a random basis within given constraints. On top, the

designer might have a certain amount of tests that are

pre-defined and need to be run (directed tests) to reach

certain corner cases.

3.3.1 Test Case:

The „Test case includes the list of test cases. Each test

case is connected to the “sequences” which written for

the different scenarios like, single_write_opera-tion,

single_read_operation, write_followed_read_op-

eration, multiple_write_single_read, single_wite_mul-

tiple_read, etc., Any one of the test case is connected

to the Verification Environment to verify the design

for a particular scenario.

3.3.2 AXI_Transaction_Generator :

Transaction generator is also known as the “sequence

item”. Sequence_item is a class which includes all the

port signals as its property. All these signals are de-

clared using a “rand” keyword, so that after calling the

randomize function this class should assign the random

value to the each signal. This generated input values

are assigned later to the DUV.

3.3.3 AXI_Master_Transaction:

It includes the signals which are driven from the

master. This class has the instance of the

AXI_transaction_ generator. The master transaction

can override the values that are generated in the

AXI_transaction_gen-erator. Suppose we have not

over ridden any signals, then the values that are

generated in the AXI_transac-tion_generator are

passed to the DUV.

 Page 1713

3.3.4 AXI_Slave_Transaction:

It includes the functionality similar to AXI Master

Transaction, except it includes the signals which are

driven from the slave.

3.3.5 AXI_Scoreboard:

The values generated in the AXI_Master_Transaction

and AXI_Slave_Transaction are also stored in the

AXI_ scoreboard. Later we can use these signals for

the com-parison of expected output and the actual

output.

3.3.6 Functional Coverage:

This class includes the list different coverage

scenarios, which checks for the how much part of the

design, is covered during verification.

AXI_Master_Transac-tion and

AXI_Slave_Transaction classes will invoke this

functional coverage.

3.3.7 AXI_Master:

This is the main block of master part; it includes the

two sub-blocks Write/read/get data and AXI master

BFM. Write/read/get data: This sub-block includes the

objects of classes sequencer, driver, and monitor.

Sequencer picks the assigned sequence and drops it

into the driver. It drives these signals according to the

protocol. Monitor monitors whether signals are

changing according to protocol or not AXI master

BFM: This is the class which includes the functions

related to the buses. BFM stands for Bus Function

Modules. Finally the signals driven from the driver are

passed to the DUV. AXI_ Slave has the functionality

similar to AXI_Master.

3.3.8 AXI_Assertions:

It includes the list of assertions which are written

according to the signal description. These are written

using assert statements. These assertions are applied to

the signals that are driving from the driver before

applying to the DUV.

3.4 System Verilog:

It is the Hardware Verification Language (HVL). This

language is mainly used for the verification purpose.

Initially, test bench (TB) is written in Verilog language

using tasks and functions [11]. But it was a very

lengthy process. It overcomes this lengthy process.

System Verilog is the updated version of Verilog, it

also supports the features like OOPs concept,

Randomization and constrained randomization, etc., by

the help of these features we can easily generate all the

possible combinations of inputs, and thereby we can

successively verify the Design.

4 CONCLUSIONS:

A coverage driven verification approach for digital

systems has been presented. In the first section the

general verification task has been analyzed in detail

and the similarities and differences between analog

and digital verification are considered. The approach

enables advanced verification methods for digital

design and closes a gap in the increasing demand of

system integration and reliability goals. However, this

approach is clearly not a replacement but a

complementary mea-sure for pure analog verification

efforts. The advantages of the approach are obvious

and have already been discussed before:

 Advanced verification method

 Well defined verification strategy

 Random generation

 Coverage matrix

AMBA AXI4 is a plug and play IP protocol. It is

released by ARM, defines both bus specification and a

technology independent methodology for designing,

implementing and testing customized high-integration

em-bedded interfaces. The data is to be read or written

to the slave is assumed to be given by the master and is

read or written to a particular address location of slave.

In this paper, an effective verification environment can

simulate most cases of the AXI signal, check all the

transmitted data automatically and complete coverage

analysis during the simulation. So the environment can

 Page 1714

improve the coverage and reduce the time spending in

the verification.

5 FUTURE SCOPE:

The AMBA AXI has limitations with reference to the

burst and beats information to be transferred. The burst

data must not cross the 4k boundary. Bursts longer

than sixteen beats are only supported for the INCR

burst type. The WRAP and FIXED burst types remain

constrained to a maximum burst length of 16 beats.

These are the measures of AMBA AXI system which

need to be overcome.

6 References:

[1] Development of Verification Environment for AXI

Bus Using SystemVerilog Xu Chen, Zheng Xie, and

Xin-An Wang Key Lab of Integrated Micro-Systems

Science Engineering and

Applicationshttp://www.ijeee.net/upl

oadfile/2013/0702/20130702105435960.pdf

[2] Coverage Driven Verification for Mixed Signal

Sys-tems Cadence Design Systems Walter Hartong,

Nils Luet-ke-Steinhorst, Hannes Froehlich

https://www.cadence.

com/rl/Resources/conference_papers/107Paper.pdf

[3] IJRET: International Journal of Research in Engi-

neering and Technology eISSN: 2319-1163 | pISSN:

2321-7308 ; DESIGN AND VERIFICATION

ENVIRONMENT FOR AMBA AXI PROTOCOL

FOR SOC INTEGRATION Pradeep S R1 , Laxmi

C2http://esatjournals.org/Vol-

umes/IJRET/2014V03/I15/IJRET20140315066.pdf

[4] A Survey of Three System-on-Chip Buses: AMBA,

CoreConnect and Wishbone Milica Mitić and Mile

Stojčevhttp://es.elfak.ni.ac.rs/Papers/ICEST%20’06.pd

f

[5] International Journal of Application or Innovation

in Engineering & Management (IJAIEM) ; Design of

an AMBA AHB Reconfigurable Arbiter for On-chip

Bus Ar-chitecture Pravin S. Shete1 , Dr. Shruti

Oza2http://www. ijaiem.org/volume3issue5/IJAIEM-

2014-05-29-091.pdf

[6] International Journal of Engineering Inventions ; A

Synthesizable Design of AMBA-AXI Protocol for SoC

In-tegration M. Siva Prasad Reddy1 , B. Babu Rajesh2

, Tvs .

