

 Page 1909

A Load Balancing Model Using a New Algorithm in Cloud

Computing For Distributed File with Hybrid Security

Dhafar Hamed Abd

Department of Computer Science,

Al Maaref University College.

Abstract:

A fully distributed load balancing algorithmic rule is

given to deal with the load imbalance drawback. Our

algorithmic rule is compared in contradiction of a

centralized approach throughout a creation system

and a competitive distributed resolution given within

the literature. The simulation results indicate that

our proposal is comparable the present centralized

approach and significantly outperforms the previous

distributed algorithmic rule in terms of load

imbalance issue, movement value, and recursive

overhead. The performance of our proposal enforced

within the Hadoop distributed classification system is

more investigated during a cluster setting. Moreover,

period applications have Quality-of-Service (QoS)

needs (e.g. bandwidth). The target of the routing

protocol is to make a tree that's each possible (i.e.

satisfies the requested QoS) and least expensive.

The value of a tree depends on the prices of its links.

The value of a link ought to replicate the impact of

allocating resources to the new affiliation on existing

and future connections. The nodes area unit shared

and several studies have projected inexpensive QoS-

constrained trees. This research has employed a

security side, which can be trustworthy to save data

with some restricted rule from suspicious people.

RSA and AES Algorithm is consider a multi-factor

authentication solution that verity confirmation

requests and centrally administers confirmation

policies for enterprise networks. The major purpose

of using Authentication Manager are to manage

security tokens, users, multiple applications, agents,

and resources across physical sites, and to help

secure access to network and web-accessible

applications.

However, these studies assume that some information

processing address is shared in laptop, and that they

don't examine the impact of the link value perform.

We tend to conjointly investigate the impact of

inaccurate network state data. Performance analysis

is additionally maintained here through

authentication, security maintained through

permission key generation.

INTRODUCTION

Cloud Computing (or cloud for short) is a compelling

technology. In clouds, clients can dynamically allocate

their resources on-demand without sophisticated

deployment and management of resources. Key

enabling technologies for clouds include the Map

Reduce programming, distributed file systems

virtualization, and so forth. These techniques

emphasize scalability, so clouds can be large in scale,

and comprising entities can arbitrarily fail and join

while maintaining system reliability.

Distributed file systems are key building blocks for

cloud computing applications based on the Map

Reduce programming paradigm. In such file systems,

nodes simultaneously serve computing and storage

 Page 1910

functions; a file is partitioned into a number of chunks

allocated in distinct nodes so that Map Reduce tasks

can be performed in parallel over the nodes.

There are different reasons that can be considered as

causes of load-balancing problem in distributed file

systems specialized for large-scale, dynamic and data-

intensive clouds. The terms “rebalance” and “balance”

is interchangeable in cloud. A novel load-balancing

algorithm to deal with the load rebalancing problem in

large-scale, dynamic, and distributed file systems in

clouds. Distributed file systems are key building

blocks for cloud computing applications based on the

Map Reduce programming paradigm. In such file

systems, nodes simultaneously serve computing and

storage functions. Files can also be dynamically

created, deleted, and appended. This results in load

imbalance in a distributed file system; that is, the file

chunks are not distributed as uniformly as possible

among the nodes.

Emerging distributed file systems in production

systems strongly depend on a central node for chunk

reallocation. This dependence is clearly inadequate in

a large-scale, failure-prone environment because the

central load balancer is put under considerable

workload that is linearly scaled with the system size,

and may thus become the performance bottleneck and

the single point of failure. In this paper, a fully

distributed load rebalancing algorithm is presented to

cope with the load imbalance problem.

it is necessary to take steps in a model development in

order to deal with the temporal variability in the

proposed system can easily implemented, as this is

based on some vital programming languages such as

C#.Net .The database created is with SqlServer which

is more secure and easy to handle. The resources that

are required to implement/install these are available.

Therefore, the project is operationally feasible.

Figure 1.1 Distributed file using load balancing system

Economic analysis is the most frequently used method

for evaluating the effectiveness of a new system. More

commonly known cost/benefit analysis, the procedure

is to determine the benefits and savings that are

expected from a candidate system and compare them

with costs. If benefits outweigh costs, then the decision

is made to design and implement the system. An

entrepreneur must accurately weigh the cost versus

benefits before taking an action. This system is more

economically feasible which assess the brain capacity

with quick & online test. So it is economically a good

project

LITERATURE SURVEY

This implementation load balance peer to peer protocol

base internet application distributed IP address

application interface system. Researches and studies in

Load Balance have been extensive. Most often, the

technology with which such control is implemented

uses the underlying concepts and theories in many

applications. Great improvements have been made

with the This means what are the existing in this

application find to the load balancing function used the

problem of the object and what is function using

system in load balance concept analysis. The

researcher also observed that other researchers have

used various systems’ parameters to model the load

balance problems in order to derive the optimal

solutions. Many of these researches involve problems

that are associated with load balance system of large

 Page 1911

and small areas with varying degree of success in

finding the optimum results.

Virtualization

Virtualization is a framework or methodology of

dividing the resources of a computer into multiple

execution environments, by applying one or more

concepts or technologies such as hardware and

software partitioning, timesharing, partial or complete

machine simulation, emulation, quality of service, and

many others. We’re used to a simple equation; one

physical machine runs one OS at any given time. By

virtualization the machine we are able to several

operating systems

Figure 2.1 virtual machine

Load Balancing

Load balancing is essential for efficient operations in

distributed environments. It means distributing the

amount of work to do between different servers in

order to get more work done in the same amount of

time and serve clients faster. In this case, consider a

large-scale distributed file system. The system contains

N chunkservers in a cloud (N can be 1000, 10000, or

more), where a certain number of files are stored. Each

file is split into several parts or chunks of fixed size

(for example 64 megabytes). The load of each

chunkserver is proportional to the number of chunks

hosted by the server. In a load-balanced cloud, the

resources can be well used while maximizing the

performance of MapReduce-based applications.

Figure 2.2 Load balancing design

Heterogeneity and Load Balance in Distributed

Hash Tables

Existing solutions to balance load in DHTs incur a

high overhead either in terms of routing state or in

terms of load movement generated by nodes arriving

or departing the system. In this paper, we propose a set

of general techniques and use them to develop a

protocol based on Chord, called Y0 that achieves load

balancing with minimal overhead under the typical

assumption that the load is uniformly distributed in the

identifier space. In particular, we prove that Y0 can

achieve near-optimal load balancing, while moving

little load to maintain the balance and increasing the

size of the routing tables by at most a constant factor.

Load Rebalancing

In a cloud computing environment, failure is the norm

and chunkservers may be upgraded, replaced, and

added in the system. Files can also be dynamically

created, deleted, and appended. That leads to load

imbalance in a distributed file system, meaning that the

file chunks are not distributed equitably between the

nodes.

Distributed file systems in clouds such as GFS and

HDFS rely on central servers (master for GFS and

Name Node for HDFS) to manage the metadata and

the load balancing. The master rebalances replicas

periodically: data must be moved from a Data

Node/chunk server to another one if its free space is

below a certain threshold However, this centralized

approach can provoke a bottleneck for those servers as

they become unable to manage a large number of file

 Page 1912

accesses. Consequently, dealing with the load

imbalance problem with the central nodes complicates

more the situation as it increases their heavy loads.

The load rebalance problem is NP-hard.

In order to manage large number of chunk servers to

work in collaboration, and solve the problem of load

balancing in distributed file systems, several

approaches have been proposed such as reallocating

file chunks such that the chunks can be distributed to

the system as uniformly as possible while reducing the

movement cost as much as possible.

Figure 2.3 Load Rebalancing design

METHODS AND DESIGN

Overview of Distributed File Systems by using

Load balancing

The overview provides a brief account of the overall

project method including the workflow of activities,

program development. The initial construction of the

design is done on a project board for easier testing and

modification. In developing the expected prototype for

research purpose, it is important to choose the best

components with consideration to the factors that to

determine the suitability of the components. The

factors are the environment in which this prototype

works the reliability and cost effectiveness. The choice

of incorrect components may cause problems to the

development of the project. The problem may cause

damage to the other parts and may escalate cost.

Generally, this system is built according to

requirements to make sure all the components function

properly. However, if any problems arise, they can be

troubleshoot and solved effectively.

In this project, the system of the block diagram is

designed to identify the connection with all the

components. It is most important to know the input

and output components, in order to know whether the

proposed system is working correctly or otherwise.

Also, the flow chart of the system is designed to

emphasize specifically on the flow of the system.

Finally, to make the system complete ip address for

each device has to be constructed before they can be

connected together.

Research Method

The main purpose of using research method is to give

a brief explanation and description of the components

involved the study including the design flow for

software, hardware, design architecture and detailed

explanation of software development such as graphical

user interface (GUI) as well as creating a web page.

Figure 3.1shows the project flow to complete this

project in three steps:

Figure 3.1 Research Method

Design Flow

Based on the necessary requirements to complete Load

Balancing without any causing problem to the system,

the design is divided into two important developments;

Distributed file and security. In order to make sure that

all the system components are working and meeting

the objectives of the project, a few methods are

employed to fulfill the requirements. The first method

identifies the requirements and specifications for

 Page 1913

distributed file. The second method involves the

design and development of the security of prototype

together with all the software for the interface between

the client and servers.

Figure 3.2 shows the project design flow that included

all the development of distributed file and security

together with the methods to fulfill the requirement of

the distributed file system using load balancing. The

diagram also shows the steps in designing and

programming the interface between Clint and server.

Figure 3.2 Design Flow

Basically, the first step after admin login to system for

distributed file. Admin will upload a file after that

encrypted by AES and RSA. The RSA use for

encrypted key by privet key and send public key with

encrypted key and that file when encrypted by AES . If

constructed and the program for the software

development is written correctly, file send to sub

server after that send to main server for collection all

files. After admin accept that registration send key

permission to mail when but that key can see all files.

If not have that key permission will not see anything

because it was encrypted.

Load Balancing Architecture

Figure 3.3 Load Balancing Architecture

Figure 3.3 shows the project architecture. It shows the

overall process flow for the hardware and software

development. In this architecture, there are two users

connected together in the same period to the internet.

Furthermore, the firewall has been located to keep the

whole system between load balancing and user to be

restricted about any suspicious data might destroyed

the information that have stored in the main server. In

addition to that, load balancing are considering one

most significant has divided into three virtual servers,

all the data will be distributed to three servers with

specific amount of data for each server. Moreover,

each server has special function. The experimental

setup can be controlled and monitored from anywhere

covered by internet service through exchanging data

with the server. This is done using C#.Net language

which manages the flow and direction of messages

from one source to others destination.

Security concept

In this research, there are two algorithms have been

taken place, which are symmetric and asymmetric.

Firstly, we considerate about symmetric AES that

consider very strong but has problem with exchange

key. Secondly, we discover to find out the suitable

method to solve this problem by using asymmetric.

The main reason behind the view we did not involve

RSA for encrypted files because great deal of

information and spent plenty of time for encrypted file.

Eventually, in this project we have chosen huge

amount of files instead of small size.

 Page 1914

AES Concept

The Advanced Encryption Standard (AES) is a

symmetric-key block cipher algorithm. It works with

permutations and substitutions. Permutations are

rearrangements of data, and substitutions replace one

unit of data with another. AES performs permutations

and substitutions using several different techniques.

Figure 3.4 AES Process

Phases of AES

The AES algorithm consists of following phases:

Concept of RSA

Figure 3.5 RSA Process

The public-key algorithms use two different keys to

encrypt and decrypt the message. The keys are

generated by a particular algorithm that doesn't allow

obtaining one key from another. One of the keys,

called public key, is shared and will be used for the

encryption process. The other key, called private, must

be kept secret and is used to decrypt the messages.

If person A wants to send a confidential message to the

person B, for example, Alice starts by sending her

public key (A's public) to Bob so Bob can use the

public key to encrypt a message. Bob uses Alice's

public key and encrypts a message. The encrypted

message is sent to Alice. Since only Alice has the

private key, only Alice can decrypt the encrypted

message. An eavesdropper will not be able to decode

the encrypted message.

Key generation of RSA

RSA involves a public key and a private key. The

public key can be known by everyone and is used for

encrypting messages. Messages encrypted with the

public key can only be decrypted in a reasonable

amount of time using the private key. The keys for the

RSA algorithm are generated the following way:

 Page 1915

The public key consists of the modulus n and the

public (or encryption) exponent e. The private key

consists of the modulus n and the private (or

decryption) exponent d, which must be kept secret. p,

q, and φ(n) must also be kept secret because they can

be used to calculate d.

Why Use RSA

 Secrecy and privacy: the content of the

information and communication must be

ONLY accessible to the sender and the

recipient of the information

 Integrity: the content must not be altered

during the exchange phase, there for it must

stay in its original form

 authentication: this aspect is very important

because RSA guarantees the origin of the sent

information, only the sender with his own

private key is able to encrypt the message

there for transform the message into an

unreadable form consequently the receiver will

have confirmation of the origin because he

will be able to decrypt the message only

through the corresponding public key

 non repudiation: the sender cannot state that

the message has not been encrypted with his

private key because the private key used for

the encryption is unique and it's the owner's

responsibility to make sure that it is not used

by non authorized third parties

 Well established

Comparison between AES and RSA

The table below compares the important features of the

AES and RSA algorithms, used within global

cryptographic systems.

Hybrid Algorithms AES and RSA

Figure 3.6 Hybrid AES and RSA

Usually asymmetric key systems ensure a good

security level but are slower and computationally more

demanding than symmetric key encryption. Hybrid

Algorithms system uses a symmetric and an

asymmetric public key system by combining the

advantages of two systems. The safety of public key

and the speed of the symmetric key.

Specifically the hybrid system uses a public key

algorithm. We used RSA, in order to safely share the

symmetric encryption system's secret key. The real

 Page 1916

message is then encrypted using that key .We used

AES because very fast and then sent to the recipient.

Since the key sharing method is secure, the symmetric

key used for the encryption changes for each message

sent. For this reason it is sometimes called the session

key. This means that if the session key was

intercepted, the interceptor would only be able to read

the message encrypted with that key. In order to

decrypt other messages the interceptor would have to

intercept other session keys.

The session key, encrypted using the public key

algorithm, and the message being sent, encrypted with

the symmetric algorithm, are automatically combined

into a single package. The recipient uses private key to

decrypt the session key and then uses the session key

to decrypt the message. In this research, we have used

some significant key as mentioned below.

1-AES with 128 bit key encrypted message

2-RSA with 1024 bit key encrypted key from AES

Load Balancing Concept

In our proposed algorithm, each chunk server node I

first estimate whether it is under loaded (light) or

overloaded (heavy) without global knowledge. A node

is light if the number of chunks it hosts is smaller than

the threshold.

Load statuses of a sample of randomly selected nodes.

Specifically, each node contacts a number of randomly

selected nodes in the system and builds a vector

denoted by V. A vector consists of entries, and each

entry contains the ID, network address and load status

of a randomly selected node.

The Algorithm

Load balancing algorithms help easily to fine-tune how

traffic is distributed across connections. Each

deployment has a unique setup, and Peplink's

enterprise grade load balancing features can fulfil all

of your special requirements. Create your own rule

with the following algorithms and you can sit back and

enjoy the high performance routing that Peplink brings

to you.

Implementation

Modules Details

1. Authentication Module.

2. IP Address Representation Module.

3. Load Servers Module.

4. Load Balancing Module.

5. Load Rebalancing Module.

6. Report Module

Authentication Module:

The authentication module is to register the new users

and previously registered users can enter into our

project. The admin only can enter and do the

uploading files into the servers. After login by every

user and the admin the sql server checks the login id

and password is valid or not. If the login is not valid it

displays that the login is not correct.

IP Address Representation Module:

The IP Address Representation module is to give the

IP addresses which we are going to assign those as

servers. We can enter and view IP addresses from this

module. In load balancing system we can connect the

three servers [system]. The connection has to be

represented by the IP Address representation only.

Load Servers Module:

The Load Servers module has the authentication for

the administrator only can enter into this module. The

administrator will do the encryption of the text file and

store into the servers which we are assigned in IP

representation module. This module will make the

both public and private key for the cryptography.

Load Balancing Module:

The Load Balancing module has the authentication for

users can enter into the upload page and can view the

file name which the administrator stored into the

servers. The user can select the file from the list and

can download from the server which is in idle state.

We will get the response time and from which server

we are getting the file. Finally we can get the

decrypted file from the key pair.

 Page 1917

Load Rebalancing Module:

The Load Rebalancing module has the authentication

for users can enter into the upload page and can view

the file name which the administrator stored into the

servers. The user can select the file from the list and

can download from the sub-server which is in idle

state. We will get the response time and from which

server we are getting the file. Finally we can get the

decrypted file from the key pair.

Report Module:

We will get the response time and from which server

we are getting the file. From the response time produce

the chart report here. It compares the response time

between the servers and downloads the given file in

the better performance response time server.

Data Model

A context-level DFD for the system the primary

external entities produce information for use by the

system and consume information generated by the

system. The labeled arrow represents Data flow

diagram.

The DFD takes an input-process-output view of a

system i.e. data objects flow into the software, are

transformed by processing elements, and resultant data

objects flow out of the software. Data objects

represented by labeled arrows and transformation are

represented by circles also called as bubbles. DFD is

presented in a hierarchical fashion i.e. the first data

flow model represents the system as a whole.

Subsequent DFD refine the context diagram (Stage 0

DFD), providing increasing details with each

subsequent level. The DFD enables the software

engineer to develop models of the information domain

& functional domain at the same time. As the DFD is

refined into greater levels of details, the analyst

performs an implicit functional decomposition of the

system. At the same time, the DFD refinement results

in a corresponding refinement of the data as it moves

through the process that embody data objects or object

hierarchy.

CONCLUSION

The main objectives of this project have successfully

achieved.

We are interested in studying the load rebalancing

problem in distributed file systems specialized for

large-scale, dynamic and data-intensive clouds.

Distributed file systems are key building blocks for

cloud computing applications based on the Map

Reduce programming paradigm. In such file systems,

nodes simultaneously serve computing and storage

functions; a file is partitioned into a number of chunks

allocated in distinct nodes so that Map Reduce tasks

can be performed in parallel over the nodes.

Finally, the devices itself bring advantages such as:

1-simplicity

2- Easy to use and to troubleshoot

3-Low cost

4-Immediate and fast detection of an impending

disaster

5-Appropriate technology use.

It is hopefully that this project will be success in the

future and can give a lot of benefits to people. It is also

hope that with this project.

Based on the literature review, testing and results, this

project is deemed a success in load balancing and

relies of information. The system of this project can be

progressed further as the hands-on skills can be

improved in applying high technology devices to

obtain new knowledge with regards to electronics

components and communication technology.

Future Research

In future we have increase efficiency and effectiveness

of our design are further validated by analytical

models and a real implementation with a small-scale

cluster environment highly desirable to improve the

network efficiency by reducing each user’s download

time. In contrast to the commonly-held practice

focusing on the notion of average capacity, we have

shown that both the spatial heterogeneity and the

temporal correlations in the service capacity can

 Page 1918

significantly increase the average download time of the

users in the network, even when the average capacity

of the network remains the same.

REFERENCES

1).I. Raicu, I.T. Foster, and P. Beckman, “Making a

Case for Distributed File Systems at Exascale,” Proc.

Third Int’l Workshop Large-Scale System and

Application Performance (LSAP ’11), pp. 11-18, June

2011.

2).S. Surana, B. Godfrey, K. Lakshminarayanan, R.

Karp, and I.Stoica, “Load Balancing in Dynamic

Structured P2P Systems,”Performance Evaluation, vol.

63, no. 6, pp. 217-240, Mar. 2006

3).C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C.

Tian, Y. Zhang, and S. Lu, “BCube: A High

Performance, Server-Centric Network Architecture for

Modular Data Centers,” Proc. ACM SIGCOMM ’09,

pp. 63-74, Aug. 2009.

4).H. Abu-Libdeh, P. Costa, A. Rowstron, G. O’Shea,

and A. Donnelly, “Symbiotic Routing in Future Data

Centers,” Proc. ACM SIGCOMM ’10, pp. 51-62, Aug.

2010.

5).M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M.

Kermarrec, and M.V.Steen, “Gossip-Based Peer

Sampling,” ACM Trans. Computer Systems, vol. 25,

no. 3, Aug. 2007.

6)J. Dean and S. Ghemawat, “MapReduce: Simplified

Data Processing on Large Clusters,” Proc. Sixth Symp.

Operating System Design and Implementation (OSDI

’04), pp. 137-150, Dec. 2004. Hadoop Distributed File

System “Rebalancing Blocks,”

http://developer.yahoo.com/hadoop/tutorial/module2.h

tml#rebalancing,2012.

7)K. McKusick and S. Quinlan, “GFS: Evolution on

Fast-Forward,”Comm. ACM, vol. 53, no. 3, pp. 42-49,

Jan. 2010.

8)HDFS Federation,

http://hadoop.apache.org/common/docs/

r0.23.0/hadoop-yarn/hadoop-yarn-site/Federation.html,

2012.

9) Ubuntu, http://www.ubuntu.com/, 2012.

10) I. Stoica, R. Morris, D. Liben-Nowell, D.R.

Karger, M.F. Kaashoek,F. Dabek, and H.

Balakrishnan, “Chord: A Scalable Peer-to-Peer

Lookup Protocol for Internet Applications,”

IEEE/ACM Trans.Networking, vol. 11, no. 1, pp. 17-

21, Feb. 2003.

11) A. Rowstron and P. Druschel, “Pastry: Scalable,

Distributed Object Location and Routing for Large-

Scale Peer-to-Peer Systems,” Proc. IFIP/ACM Int’l

Conf. Distributed Systems Platforms Heidelberg, pp.

161-172, Nov. 2001.

12) G. DeCandia, D. Hastorun, M. Jampani, G.

Kakulapati, A.Lakshman, A. Pilchin, S.

Sivasubramanian, P. Vosshall, and W.ogels, “Dynamo:

Amazon’s Highly Available Key-Value Store,”Proc.

21st ACM Symp. Operating Systems Principles (SOSP

’07), pp. 205-220, Oct. 2007

13)A. Rao, K. Lakshminarayanan, S. Surana, R. Karp,

and I. Stoica,“Load Balancing in Structured P2P

Systems,” Proc. Second Int’l Workshop Peer-to-Peer

Systems (IPTPS ’02), pp. 68-79, Feb. 2003.

14) D. Karger and M. Ruhl, “Simple Efficient Load

Balancing Algorithms for Peer-to-Peer Systems,” Proc.

16th ACM Symp.Parallel Algorithms and

Architectures (SPAA ’04), pp. 36-43, June 2004.

15) P. Ganesan, M. Bawa, and H. Garcia-Molina,

“Online Balancing of Range-Partitioned Data with

Applications to Peer-to-Peer Systems,” Proc. 13th Int’l

Conf. Very Large Data Bases (VLDB ’04), pp. 444-

455, Sept. 2004.

 Page 1919

16) J.W. Byers, J. Considine, and M. Mitzenmacher,

“Simple Load Balancing for Distributed Hash Tables,”

Proc. First Int’l Workshop Peer-to-Peer Systems

(IPTPS ’03), pp. 80-87, Feb. 2003.

17) G.S. Manku, “Balanced Binary Trees for ID

Management and Load Balance in Distributed Hash

Tables,” Proc. 23rd ACM Symp. Principles Distributed

Computing (PODC ’04), pp. 197-205, July 2004

18)M. Armbrust et al., “Above the Clouds: A Berkeley

View of Cloud Computing,” technical report, Univ. of

California, Berkeley, Feb. 2009.

19) L. Siegele, “Let It Rise: A Special Report on

Corporate IT,” The Economist, vol. 389, pp. 3-16, Oct.

2008.

20) P. Barham, B. Dragovic, K. Fraser, S. Hand, T.

Harris, A. Ho, R. Neugebauer, I. Pratt, and A.

Warfield, “Xen and the Art of Virtualization,” Proc.

ACM Symp. Operating Systems Principles (SOSP

’03), Oct. 2003.

21) “Amazon elastic compute cloud (Amazon EC2),”

http://aws.amazon.com/ec2/, 2012.

22)Y. Agarwal, S. Hodges, R. Chandra, J. Scott, P.

Bahl, and R. Gupta, “Somniloquy: Augmenting

Network Interfaces to Reduce Pc Energy Usage,” Proc.

USENIX Symp. Networked Systems Design and

Implementation (NSDI ’09), 2009.

23) D. Meisner, B.T. Gold, and T.F. Wenisch,

“Powernap: Eliminating Server Idle Power,” Proc.

Int’l Conf. Architectural Support for Programming

Languages and Operating Systems (ASPLOS ’09),

2009

24) T. Das, P. Padala, V.N. Padmanabhan, R. Ramjee,

and K.G. Shin, “Litegreen: Saving Energy in

Networked Desktops Using Virtualization,” Proc.

USENIX Ann. Technical Conf., 2010.

25)Y. Agarwal, S. Savage, and R. Gupta, “Sleepserver:

A Software- Only Approach for Reducing the Energy

Consumption of PCS within Enterprise

Environments,” Proc. USENIX Ann. Technical Conf.,

2010.

26)N. Bila, E.d. Lara, K. Joshi, H.A. Lagar-Cavilla, M.

Hiltunen, and M. Satyanarayanan, “Jettison: Efficient

Idle Desktop Consolidation with Partial VM

Migration,” Proc. ACM European Conf.Computer

Systems (EuroSys ’12), 2012.

27)Ciurana, E. Developing with Google App Engine.

Apress, Berkely, CA, USA, 2009.

28) Downey, A. B. The structural cause of file size

distributions. SIGMETRICS Perform. Eval. Rev. 29, 1

(2001), 328–329.

