

 Page 1239

Implementation of a Special Arbitration Scheme for ML-AHB of

AMBA

T.Jamadagni

M.Tech (VLSI DESIGN),

Department of ECE

Pydah Kaushik College of Engineering,

Visakhapatnam, India.

J.Mahesh Kumar

Assistant Professor & HoD

Department of ECE

Pydah Kaushik College of Engineering,

Visakhapatnam, India.

Abstract:

AMBA is one of the leading on-chip busing

architecture widely used as the on-chip bus in

System-on-a-chip (SoC) designs. This bus provides a

high-bandwidth interface between the elements that

are involved in the majority of transfers, mixed

priority and Round Robin transfers.

Multilayer advanced high-performance bus (ML-

AHB) busmatrix employs slave-side arbitration.

Slave-side arbitration is different from master-side

arbitration in terms of request and grant signals. In

this paper, we propose the design and implementation

of a flexible arbiter for the ML-AHB busmatrix and

improves the throughput by 40% compared to other

arbitration schemes.

I. INTRODUCTION

Today in the era of modern technology micro-

electronics play a very vital role in every aspects of

life of an individual, in-creasing use for micro-

electronics equipment increases the demand for

manufacturing its components and its availability.The

buses plays a key role in the system-on-a-chip(SoC)

designs by efficient integration of of het-erogeneous

system components such as CPUs, DSP and etc. To

solve the bandwidth prob-lems, there have been

several types of high-performance on-chip buses

proposed, such as the multilayer AHB (ML-AHB) bus-

matrix from ARM.[2].

The ML-AHB busmatrix is an interconnection scheme

based on the AMBA AHB protocol, which enables

parallel access paths between multiple masters and

slaves in a system. Fig.1.The AMBA AHB is for high-

performance, high clock frequency system

modules.The AHB acts as the high-performance

system backbone bus. AHB supports the efficient

connection of processors, on-chip memories and off-

chip external memory interfaces with low-power

peripheral macrocell functions. AHB is also specified

to ensure ease of use in an efficient design flow using

synthesis and automated test techniques.[1].

In particular, the ML-AHB busmatrix uses slave-side

arbitration. Slave-side arbitration is different from

master-side arbitration in terms of request and grant

signals since, in the former, the master merely starts a

burst transaction and waits for the slave response to

proceed to the next transfer.[2].

In this paper, we propose a flexible arbiter based on

the self-motivated (SM) arbitration scheme for the

ML-AHB busmatrix. Our SM arbitration scheme has

the following advantages: 1) It can adjust the

processed data unit; 2) it changes the priority policies

during runtime; and 3) it is easy to tune the arbitration

scheme according to the characteristics of the target

application. Hence, our arbiter is able to not only deal

with the transfer-based fixed-priority, round-robin, and

dynamic-priority arbitration schemes but also manage

the transaction-based fixed-priority, round-robin, and

dynamic-priority arbitration schemes.[3]. Fig .2.

In this paper our proposed SM arbiter selects one of

the nine possible arbitration to allow the arbitration to

lead to the maximum performance.[1].

 Page 1240

Fig.1 AMBA AHB design with 3 masters and 4 slaves

and an Arbiter

II. ARBITRATION SCHEMEs FOR THE ML-

AHB BUSMATRIX OF ARM

The AMBA AHB bus protocol is designed to be used

with a central multiplexor interconnection scheme.

Using this scheme all bus masters drive out the address

and control signals indicating the transfer they wish to

perform and the arbiter determines which master has

its address and control signals routed to all of the

slaves.[1]. The arbiter determines which input stage

has to perform a transfer to the slave and decides

which the highest priority is currently. A central

decoder is also required to control t\he read data and

response signal multiplexor, which selects the

appropriate signals from the slave that is involved in

the transfer.[6].

Before an AMBA AHB transfer can commence the

bus master must be granted access to the bus .This

process is started by the master asserting a request

signal to the arbiter. Then the arbiter indicates when

the master will be granted use of the bus.[4].

However, the ML-AHB busmatrix of ARM furnishes

only transfer-based arbitration schemes, specif-ically

transfer-based fixed-priority and round-robin

arbitration schemes.[1].

III. SPECIAL ARBITRATION SCHEME FOR

THE ML-AHB BUSMATRIX

The arbitration mechanism is used to ensure that only

one master has access to the bus at any one time.The

arbiter performs this function by observing a number

of different requests to use the bus and deciding which

is currently the highest priority master requesting the

bus.The arbiter also receives requests from slaves that

wish to complete SPLIT transfers.

Fig. 2 Internal structure of our arbiter with SM-AS.

The fig2 shows the internal structure of our arbiter

based upon the SM arbitration scheme.[1].

The role of the arbiter in an AMBA system is to

control which master has access to the bus. Every bus

master has a REQUEST/GRANT interface to the

arbiter and the arbiter uses a prioritization scheme to

decide which bus master is currently the highest

priority master requesting the bus.[6].

In fig1 NoPort signal means that none of the masters

must be selected and that the address and control

signals to the shared slave must be driven to an

inactive state, while Master No. indicates the currently

selected master number generated by the controller for

the SM arbitration scheme. Each master also generates

an HCLOCKx signal which is used to indicate that the

master requires exclusive access to the bus.[1].

In fig.3. the arbiter consists of a P block, two

multiplexers , an RR block, a counter, a controller and

two flipflops. Both MUX_1 and MUX_2 are used to

select the required arbitration scheme and selects

 Page 1241

master’s transfer length. An RR block (P block)

performs the round-robin- or priority-based arbitration

scheme. A counter is used to calculate the transfer

length with two flipflops.[5]

The fig.4. shows the internal process of RR block.In

this we create both up and down mask

vectors(UP_Mask and Dn_Mask) based on the number

of currently selected masters. Now we generate any

one of the masks through bitwise between the mask

vector and the requested master vector. After

generating the up- and down-masked vectors, we

examine each masked vector as to whether they are

zero or not. If the up-masked vector is zero, the down-

masked vector is inserted to the input parameter of the

round-robin function; if it is not zero, the up-masked

vector is the one inserted. A master for the next

transfer is chosen by the round-robin function, and the

current master is updated after

1 clock cycle.[1].

Fig. 3 Internal process of the RR block.

Fig. 4 Internal procedure of the P block.

Fig. 7 shows the internal procedure of the P block.

First of all, we create the highest priority vector (V) .

After generating the highest priority vector (V), the

priority-level vectors and the highest priority vector

(V) are inserted to the input parameters of the priority

function. The master with the highest priority is chosen

by the priority function, while the current master is

updated after 1 clock cycle.[8]

The SM arbitration scheme is achieved through

iteration of the aforementioned steps. Combining the

priority level and the desired transfer length of the

masters allows our arbiter to handle the transfer-based

fixed-priority, round-robin, and dynamic-priority

arbitration schemes (abbreviated as the FT, RT, and

DT arbitration schemes, respectively), as well as the

transaction-based fixed-priority, round-robin, and

dynamic-priority arbitration schemes (abbreviated as

the FR, RR, and DR arbitration schemes, respectively).

[9].Moreover, our arbiter can also deal with the

desired-transfer-length-based fixed-priority, round-

robin, and dynamic-priority arbitration schemes

(abbreviated as the FL, RL, and DL arbitration

schemes, respectively).The transfer- or transaction-

based arbiter switches the data transfer based upon a

single transfer (burst transaction), and the desired-

transfer-length-based arbiter multiplexes the data

transfer based on the transfer length assigned by the

masters.[7],[2].

IV. IMPLEMENTATION AND SIMULATION

RESULTS

In this paper we implemented different slave-side

arbitration scheme for the ML-AHB busmatrix. Each

arbitration-scheme-based busmatrix was implemented

with synthesizable RTL VHDL targeting XILINX

FPGA (XC2VP100-6ff1704). The XILINX design tool

(ISE 7.1i) was used to measure the total area. The

implemented arbitration schemes which we

implemented are FT, FR, RT, RR, DT, DR, and SM

arbitration schemes.[10].fig,5-9.

 Page 1242

Fig.5.simulation result of the top_ml _AHB bus matrix

Fig.6. DR arbitration scheme

Fig.7 DT arbitration scheme

Fig.8.FL arbitration scheme

Fig.9.DL arbitration scheme

V. Conclusion

In this paper, the proposed a flexible arbiter based on

the SM arbitration scheme for the ML-AHB bus

matrix. This arbiter supports three priority policies-

fixed priority, round-robin, and dynamic priority-and

three approaches to data multiplexing- transfer,

transaction, and desired transfer length; in other words,

there are nine possible arbitration schemes.

In addition, the proposed SM arbiter selects one of the

nine possible arbitration schemes based on the priority-

level notifications and the desired transfer length from

the masters to allow the arbitration to lead to the

maximum performance.

This design proposed ML- AHB SM arbitration

schemes increases area than the other arbitration

schemes in ML-AHB, but ML-AHB SM arbitration

 Page 1243

scheme gives the better performance when it selects

the input stage and output stage in self motivated

manner. Therefore expect that it would be better to

apply our SM arbitration scheme to an application-

specific system because it is easy to tune the

arbitration scheme according to the features of the

target system

References

1.Soo Yun Hwang, Dong Soo Kang, Hyeong Jun Park,

and Kyoung Son Jhang, “Implementation of a Self-

Motivated Arbitration Scheme for the Multilayer AHB

Busmatrix”.-- IEEE transactions on very large scale

integration (vlsi) systems, vol. 18, no. 5, may 2010.

2. J.Mahesh Kumar, “Design And Implementation Of

a Self Arbitration Scheme For Multilayer AHB

Busmatrix Of ARM”. IJSETR,Volume 1, Issue 4,

October 2012.

3.M. Drinic, D. Kirovski, S. Megerian, and M.

Potkonjak, “Latency-guided on-chip bus-network

design,” IEEE Trans. Comput.-Aided De-sign Integr.

Circuits Syst., vol. 25, no. 12, pp. 2663–2673, Dec.

2006.

4. ARM, “AHB Example AMBA System,” 2001

[Online]. Available:

http://www.arm.com/products/solutions/AMBA_Spec.

html

5. R. Usselmann, “WISHBONE interconnect matrix IP

core,” Open-Cores, 2002. [Online]. Available:

http://www.opencores.org/ ?do=project=wb_conmax

6.S. Y. Hwang, H.-J. Park, and K.-S. Jhang,

“Performance analysis of slave-side arbitration

schemes for the multi-layer AHB busmatrix,” J. KISS,

Comput. Syst. Theory, vol. 34, no. 5, pp. 257–266,

Jun. 2007.

7.S. Y. Hwang, H. J. Park, and K. S. Jhang, An

Efficient Implementation Method of Arbiter for the

ML-AHB Busmatrix. Berlin, Germany: Springer-

Verlag, May 2007, vol. 4523, LNCS, pp. 229–240.

8.S. Y. Hwang, K. S. Jhang, H. J. Park, Y. H. Bae, and

H. J. Cho, “An ameliorated design method of ML-

AHB busmatrix,” ETRI J., vol. 28, no. 3, pp. 397–400,

Jun. 2006.

9.N.-J. Kim and H.-J. Lee, “Design of AMBA

wrappers for multiple-clock operations,” in Proc. Int.

Conf. ICCCAS, Jun. 2004, vol. 2, pp. 1438–1442.

10.IBM, New York, “32-bit Processor Local Bus

Architecture Specifica-tion,” 2001.

