

 Page 806

Design of High Speed AMBA Advanced Peripheral Bus Master

Data Transfer for Microcontroller

Ch.Krishnam Raju

M.Tech (ES)

Department of ECE

Jogaiah Institute of Technology and Sciences,

Kalagampudi, Palakol - 534 268,

West Godavari Dt., A.P.

Mr. B. Kanna Vijay, M.Tech

Assistant Professor

Department of ECE

Jogaiah Institute of Technology and Sciences,

Kalagampudi, Palakol - 534 268,

West Godavari Dt., A.P.

ABSTRACT

The Advanced Microcontroller Bus Architecture

(AMBA) is a widely used interconnection standard

for System on Chip (SoC) design. An AMBA-based

microcontroller typically consists of a high-

performance system backbone bus (AMBA AHB or

AMBA ASB), able to sustain the external memory

bandwidth, on which the CPU, on-chip memory and

other Direct Memory Access (DMA) devices reside.

This bus provides a high-bandwidth interface

between the elements that are involved in the

majority of transfers. This paper present three

distinct buses and their comparison. By considering

merits of APB, AMBA can be design by using HDL.

INTRODUCTION

Introduction about AMBA Protocol

The Advanced Microcontroller Bus Architecture

(AMBA) was introduced by ARM Ltd in 1996 and is

widely used as the on-chip bus in System-on-a-chip

(SoC) design shown in Fig 1.1. AMBA is a registered

trademark of ARM Ltd. The first AMBA buses were

Advanced System Bus (ASB) and Advanced

Peripheral Bus (APB). In its 2nd version, AMBA 2,

ARM added AMBA High-performance Bus (AHB)

that is a single clock-edge protocol.

Fig.1. ARM soc Block Diagram

In 2003, ARM introduced the 3rd generation, AMBA

3, including AXI to reach even higher performance

interconnects and the Advanced Trace Bus (ATB) as

part of the CoreSight on-chip debugs and trace

solution.

These protocols are today the de-facto standard for 32-

bit embedded processors because they are well

documented and can be used without royalties. Some

manufacturers utilize AMBA buses for non-ARM

designs. As an example Infineon uses an AMBA bus

for the ADM5120 SoC based on the MIPS

architecture.

The important aspect of a SoC is not only which

components or blocks it houses, but also how they are

interconnected. AMBA is a solution for the blocks to

interface with each other.

Since its inception, the scope of AMBA has gone far

beyond microcontroller devices, and is now widely

used on a range of ASIC and SoC parts including

applications processors used in modern portable

mobile devices like smartphones.

Advanced High performance Bus (AHB) Protocol

The advanced microcontroller bus architecture

(AMBA) Specification defines an On-Chip

Communications standard for designing high

performance embedded microcontrollers[1].

Three distinct buses are defined within the AMBA

specification

 The Advanced High-Performance Bus (AHB)

 Page 807

 The Advanced System Bus (ASB)

 The Advanced Peripheral Bus (APB)

A test methodology is included with the AMBA

specification which provides an infrastructure for

modular test and diagnostic access.

Advanced High Performance Bus (AHB)

The AMBA AHB is for high-performance, high clock

frequency system modules. The AHB acts as the high-

performance system backbone bus. AHB supports the

efficient connection of processors, on-chip memories

and off-chip external memory interfaces with low-

power peripheral macro cell functions. AHB is also

specified to ensure ease of use in an efficient design

flow using synthesis and automated test techniques.

Advanced System Bus (ASB):

The AMBA ASB is for high-performance system

modules. AMBA ASB is an alternative system bus

suitable for use where the high-performance features

of AHB are not required. ASB also supports the

efficient Connection of processors, on-chip memories

and off-chip external memory interfaces with low-

power peripheral macro cell functions.

Advanced Peripheral Bus (APB):

The AMBA APB is for low-power peripherals.

AMBA APB is optimized for minimal power

consumption and reduced interface complexity to

support peripheral functions. APB can be used in

conjunction with either version of the system bus.

Objectives of the AMBA Specification:

The AMBA specification has been derived to satisfy

four key requirements:

 To facilitate the right-first-time development

of embedded microcontroller products with

one or more CPUs or signal processors.

 To be technology-independent and ensure that

highly reusable peripheral and system macro

cells can be migrated across a diverse range of

IC processes and be appropriate for full-

custom, standard cell and gate array

technologies.

 To encourage modular system design to

improve processor independence, providing a

development road-map for advanced cached

CPU cores and the development of peripheral

libraries.

 To minimize the silicon infrastructure required

to support efficient on-chip and off-chip

communication for both operation and

manufacturing test.

Multi-layer AHB

The on-chip bus plays a key role in the system-on-a-

chip (SoC) design by enabling the efficient integration

of heterogeneous system components such as CPUs,

DSPs, application specific cores, memories, and

custom logic[2]. Recently, as the level of design

complexity has become higher, SoC designs require a

system bus with high bandwidth to perform multiple

operations in parallel. To solve the bandwidth

problems, there have been several types of high-

performance on-chip buses proposed, such as the

multilayer AHB (ML-AHB) bus matrix from ARM,

the PLB crossbar switch from IBM, and CONMAX

from Silicore . Among them, the ML-AHB bus matrix

has been widely used in many SoC designs. This is

because of the simplicity of the AMBA bus of ARM,

which attracts many IP designers, and the good

architecture of the AMBA bus for applying embedded

systems with low power.

The ML-AHB bus matrix is an interconnection

scheme based on the AMBA AHB protocol, which

enables parallel access paths between multiple masters

and slaves in a system. This is achieved by using a

more complex interconnection matrix and gives the

benefit of both increased overall bus bandwidth and a

more flexible system structure. In particular, the ML-

AHB bus matrix uses slave-side arbitration. Slave-side

arbitration is different from master-side arbitration in

terms of request and grant signals since, in the former,

the master merely starts a burst transaction and waits

for the slave response to proceed to the next transfer.

 Page 808

Therefore, the unit of arbitration can be a transaction

or a transfer. The transaction-based arbiter multiplexes

the data transfer based on the burst transaction, and the

transfer-based arbiter switches the data transfer based

on a single transfer. However, the ML-AHB bus

matrix of ARM presents only transfer-based

arbitration schemes, i.e., transfer based fixed-priority

and round-robin arbitration schemes. This limitation

on the arbitration scheme may lead to degradation of

the system performance because the arbitration

scheme is usually dependent on the application

requirements; recent applications are likewise

becoming more complex and diverse. By

implementing an efficient arbitration scheme, the

system performance can be tuned to better suit

applications. For a high-performance on-chip bus,

several studies related to the arbitration scheme have

been proposed, such as table-lookup-based crossbar

arbitration, two-level time-division multiplexing

(TDM) scheduling, token-ring mechanism , dynamic

bus distribution algorithm , and LOTTERYBUS.

However, these approaches employ master-side

arbitration. Therefore, they can only control priority

policy and also present some limitations when

handling the transfer-based arbitration scheme since

master-side arbitration uses a centralized arbiter. In

contrast, it is possible to deal with the transfer-based

arbitration scheme as well as the transaction- based

arbitration scheme in slave-side arbitration. In this

paper, we propose a flexible arbiter based on the self-

motivated (SM) arbitration scheme for the ML-AHB

bus matrix[2]. Our SM arbitration scheme has the

following advantages: 1) It can adjust the processed

data unit; 2) it changes the priority policies during

runtime; and 3) it is easy to tune the arbitration scheme

according to the characteristics of the target

application. Hence, our arbiter is able to not only deal

with the transfer-based fixed-priority, round-robin, and

dynamic-priority arbitration schemes but also manage

the transaction-based fixed-priority, round-robin, and

dynamic-priority arbitration schemes. Furthermore,

our arbiter provides the desired-transfer-length-based

fixed-priority, round-robin, and dynamic-priority

arbitration schemes. In addition, the proposed SM

arbiter selects one of the nine possible arbitration

schemes based on the priority-level notifications and

the desired transfer length from the masters to ensure

that the arbitration leads to the maximum performance.

Multi-layer AHB is an interconnection scheme, based

on the AHB protocol, which enables parallel access

paths between multiple masters and slaves in a system.

This is achieved by using a more complex

interconnection matrix.

Key advantages are:

 You can develop multi-master systems with an

increased available bus bandwidth.

 You can construct complex multi-master

systems that have a flexible architecture. This

removes the requirement to fix design

decisions about the allocation of system

resources to particular masters at the hardware

design stage.

 Each AHB layer can be very simple because it

only has one master, so no arbitration or

master-to-slave muxing is required. These

layers can use the AHB-Lite protocol,

meaning that they do not have to support

request and grant, or retry and split

transactions.

 The arbitration effectively becomes point

arbitration at each peripheral and is only

necessary when more than one master wants

to access the same slave simultaneously..

 Because the multi-layer architecture is based

on the existing AHB protocol, shown in

Figure.1.3 you can reuse previously-designed

masters and slaves without modification

Fig .2. Basic multi-layer concept

 Page 809

APPLICATIONS

AMBA-AHB can be used in the different application

and also it is technology independent.

 ARM Controllers are designed according to

the specifications of AMBA. In the present

technology, high performance and speed are

required which are convincingly met by

AMBA-AHB Compared to the other

architectures AMBA-AHB is far more

advanced and efficient.

 To minimize the silicon infrastructure to

support on-chip and off-chip communications

 Any embedded project which involve in ARM

processors or microcontroller must always

make use of this AMBA-AHB as the common

bus throughout the project.

Block Diagram

The block diagram of the Advanced High-

Performance Bus Protocol is shown in the Figure 2.1.

Totally this block diagram comprises of four

components.

 Arbiter

 Master

 Slave

 Decoder

Arbiter

The arbitration mechanism is used to ensure that only

one master has access to the bus at any one time. The

arbiter performs this function by observing a number

of different requests to use the bus and deciding which

is currently the highest priority master requesting the

bus.

Fig.2.1 AMBA – AHB block diagram

Master

A bus master is able to initiate read and write

information by providing address and control

information. Only one bus master can use the bus at

the same time An AHB bus master has the most

complex bus interface in an AMBA system.

Typically an AMBA system designer would use

predesigned bus masters and therefore would not need

to be concerned with the detail of the bus master

interface. No provision is made within the AHB

specification for a bus master to cancel a transfer once

it has commenced.

Slave

After a master has started a transfer, the slave then

determines how the transfer should progress.

Whenever a slave is accessed it must provide a

response which indicates the status of the transfer. The

HREADY signal is used to extend the transfer and this

works in combination with the response signal HRESP

which provide the status of the transfer.

The slave can complete the transfer in a number of

ways. It can:

 Complete the transfer immediately

 Signal an error to indicate that the transfer has

failed

 Delay the completion of the transfer, but allow

the master and slave to back off the bus,

leaving it available for other transfers.

Decoder

The AHB decoder is used to decode the address of

each transfer and provide a select signal for the slave

that is involved in the transfer. A central address

decoder is used to provide a select signal „HSELx‟ for

each slave on the bus. The select signal is a

combinatorial decode of the high-order address

signals. A slave must only sample the address and

control signals and HSELx is asserted when HREADY

is HIGH, indicating that the current transfer is

completing.

 Page 810

Working of AHB

The AMBA AHB bus protocol is designed with a

central multiplexor interconnection scheme.

Using this scheme all bus masters drive out the

address and control signals indicating the transfer, they

wish to perform and the arbiter determines which

master has its address and control signals routed to all

of the slaves. Before which initially the master who

needs to perform the operation should give the request

signal to the arbiter and the arbiter will give the grant

signal to the master for further proceedings. Similarly,

a decoder is used to select the slave which has to be

active during the operation based on the address given

by the master. A central decoder is also required to

control the read data and response signal multiplexor,

which selects the appropriate signals from the slave

that is involved in the transfer. These make the read

and write operation smoothly.

Thus the working of AMBA AHB protocol is

explained with the help of its block diagram shown in

Figure .2.1.

Overview of AMBA AHB Operation

Before an AMBA AHB transfer can commence the

bus master must be granted access to the bus. This

process is started by the master asserting a request

signal to the arbiter. Then the arbiter indicates when

the master will be granted use of the bus.

A granted bus master starts an AMBA AHB transfer

by driving the address and control signals. These

signals provide information on the address, direction

and width of the transfer, as well as an indication if the

transfer forms part of a burst. Two different forms of

burst transfers are allowed.

 Incrementing bursts, which do not wrap at

address boundaries

 Wrapping bursts, which wrap at particular

address boundaries

A write data bus is used to move data from the master

to a slave, while a read data bus is used to move data

from a slave to the master.

Every transfer consists of:

 An address and control cycle

 One or more cycles for the data.

The address cannot be extended and therefore all

slaves must sample the address during this time. The

data, however, can be extended using the HREADY

signal. When LOW this signal causes wait states to be

inserted into the transfer and allows extra time for the

slave to provide or sample data.

During a transfer the slave shows the status using the

response signals, HRESP OKAY. The OKAY

response is used to indicate that the transfer is

progressing normally and when HREADY goes HIGH

this shows the transfer has completed successfully.

Design of Self-Motivated Arbitration Scheme for

the Multilayer AHB Bus matrix

The ML-AHB bus matrix of ARM consists of the

input stage, decoder, and output stage, including an

arbiter Figure.3.1 shows the overall structure of the

ML-AHB bus matrix of ARM.

Fig.3.1 Overall structure of the ML-AHB bus

matrix of ARM

The input stage is responsible for holding the address

and control information when transfer to a slave is not

able to commence immediately. The decoder

determines which slave that a transfer is destined for.

The output stage is used to select which of the various

master input ports is routed to the slave. Each output

stage has an arbiter. The arbiter determines which

input stage has to perform a transfer to the slave and

 Page 811

decides which the highest priority is currently. The

ML-AHB bus matrix employs slave-side arbitration, in

which the arbiters are located in front of each slave

port, as shown in Fig.3.1; the master simply starts a

transaction and waits for the slave response to proceed

to the next transfer. Therefore, the unit of arbitration

can be a transaction or a transfer. However, the ML-

AHB bus matrix of ARM furnishes only transfer-

based arbitration schemes, specifically transfer-based

fixed-priority and round-robin arbitration schemes.

The transfer-based fixed-priority (round-robin) arbiter

multiplexes the data transfer based on a single transfer

in a fixed-priority or round-robin fashion.

PROPOSED METHODOLOGY

The ARM processor and AHB bus are more popular in

SoC design. Bus has many advantages in high-

performance devices but has limitations on interface

with low bandwidth devices. So, bridge is necessary

between them. AMBA AHB and ASB is high

performance bus and have higher bandwidth. High

bandwidth RAM, DMA bus controller, memory

interface and high performance ARM processors

which require high bandwidth are connected with

AHB or ASB. Whereas APB is low bandwidth and

low performance bus. Peripheral devices such as

UART, Timer, and keypad require low bandwidth, so

connects with APB. So bridge is required to connect

AHB or ASB and APB.

AHB-to-APB Bridge interfaces AHB and APB. It is

require to bridge communication gap between high

bandwidth AHB and low bandwidth peripheral like

serial, Ethernet devices on APB .

There are many differences between these two buses.

AHB uses full duplex communication where as APB

uses massive memory-I/O accesses. Unlike AHB,

there is no pipelined structure in APB. Compared with

AHB, APB has low bandwidth control accesses.

If comparing usage, APB is simpler than AHB. APB is

mainly proposed for connecting to simple low

bandwidth peripherals. APB also can be optimized for

reduce the interface complexity and power

consumption.

Fig.4.1 . Application Block Diagram of AHB to

APB

Figure. 4.1, shows application block diagram for AHB

to APB Bridge. The master is ARM CPU and slaves

are APB peripherals. It is assumed that speed ratio of

AHB2APB is 2:1 i.e. if AHB executes with clock

frequency 200MHz, APB should be with 100MHz. So,

Bridge is required for frequency and speed

compensation between system and local bus.

DESIGN OF AHB to APB BRIDGE

AHB to APB Bridge operates on HCLK and APB

access sub module operates on PCLK. AHB response

and Control transfer is together termed as AHB

interface and APB access is termed as APB interface

to ensure the correct generation of suitable control

signals and address we use three internal signals in the

bridge module namely:

1) PENDWR (Pending Write).

2) PENDRD (Pending Read)

3) PDONE (Peripheral operation done).

The capture of address & control for Write or Read

operation is done when HREADY, HTRANS and

HSEL are valid. READY is the only signal that is the

output from the bridge to AHB master to cope up the

communication between AHB and APB. Hence the

generation of HREADY signal is very significant in

the bridge module. By using the internal signals

PENDWR and PENDRD and double synchronized

signal (Double synchronization is explained later in

this section) PDONE, HREADY generation is made

easy to capture the next control for Write or Read

operation from AHB to APB. Since the sub modules

 Page 812

operate on different clock domains namely HCLK and

PCLK, there is a need for interfacing these clock

domains. Any two systems are considered

asynchronous to each other:

 When they operate at two different frequency.

 When they operate at same frequency, but at

two different clock phase angles.

This interfacing is difficult in the sense that design

becomes asynchronous at the boundary of interface,

which results in setup and hold time violation, Meta

stability and unreliable data transfers. Hence we need

to go out for special design and interfacing techniques.

In such a case if we need to do data transfer, there are

very few methods to achieve this namely:

 Handshake signaling method.

 Asynchronous FIFO.

Both have its own advantages and disadvantages. In

our paper we have used Handshake signaling Method.

In Handshake signaling method the AHB interface

sends data to APB interface based on the handshake

signals PENDWR (or PENDRD) and PDONE signals.

The protocol for this uses the same method that is

found with 8155 chip used with 8085 based on

handshake signals Request and Acknowledge

Operation of AHB to APB Bridge

The AHB to APB interfaces AHB and APB. It buffers

address, controls and data from the AHB, drives the

APB peripherals and return data along with response

signal to the AHB. The AHB to APB interface is

designed to operate when AHB and APB clocks have

the any combination of frequency and phase .The

AHB to APB performs transfer of data from AHB to

APB for write cycle and APB to AHB for Read cycle.

Features of AHB to APB Bridge

Interface between AMBA high performance bus

(AHB) and AMBA peripheral bus (APB) , provides

latching of address, controls and data signals for APB

peripherals.

Supports for the following

 APB compliant slaves and peripherals.

 Peripherals which require additional wait

states.

RESULTS

Figure 8.1 shows the Simulation Result for AMBA

APB MASTER BURST. Back annotation is the

translation of a routed or fitted design to a timing

simulation Net list. Back annotation was performed on

the Xilinx generated synthesis file for the AHB2APB

Bridge module. In our paper only Bridge module is the

synthesized module and AHB driver and APB monitor

were test bench modules.

1) With HCLK and PCLK having a ratio of 1:2.

2) With HCLK and PCLK having a phase difference

of 900 and same frequency

Fig.8.1 Simulation Result for AMBA APB

MASTER SLAVE BURST

CONCLUSION

In this paper, the proposed RTL Simulation of

AHB2APB Bridge has been verified and validated by

using suitable test benches namely AHB

Driver/Monitor and APB Driver/Monitor.

The Synthesis of AHB2APB Bridge has been

successfully completed by the extraction of

Synthesized Netlist with unit delays & verified by

comparing the Gate level Simulation with RTL

Simulation results. The Back Annotation of

AHB2APB Bridge has also been successfully

completed by the extraction of Synthesized Netlist

with suitable delays & verified by the comparison of

Gate level simulation with RTL simulation results.

 Page 813

AMBA APB provides the basic peripheral macro cell

communications infrastruc-ture as a secondary bus

from the higher bandwidth pipe-lined main system bus

.Such peripherals typically have interfaces which are

memory-mapped registers,have no high-bandwidth

interfaces and these are accessed under programmed

control.

Thus AHB2APB Bridge is a standalone solution to

extract the advantages of newly developed ARM

based AMBA AHB bus by bridging the common gap

between AHB and the existing APB bus.

FUTURE SCOPE

As future work

 This work can be improved by implementing

with Advanced Risc Machines(ARM)

Processors

 This Design Can also be used in all SOC‟s

Applications where debugging and

performance analysis is difficult.

 This work can be improved by implementing

with video codec controller.

REFERENCES

[1] M. Drinic, D. Kirovski, S. Megerian, and M.

Potkonjak, “Latencyguided onchip bus-network

design,” IEEE Trans. Comput.-Aided Design Integr.

Circuits Syst., vol. 25, no. 12, pp. 2663–2673, Dec.

2006.

[2] S. Y. Hwang, K. S. Jhang, H. J. Park, Y. H. Bae,

and H. J. Cho, “An ameliorated design method of ML-

AHB busmatrix,” ETRI J., vol. 28, no. 3, pp. 397–400,

Jun. 2006.

[3] ARM, “AHB Example AMBA System,” 2001

[Online]. Available:

http://www.arm.com/products/solutions/AMBA_Spec.

html

[4] Akhilesh Kumar, Richa Sinha, “Design and

Verification analysis of APB3 Protocol with

Coverage,” IJAET, Nov 2011

[5] R. Usselmann, “WISHBONE interconnect matrix

IP core,” Open- Cores, 2002. [Online].

[6] N.-J. Kim and H.-J. Lee, “Design of AMBA

wrappers for multipleclock operations,” in Proc. Int.

Conf. ICCCAS, Jun. 2004, vol. 2, pp. 1438–1442.

[7] SanthiPriya Sarekokku, K. Rajasekhar, “Design

and Implementation Of APB Bridge based on AMBA

AXI 4.0,” IJERT, Vol.1, Issue 9, Nov 2012.

[8] S. S. Kallakuri and A. Doboli, “Customization of

arbitration policies and buffer space distribution using

continuous-time Markov decision processes,” IEEE

Trans. Very Large Scale Integr. (VLSI) Syst., vol. 15,

no. 2, pp. 240–245, Feb. 2007.

[9] Samir Palnitkar, “Verilog HDL: A guide to Digital

Design and Synthesis (2nd Edition), Pearson, 2008.

[10] Chris Spear, “SystemVerilog for verification (2nd

Edition): A guide to learning the testbench features,

Springer, 2008..

WEBSITES

[1]

http://www.arm.com/products/solutions/axi_spec.html,

[2] http://www.opencores.org/

?do=project=wb_conmax

[3] www.arteris.com/arm-amba-protocols-axi-ac

[4]

www.dauniv.ac.in/downloads/...PPTs/Chap_3Lesson2

3Emsys Ne

[5]

http://wwwmicro.deis.unibo.it/~magagni/amba99.pdf

