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ABSTRACT: 

This paper proposes a lossless, a reversible, and a 

combined data hiding schemes for ciphertext images 

encrypted by public key cryptosystems with 

probabilistic and homomorphic properties. In the 

lossless scheme, the ciphertext pixels are replaced 

with new values to embed the additional data into 

several LSB-planes of ciphertext pixels by multi-layer 

wet paper coding. Then, the embedded data can be 

directly extracted from the encrypted domain, and the 

data embedding operation does not affect the 

decryption of original plaintext image. In the 

reversible scheme, a preprocessing is employed to 

shrink the image histogram before image encryption, 

so that the modification on encrypted images for data 

embedding will not cause any pixel oversaturation in 

plaintext domain. Although a slight distortion is 

introduced, the embedded data can be extracted and 

the original image can be recovered from the directly 

decrypted image. Due to the compatibility between 

the lossless and reversible schemes, the data 

embedding operations in the two manners can be 

simultaneously performed in an encrypted image. 

With the combined technique, a receiver may extract 

a part of embedded data before decryption, and 

extract another part of embedded data and recover 

the original plaintext image after decryption. 

 

INTRODUCTION 

Encryption and data hiding are two effective means of 

data protection. While the encryption techniques 

convert plaintext content into unreadable ciphertext, 

the data hiding techniques embed additional data into 

cover media by introducing slight modifications. In 

some distortion-unacceptable scenarios, data hiding 

may be performed with a lossless or reversible manner.  

 

Although the terms “lossless” and “reversible” have a 

same meaning in a set of previous references, we 

would distinguish them in this work 

 

We say a data hiding method is lossless if the display 

of cover signal containing embedded data is same as 

that of original cover even though the cover data have 

been modified for data embedding. For example, in 

[1], the pixels with the most used color in a palette 

image are assigned to some unused color indices for 

carrying the additional data, and these indices are 

redirected to the most used color. This way, although 

the indices of these pixels are altered, the actual colors 

of the pixels are kept unchanged. On the other hand, 

we say a data hiding method is reversible if the 

original cover content can be perfectly recovered from 

the cover version containing embedded data even 

though a slight distortion has been introduced in data 

embedding procedure. A number of mechanisms, such 

as difference expansion [2], histogram shift [3] and 

lossless compression [4], have been employed to 

develop the reversible data hiding techniques for 

digital images. Recently, several good prediction 

approaches [5] and optimal transition probability under 

payload-distortion criterion [6, 7] have been 

introduced to improve the performance of reversible 

data hiding. 

 

Combination of data hiding and encryption has been 

studied in recent years. In some works, data hiding and 

encryption are jointed with a simple manner. For 
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example, a part of cover data is used for carrying 

additional data and the rest data are encrypted for 

privacy protection [8, 9]. Alternatively, the additional 

data are embedded into a data space that is invariable 

to encryption operations [10]. In another type of the 

works, data embedding is performed in encrypted 

domain, and an authorized receiver can recover the 

original plaintext cover image and extract the 

embedded data. This technique is termed as reversible 

data hiding in encrypted images (RDHEI). In some 

scenarios, for securely sharing secret images, a content 

owner may encrypt the images before transmission, 

and an inferior assistant or a channel administrator 

hopes to append some additional messages, such as the 

origin information, image notations or authentication 

data, within the encrypted images though he does not 

know the image content. For example, when medical 

images have been encrypted for protecting the patient 

privacy, a database administrator may aim to embed 

the personal information into the corresponding 

encrypted images. 

 

Here, it may be hopeful that the original content can be 

recovered without any error after decryption and 

retrieve of additional message at receiver side. In [11], 

the original image is encrypted by an exclusive-or 

operation with pseudo-random bits, and then the 

additional data are embedded by flipping a part of least 

significant bits (LSB) of encrypted image. By 

exploiting the spatial correlation in natural images, the 

embedded data and the original content can be 

retrieved at receiver side. The performance of RDHEI 

can be furtherimproved by introducing an 

implementation order [12] or a flipping ratio [13]. In 

[14], each additional bit is embedded into a block of 

data encrypted by the Advanced Encryption Standard 

(AES). When a receiver decrypts the encrypted image 

containing additional data, however, the quality of 

decrypted image is significantly degraded due to the 

disturbance of additional data. In [15], the data-hider 

compresses the LSB of encrypted image to generate a 

sparse space for carrying the additional data. Since 

only the LSB is changed in the data embedding phase, 

the quality of directly decrypted image is satisfactory.  

Reversible data hiding schemes for encrypted JPEG 

images is also presented [16]. In [17], a sparse data 

space for accommodating additional data is directly 

created by compress the encrypted data. If the creation 

of sparse data space or the compression is 

implemented before encryption, a better performance 

can be achieved [18, 19]. 

 

While the additional data are embedded into encrypted 

images with symmetric cryptosystem in the above-

mentioned RDHEI methods, a RDHEI method with 

public key cryptosystem is proposed in [20]. Although 

the computational complexity is higher, the 

establishment of secret key through a secure channel 

between the sender and the receiver is needless. With 

the method in [20], each pixel is divided into two 

parts: an even integer and a bit, and the two parts are 

encrypted using Paillier mechanism [21], respectively.  

 

Then, the ciphertext values of the second parts of two 

adjacent pixels are modified to accommodate an 

additional bit. Due to the homomorphic property of the 

cryptosystem, the embedded bit can be extracted by 

comparing the corresponding decrypted values on 

receiver side. In fact, the homomorphic property may 

be further exploited to implement signal processing in 

encrypted domain [22, 23, 24]. For recovering the 

original plaintext image, an inverse operation to 

retrieve the second part of each pixel in plaintext 

domain is required, and then two decrypted parts of 

each pixel should be reorganized as a pixel. 

 

This paper proposes a lossless, a reversible, and a 

combined data hiding schemes for public-key-

encrypted images by exploiting the probabilistic and 

homomorphic properties of cryptosystems. With these 

schemes, the pixel division/reorganization is avoided 

and the encryption/decryption is performed on the 

cover pixels directly, so that the amount of encrypted 

data and the computational complexity are lowered. In 

the lossless scheme, due to the probabilistic property, 

although the data of encrypted image are modified for 

data embedding, a direct decryption can still result in 

the original plaintext image while the embedded data 
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can be extracted in the encrypted domain. In the 

reversible scheme, a histogram shrink is realized 

before encryption so that the modification on 

encrypted image for data embedding does not cause 

any pixel oversaturation in plaintext domain. Although 

the data embedding on encrypted domain may result in 

a slight distortion in plaintext domain due to the 

homomorphic property, the embedded data can be 

extracted and the original content can be recovered 

from the directly decrypted image. Furthermore, the 

data embedding operations of the lossless and the 

reversible schemes can be simultaneously performed 

in an encrypted image. With the combined technique, a 

receiver may extract a part of embedded data before 

decryption, and extract another part of embedded data 

and recover the original plaintext image after 

decryption. 

 

LOSSLESS DATA HIDING SCHEME 

In this section, a lossless data hiding scheme for 

public-key-encrypted images is proposed. There are 

three parties in the scheme: an image provider, a data-

hider, and a receiver. With a cryptosystem possessing 

probabilistic property, the image provider encrypts 

each pixel of the original plaintext image using the 

public key of the receiver, and a data-hider who does 

not know the original image can modify the ciphertext 

pixel-values to embed some additional data into the 

encrypted image by multi-layer wet paper coding 

under a condition that the decrypted values of new and 

original cipher-text pixel values must be same. When 

having the encrypted image containing the additional 

data, a receiver knowing the data hiding key may 

extract the embedded data, while a receiver with the 

private key of the cryptosystem may perform 

decryption to retrieve the original plaintext image. In 

other words, the embedded data can be extracted in the 

encrypted domain, and cannot be extracted after 

decryption since the decrypted image would be same 

as the original plaintext image due to the probabilistic 

property. That also means the data embedding does not 

affect the decryption of the plaintext image. The sketch 

of lossless data hiding scheme is shown in Figure 1. 

 
2.1.1. Image encryption 

In this phase, the image provider encrypts a plaintext 

image using the public key of probabilistic 

cryptosystem  For each pixel value m(i, j) where 

(i, j) indicates the pixel position, the image provider 

calculates its ciphertext value, 

 
where E is the encryption operation and r(i, j) is a 

random value. Then, the image provider collects the 

ciphertext values of all pixels to form an encrypted 

image. 

 

Actually, the proposed scheme is capitable with 

various probabilistic public-key cryptosystems, such as 

Paillier [18] and Damgard-Jurik cryptosystems [25]. 

With Paillier cryptosystem [18], for two large primes p 

and q, calculate n = p⋅q, λ = lcm (p−1, q−1), where lcm 

means the least common multiple. Here, it should meet 

that gcd (n, (p−1)⋅(q−1)) = 1, where gcd means the 

greatest common divisor. The public key is composed 

of n and a randomly selected integer g in , while 

the private key is composed of λ and 

 

 
 

In this case, (1) implies 
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where r(i, j) is a random integer in . The plaintext 

pixel value can be obtained using the private key, 

 
 

As a generalization of Paillier cryptosystem, Damgard-

Jurik cryptosystem [25] can be also used to encrypt the 

plaintext image. Here, the public key is composed of n 

and an element g in Z
* 
n

s+1
 such that g = (1+n)

j
.x mod 

n
s+1

 for a known j relatively prime to n and x belongs 

to a group isomorphic to Z*n, and we may choose d as 

the private key when meeting d mod n ∈ Z*n and d = 0 

mod λ. Then, the encryption in (1) can be rewritten as  

 
where r(i, j) is a random integer in Z

* 
n

s+1
. By applying 

a recursive version of Paillier decryption, the plaintext 

value can be obtained from the ciphertext value using 

the private key. Note that, because of the probabilistic 

property of the two cryptosystems, the same gray 

values at different positions may correspond to 

different ciphertext values. 

 

2.1.2  Data embedding 

When having the encrypted image, the data-hider may 

embed some additional data into it in a lossless 

manner. The pixels in the encrypted image are 

reorganized as a sequence according to the data hiding 

key. For each encrypted pixel, the data-hider selects a 

random integer r'(i, j) in Z*n and calculates 

 
if Paillier cryptosystem is used for image encryption, 

while the data-hider selects a random integer r'(i, j) in 

Z
*
 n

s+1
 and calculates 

 
 

if Damgard-Jurik cryptosystem is used for image 

encryption. We denote the binary representations of 

c(i, j) and c'(i, j) as bk(i, j) and b'k(i, j), respectively, 

 
 

Clearly, the probability of bk(i, j) = b'k(i, j) (k = 1, 2, 

…) is 1/2. We also define the sets 

 
 

By viewing the k-th LSB of encrypted pixels as a wet 

paper channel (WPC) [26] and the k-th LSB in Sk as 

“dry” elements of the wet paper channel, the data-hider 

may employ the wet paper coding [26] to embed the 

additional data by replacing a part of c(i, j) with c'(i, j). 

The details will be given in the following. 

 

Considering the first LSB, if c(i, j) are replaced with 

c'(i, j), the first LSB in S1 would be flipped and the rest 

first LSB would be unchanged. So, the first LSB of the 

encrypted pixels can be regarded as a WPC, which 

includes changeable (dry) elements and unchangeable 

(wet) elements. In other words, the first LSB in S1 are 

dry elements and the rest first LSB are wet positions. 

By using the wet paper coding [26], one can represent 

on average Nd bits by only flipping a part of dry 

elements where Nd is the number of dry elements. In 

this scenario, the data-hider may flip the dry elements 

by replacing c(i, j) with c'(i, j). Denoting the number of 

pixels in the image as N, the data-hider may embed on 

average N/2 bits in the first LSB-layer using wet paper 

coding. Considering the second LSB (SLSB) layer, we 

call the SLSB in S2 as dry elements and the rest SLSB 

as wet elements. Note that the first LSB of ciphertext 

pixels in S1 have been determined by replacing c(i, j) 

with c'(i, j) or keeping c(i, j) unchanged in the first 

LSB-layer embedding, meaning that the SLSB in S1 
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are unchangeable in the second layer. Then, the data-

hider may flip a part of SLSB in S2 by replacing c(i, j) 

with c'(i, j) to embed on average N/4 bits using wet 

paper coding. 

 

Similarly, in the k-th LSB layer, the data-hider may 

flip a part of k-th LSB in Sk to embed on average N/2
k
 

bits. When the data embedding is implemented in K 

layers, the total N⋅(1−1/2
k
) bits, on average, are 

embedded. That implies the embedding rate, a ratio 

between the number of embedded bits and the number 

of pixels in cover image, is approximately (1−1/2
k
). 

That implies the upper bound of the embedding rate is 

1 bit per pixel. The next subsection will show that, 

although a part of c(i, j) is replaced with c'(i, j), the 

original plaintext image can still be obtained by 

decryption. 

 

2.1.3 Data extraction and image decryption 

After receiving an encrypted image containing the 

additional data, if the receiver knows the data-hiding 

key, he may calculate the k-th LSB of encrypted 

pixels, and then extract the embedded data from the K 

LSB-layers using wet paper coding. On the other hand, 

if the receiver knows the private key of the used 

cryptosystem, he may perform decryption to obtain the 

original plaintext image. When Paillier cryptosystem is 

used, Equation (4) implies 

 
where α is an integer. By substituting (12) into (7), 

there is 

 
 

Since r(i, j)⋅r'(i, j) can be viewed as another random 

integer in Z*n, the decryption on c'(i, j) will result in 

the plaintext value, 

 
 

Similarly, when Damgard-Jurik cryptosystem is used, 

 

The decryption on c'(i, j) will also result in the 

plaintext value. In other words, the replacement of 

ciphertext pixel values for data embedding does not 

affect the decryption result. 

 

REVERSIBLE DATA HIDING SCHEME 

This section proposes a reversible data hiding scheme 

for public-key-encrypted images. In the reversible 

scheme, a preprocessing is employed to shrink the 

image histogram, and then each pixel is encrypted with 

additive homomorphic cryptosystem by the image 

provider. When having the encrypted image, the data-

hider modifies the ciphertext pixel values to embed a 

bit-sequence generated from the additional data and 

error-correction codes. Due to the homomorphic 

property, the modification in encrypted domain will 

result in slight increase/decrease on plaintext pixel 

values, implying that a decryption can be implemented 

to obtain an image similar to the original plaintext 

image on receiver side. Because of the histogram 

shrink before encryption, the data embedding 

operation does not cause any overflow/underflow in 

the directly decrypted image. Then, the original 

plaintext image can be recovered and the embedded 

additional data can be extracted from the directly 

decrypted image. Note that the data-extraction and 

content-recovery of the reversible scheme are 

performed in plaintext domain, while the data 

extraction of the previous lossless scheme is performed 

in encrypted domain and the content recovery is 

needless. The sketch of reversible data hiding scheme 

is given in Figure 2. 
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3.1. Histogram shrink and image encryption 

In the reversible scheme, a small integer δ shared by 

the image provider, the data-hider and the receiver will 

be used, and its value will be discussed later. Denote 

the number of pixels in the original plaintext image 

with gray value v as hv, implying 

 
where N is the number of all pixels in the image. The 

image provider collects the pixels with gray values in 

[0, δ+1], and represent their values as a binary stream 

BS1. When an efficient lossless source coding is used, 

the length of BS1 

 
where H(⋅) is the entropy function. The image provider 

also collects the pixels with gray values in [255−δ, 

255], and represent their values as a binary stream BS2 

with a length l2. Similarly, 

 
 

Then, the gray values of all pixels are enforced into 

[δ+1, 255−δ], 

 
 

Denoting the new histogram as h'v, there must be 

 
 

The image provider finds the peak of the new 

histogram, 

 
 

The image provider also divides all pixels into two 

sets: the first set including (N−8) pixels and the second 

set including the rest 8 pixels, and maps each bit of 

BS1, BS2 and the LSB of pixels in the second set to a 

pixel in the first set with gray value V. Since the gray 

values close to extreme black/white are rare, there is 

 
when δ is not too large. In this case, the mapping 

operation is feasible. Here, 8 pixels in the second set 

cannot be used to carry BS1/BS2 since their LSB 

should be used to carry the value of V, while 8 pixels 

in the first set cannot be used to carry BS1/BS2 since 

their LSB should be used to carry the original LSB of 

the second set. So, a total of 16 pixels cannot be used 

for carrying BS1/BS2. That is the reason that there is a 

value 16 in (22). The experimental result on 1000 

natural images shows (22) is always right when δ is 

less than 15. So, we recommend the parameter δ < 15. 

Then, a histogram shift operation is made, 
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In other word, BS1, BS2 and the LSB of pixels in the 

second set are carried by the pixels in the first set. 

After this, the image provider represents the value of V 

as 8 bits and maps them to the pixels in the second set 

in a one-to-one manner. Then, the values of pixels in 

the second set are modified as follows, 

 
 

That means the value of V is embedded into the LSB 

of the second set. This way, all pixel values must fall 

into [δ, 255−δ]. 

 

At last, the image provider encrypts all pixels using a 

public key cryptosystem with additive homomorphic 

property, such as Paillier and Damgard-Jurik 

cryptosystems. When Paillier cryptosystem is used, the 

ciphertext pixel is 

 
And, when Damgard-Jurik cryptosystem is used, the 

ciphertext pixel is 

 
Then, the ciphertext values of all pixels are collected 

to form an encrypted image. 

 

3.2. Data embedding 

With the encrypted image, the data-hider divides the 

ciphertext pixels into two set: Set A including c(i, j) 

with odd value of (i+j), and Set B including c(i, j) with 

even value of (i+j). Without loss of generality, we 

suppose the pixel number in Set A is N/2. Then, the 

data-hider employs error-correction codes expand the 

additional data as a bit-sequence with length N/2, and 

maps the bits in the coded bit-sequence to the 

ciphertext pixels in Set A in a one-to-one manner, 

which is determined by the data-hiding key. When 

Paillier cryptosystem is used, if the bit is 0, the 

corresponding ciphertext pixel is modified as 

 

where r'(i, j) is a integer randomly selected in Z*n. If 

the bit is 1, the corresponding ciphertext pixel is 

modified as 

 
 

When Damgard-Jurik cryptosystem is used, if the bit is 

0, the corresponding ciphertext pixel is modified as 

 
where r'(i, j) is a integer randomly selected in Z

*
 n

s+1
. 

If the bit is 1, the corresponding ciphertext pixel is 

modified as 

 
 

This way, an encrypted image containing additional 

data is produced. Note that the additional data are 

embedded into Set A. Although the pixels in Set B 

may provide side information of the pixel-values in Set 

A, which will be used for data extraction, the pixel-

values in Set A are difficult to be precisely obtained on 

receiver side, leading to possible errors in directly 

extracted data. So, the error-correction coding 

mechanism is employed here to ensure successful data 

extraction and perfect image recovery. 

 

3.3 Image decryption, data extraction and content 

recovery 

After receiving an encrypted image containing 

additional data, the receiver firstly performs decryption 

using his private key. We denote the decrypted pixels 

as m'(i, j). Due to the homomorphic property, the 

decrypted pixel values in Set A meet 

 
 

On the other hand, the decrypted pixel values in Set B 

are just mT(i, j) since their ciphertext values are 

unchanged in data embedding phase. When δ is small, 

the decrypted image is perceptually similar to the 

original plaintext image. 
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Then, the receiver with the data-hiding key can extract 

the embedded data from the directly decrypted image. 

He estimates the pixel values in Set A using their 

neighbors, 

 
and obtain an estimated version of the coded bit-

sequence by comparing the decrypted and estimated 

pixel values in Set A. 

 
 

Bit-sequence, the receiver may employ the error-

correction method to retrieve the original coded bit-

sequence and the embedded additional data. Note that, 

with a larger δ, the error rate in the estimate of coded 

bits would be lower, so that more additional data can 

be embedded when ensuring successful error 

correction and data extraction. In other words, a 

smaller δ would result in a higher error rate in the 

estimate of coded bits, so that the error correction may 

be unsuccessful when excessive payload is embedded. 

That means the embedding capacity of the reversible 

data hiding scheme is depended on the value of δ. 

 

After retrieving the original coded bit-sequence and 

the embedded additional data, the original plaintext 

image may be further recovered. For the pixels in Set 

A, mT(i, j) are retrieved according to the coded bit-

sequence, 

 
For the pixels in Set B, as mentioned above, mT(i, j) 

are just m'(i, j). Then, divides all mT(i, j) into two sets: 

the first one including (N−8) pixels and the second one 

including the rest 8 pixels. The receiver may obtain the 

value of V from the LSB in the second set, and retrieve 

mS(i, j) of the first set, 

 
 

Meanwhile, the receiver extracts a bit 0 from a pixel 

with mT(i, j) = V and a bit 1 from a pixel with mT(i, j) 

= V−1. After decomposing the extracted data into BS1, 

BS2 and the LSB of mS(i, j) in the second set, the 

receiver retrieves mS(i, j) of the second set, 

 
Collect all pixels with mS(i, j) = δ+1, and, according to 

BS1, recover their original values within [0, δ+1]. 

Similarly, the original values of pixels with mS(i, j) = 

255−δ are recovered within [255−δ, 255] according to 

BS2. This way, the original plaintext image is 

recovered. 

 

4.3 COMBINED DATA HIDING SCHEME 

As described in Sections 3 and 4, a lossless and a 

reversible data hiding schemes for public-key-

encrypted images are proposed. In both of the two 

schemes, the data embedding operations are performed 

in encrypted domain. On the other hand, the data 

extraction procedures of the two schemes are very 

different. With the lossless scheme, data embedding 

does not affect the plaintext content and data 

extraction is also performed in encrypted domain.  

 

With the reversible scheme, there is slight distortion in 

directly decrypted image caused by data embedding, 

and data extraction and image recovery must be 

performed in plaintext domain. That implies, on 

receiver side, the additional data embedded by the 

lossless scheme cannot be extracted after decryption, 

while the additional data embedded by the reversible 

scheme cannot extracted before decryption. In this 

section, we combine the lossless and reversible 
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schemes to construct a new scheme, in which data 

extraction in either of the two domains is feasible. That 

means the additional data for various purposes may be 

embedded into an encrypted image, and a part of the 

additional data can be extracted before decryption and 

another part can be extracted after decryption. 

 

In the combined scheme, the image provider performs 

histogram shrink and image encryption as described in 

Subsection 3.A. When having the encrypted image, the 

data-hider may embed the first part of additional data 

using the method described in Subsection 3.B. 

Denoting the ciphertext pixel values containing the 

first part of additional data as c'(i, j), the data-hider 

calculates 

 
where r''(i, j) are randomly selected in Z*n or Z

*
 n

s+1
 

for Paillier and Damgard-Jurik cryptosystems, 

respectively. Then, he may employ wet paper coding 

in several LSB-planes of ciphertext pixel values to 

embed the second part of additional data by replacing a 

part of c'(i, j) with c''(i, j). 

 

In other words, the method described in Subsection 

2.B is used to embed the second part of additional 

data. On receiver side, the receiver firstly extracts the 

second part of additional data from the LSB-planes of 

encrypted domain. Then, after decryption with his 

private key, he extracts the first part of additional data 

and recovers the original plaintext image from the 

directly decrypted image as described in Subsection 

3.C. 

 

The sketch of the combined scheme is shown in Figure 

3. Note that, since the reversibly embedded data 

should be extracted in the plaintext domain and the 

lossless embedding does not affect the decrypted 

result, the lossless embedding should implemented 

after the reversible embedding in the combined 

scheme. 

 
 

Four gray images sized 512×512, Lena, Man, Plane 

and Crowd, shown in Figure 4, and 50 natural gray 

images sized 1920×2560, which contain landscape and 

people, were used as the original plaintext covers in 

the experiment. With the lossless scheme, all pixels in 

the cover images were firstly encrypted using Paillier 

cryptosystem, and then the additional data were 

embedded into the LSB-planes of ciphertext pixel-

values using multi-layer wet paper coding as in 

Subsection 2.B. Table 1 lists the average value of 

embedding rates when K LSB-planes were used for 

carrying the additional data in the 54 encrypted 

images. In fact, the average embedding rate is very 

close to (1−1/2
k
). On receiver side, the embedded data 

can be extracted from the encrypted domain. Also, the 

original plaintext images can be retrieved by direct 

decryption. In other word, when the decryption was 

performed on the encrypted images containing 

additional data, the original plaintext images were 

obtained. 

 

With the reversible scheme, all pixels were encrypted 

after histogram shrink as in Subsection 3.A. Then, a 
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half of ciphertext pixels were modified to carry the 

additional data as in Subsection 3.B, and after 

decryption, we implemented the data extraction and 

image recovery in the plaintext domain. Here, the low-

density parity-check (LDPC) coding was used to 

expand the additional data as a bit-sequence in data 

embedding phase, and to retrieve the coded bit-

sequence and the embedded additional data on receiver 

side. Although the error-correction mechanism was 

employed, an excessive payload may cause the failure 

of data extraction and image recovery. With a larger 

value of δ, a higher embedding capacity could be 

ensured, while a higher distortion would be introduced 

into the directly decrypted image. For instance, when 

using Lena as the cover and δ = 4, a total of 4.6×104 

bits were embedded and the value of PSNR in directly 

decrypted image was 40.3 dB. When using δ = 7, a 

total of 7.7×104 bits were embedded and the value of 

PSNR in directly decrypted image was 36.3 dB. In 

both of the two cases, the embedded additional data 

and the original plaintext image were extracted and 

recovered without any error. Figure 5 gives the two 

directly decrypted images. Figure 6 shows the rate-

distortion curves generated from different cover 

images and various values of δ under the condition of 

successful data-extraction/image-recovery. The 

abscissa represents the pure embedding rate, and the 

ordinate is the PSNR value in directly decrypted 

image. The rate-distortion curves on four test images, 

Lena, Man, Plane and Crowd, are given in Figures 6, 

respectively. We also used 50 natural gray images 

sized 1920×2560 as the original plaintext covers, and 

calculated the average values of embedding rates and 

PSNR values, which are also shown as a curve marked 

by asterisks in the figure. Furthermore, Figure 7 

compares the average rate-PSNR performance between 

the proposed reversible scheme with public-key 

cryptosystems and several previous methods with 

symmetric cryptosystems under a condition that the 

original plaintext image can be recovered without any 

error using the data-hiding and encryption keys. In 

[11] and [12], each block of encrypted image with 

given size is used to carry one additional bit. So, the 

embedding rates of the two works are fixed and low. 

With various parameters, we obtain the performance 

curves of the method in [15] and the proposed 

reversible scheme, which are shown in the figure. It 

can be seen that the proposed reversible scheme 

significantly outperforms the previous methods when 

the embedding rate is larger than 0.01 bpp. 

 

With the combined scheme, we implemented the 

histogram shrink operation with a value of parameter 

δ, and encrypted thepixels using Paillier cryptosystem. 

Then, we embedded the first part of additional data 

into the ciphertext pixel values by the reversible 

embedding method, and embedded the second part of 

additional data into the K LSB-planes of the ciphertext 

pixel values by the lossless embedding method. When 

having the encrypted image containing the additional 

data, we firstly extracted the second part of additional 

data from theLSB-planes of ciphertext pixel values. 

After decryption, we further extracted the first part of 

additional data and recovered the original plaintext 

image in the plaintext domain. Here, the payloads of 

the two parts of additional data are same as the 

payloads of reversible and lossless schemes, 

respectively, and the quality of directly decrypted 

image is same as that of reversible scheme. 

 
Figure 4. Cover images (a) Lena, (b) Man, (c) Plane 

and (d) Crowd 
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Figure 5. Directly decrypted Lena of reversible 

scheme (a) δ = 4, a total of 4.6×10
4
 bits embedded 

and PSNR = 40.3 dB, (b) δ = 7, a total of 7.7×10
4
 

bits embedded and PSNR = 36.3 dB 

 
Figure 6. Embedding rate-distortion performance 

of reversible scheme on different cover images 

 
Figure 7. Comparison of rate-PSNR performance 

between the proposed reversible scheme and 

previous methods 

 

CONCLUSION 

This work proposes a lossless, a reversible, and a 

combined data hiding schemes for cipher-text images 

encrypted by public key cryptography with 

probabilistic and homomorphic properties. In the 

lossless scheme, the ciphertext pixel values are 

replaced with new values for embedding the additional 

data into the LSB-planes of ciphertext pixels. This 

way, the embedded data can be directly extracted from 

the encrypted domain, and the data embedding 

operation does not affect the decryption of original 

plaintext image. In the reversible scheme, a 

preprocessing of histogram shrink is made before 

encryption, and a half of ciphertext pixel values are 

modified for data embedding. On receiver side, the 

additional data can be extracted from the plaintext 

domain, and, although a slight distortion is introduced 

in decrypted image, the original plaintext image can be 

recovered without any error. Due to the compatibility 

of the two schemes, the data embedding operations of 

the lossless and the reversible schemes can be 

simultaneously performed in an encrypted image. So, 

the receiver may extract a part of embedded data in the 

encrypted domain, and extract another part of 

embedded data and recover the original plaintext 

image in the plaintext domain. 
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