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ABSTRACT 

Residue systems of representation, like Residue 

Number Systems (RNS) for primary field (GF (p)) or 

Trinomial Residue Arithmetic for binary field (GF 

(2
k
)), are characterized by efficient multiplication and 

costly modular reduction. On the other hand, 

conventional representations allow in some cases 

very efficient reductions but require costly 

multiplications. 

 

The main purpose of this paper is to analyze the 

complexity of those two different approaches in the 

summations of products. As a matter of fact, the 

complexities of the reduction in residue systems and 

of the multiplication in classical representations are 

similar. One of the main features of this reduction is 

that it doesn’t depend on the field. Moreover, the cost 

of multiplication in residue systems is equivalent to 

the cost of reduction in classical representations for 

special well-chosen fields. 

 

Taking those properties into account, we remark that 

an expression like A ∗ B + C ∗ D, which requires two 

products, one addition and one reduction, evaluates 

faster in a residue system than in a classical one. So 

we propose to study types of expressions to offer a 

guide for choosing a most appropriate representation. 

One of the best domain of application is the Elliptic 

Curves Cryptography where addition and doubling 

points formulas are composed of products 

summation. The different kinds of coordinates like 

affine, projective, and Jacobean, offer a good choice 

of expressions for our study. 

 

Keywords: Elliptic Curve Cryptography (ECC), 

modular addition, modular multiplication, modular 

reduction, Residue Number System (RNS), hardware 

implementation. 

INTRODUCTION 

The computation of the Montgomery exponentiation 

(ME) in the Residue Number System (RNS) sanctions 

constraining the delay due to carry propagation and 

reaching a high degree of parallelism. This approach 

mainly requires the execution of a set of Montgomery 

multiplications (MMs). However, in RNS, some 

operations (e.g. division, comparison, modulo) are 

natively arduous to execute. Hence, several approaches 

have been proposed in order to planarity exploit the 

potential of RNS for modular exponentiation, by 

minimizing the impact of cognate drawbacks. A key 

element of these approaches is the Base Extension 

(BE), which calculates a number on a different RNS 

base. 

 

A paramount number of applications including 

cryptography, error rectification coding, computer 

algebra, DSP, etc., rely on the efficient realization of 

arithmetic over finite fields of the form GF (2n), where 

n € Z and n ≥1, or the GF(p) form ,where p a prime. 

Cryptographic applications form a special case, since, 

for security reasons, they require immensely colossal 

integer operands efficient field multiplication with 

astronomically immense operands is crucial for 

achieving a satiating cryptosystem performance, since 

multiplication is the most time- and area-consuming 

operation. Therefore, there is a desideratum for 

incrementing the speed of cryptosystems employing 

modular arithmetic with the least possible area penalty. 

A flamboyantly discernible approach to achieve this 

would be through parallelization of their operations. In 

recent years, RNS and PRNS have relished renewed 

scientific interest due to their ability to perform 

expeditious and parallel modular arithmetic. Utilizing 

RNS/PRNS, a given path accommodating an 

astronomically immense data range is superseded by 

parallel paths of more diminutive dynamic ranges, 
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with no desideratum for exchanging information 

between paths. As a result, the utilization of residue 

systems can offer reduced involution and power 

consumption of arithmetic units with sesquipedalian 

word lengths. On the other hand, RNS/PRNS 

implementations bear the extra cost of input converters 

to translate numbers from a standard binary format 

into residues and output converters to translate from 

RNS/PRNS to binary representations. 

 

An incipient methodology for embedding residue 

arithmetic in a dual-field Montgomery modular 

multiplication algorithm for integers in GF(p) and for 

polynomials in GF (2n) is presented in this paper. The 

mathematical conditions that need to be satiated for a 

valid RNS/PRNS incorporation are examined. The 

derived architecture is highly parallelizable and 

multifarious, as it fortifies binary-to-RNS/PRNS and 

RNS/PRNS-to-binary conversions, Commixed Radix 

Conversion (MRC) for integers and polynomials, dual-

field Montgomery multiplication, and dual-field 

modular exponentiation and inversion in the same 

hardware residue number system. 

 

The Residue Number System (RNS) is a non-weighted 

number system that can map astronomically immense 

numbers to more diminutive residues, without any 

desideratum for carry propagations .Its most 

paramount property is that integrations, subtractions, 

and multiplications are inherently carry-free. These 

arithmetic operations can be performed on residue 

digits concurrently and independently. Thus, utilizing 

residue arithmetic, would in principle, increment the 

speed of computations RNS has shown high efficiency 

in realizing special purport applications such as digital 

filters , image processing , RSA cryptography  and 

concrete applications for which only integrations, 

subtractions and multiplications are utilized and the 

number dynamic range is concrete. Special moduli sets 

have been used extensively to reduce the hardware 

involution in the implementation of converters and 

arithmetic operations. Among which the triple moduli 

set {2n+1,2n,2n-1} have some benefits. Since the 

operation of multiplication is of major paramountcy 

for virtually all kinds of processors, efficient 

implementation of multiplication modulo 2n-1 is 

consequential for the application of RNS. 

 

RNS DEFINITION: 

A residue number system is characterized by a 

predicate that is not a single radix but an N-tuple of 

integers (mN,mN-1 … m1). Each of  these mi (i = 1, 2, 

… N) is called a modulus. An integer ―X‖ is 

represented in the residue number system by N-tuple 

(xN, xN-1… x1) where xI is a nonnegative integer 

gratifying 

X = mI * qI+xI  , ………… (1) 

Where qI is the most sizably voluminous integer such 

that 0<=xI<= (mI – 1). xi is kenned as the residue of X 

modulo mi, and notations X mod mi and |X| mi are 

commonly utilized. 

 

Example: 

Consider a two-moduli system with moduli m2 = 3 and 

m1 = 2. The representation of X = 5 in this residue 

number system is (x2, x1) where 

X2 = X mod m2 = 5 mod 3 = 2 or, |5|3 = 2 

X1 = 5 mod 2 = 3 

Now, 

If X = -2 then 

X2 = -2 mod 3 = 1 (-2 = 3* -1 + 1) 

X1 = -2 mod 2 = 0 

Therefore, the residue representation of 5 is (2, 1). The 

number ―X‖ can be of any integer. 

 

In Residue Number Systems (RNS), an integer X is 

represented by its residues {x0…..xn-1} modulo a base 

of relatively prime numbers {m0…..mn-1}. Thus an 

astronomically immense number can be represented as 

a set of diminutive integers. Advisement and 

multiplication can be facilely parallelized, there is no 

carry propagation. The time is reduced to the 

evaluation of these operations with diminutive 

numbers. This representation is utilizable in 

cryptography and digital signal processing. 

Furthermore, in these two domains, modular 

multiplication (A X B mod N) is frequently utilized. 
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Advantages: 

The RNS system provide a unique feature of 

parallelism that make arithmetic operations such as 

integration, subtraction and modulation very facile to 

handle and perform incrementing speed and reducing 

chip area. 

 Carry free High-Speed 

 Parallel Operation 

 Low Power Circuits 

 Medium Security 

 Error Detection and Correction Capability 

 Fault Tolerant 

RNS has its disadvantages additionally. Operations 

such as division, sign-detection, magnitude 

comparison and overflow detection are intricate and 

hard to implement. This has constrained the 

application of RNS to certain fields where 

integration/multiplication operations are utilized 

extensively and the result is kenned to be within a 

predetermined range. RNS work only for integer 

values therefore integrating extra cost for conversion 

from binary-to-RNS and vice versa. 

 

Applications: 

The residue number system is very alluring solution to 

many researchers especially during the last decade. 

Extensive research have been put on the theory of 

amending the RNS system and applying it in some 

application areas such as, digital signal processing, 

digital filters, expeditious Fourier transform (FFT), 

and image processing. 

 

The RNS is inherently parallel, modular and fault 

tolerant. Performing operations such as advisement, 

subtraction, and multiplication is inherently carry-free, 

thus reducing a substantial amount of circuit 

integration area where carry-detection circuitry had to 

be implemented afore. 

 RSA Algorithm 

 Digital Signal Processing 

 Digital Filtering 

 Image Processing 

 Error Detection and Correction 

BASIC RSA ALGORITHM: 

RSA is a popular cryptography algorithm widely 

utilized in signing and encrypting operations for 

security systems. 

 

The RSA algorithm defines a mechanism to secure the 

message exchanges in communication systems by 

providing two types of accommodations: 

authentication and data integrity [9]. Authentication 

consists of signing and verifying operations to assure 

the identities of the message sender. In the signing 

operation the Sender takes the message M, his private 

signing key D and N from the public key (E, N) to 

compute the signature S by: S = MD mod N (1) The 

signing key D is much more astronomically immense 

than the verifying key E. Thus the performance of 

RSA relies on expeditious implementation of the 

signing operation S = MD mod N. 

 

Data that can be read and understood without any 

special measures is called plaintext or clear text. The 

method of dissimulating plaintext in such a way as to 

obnubilate its substance is called encryption. 

Encrypting plaintext results in unreadable gibberish 

called cipher text. You utilize encryption to ascertain 

that information is obnubilated from anyone for whom 

it is not intended, even those who can visually perceive 

the encrypted data. The process of reverting cipher text 

to its pristine plaintext is called decryption. Figure 1.1 

illustrates this process. 

 
Figure 1.1 Encryption and decryption 

 

CRYPTOGRAPHY 

To enhance the security of the data, code language for 

indicting messages were utilized. The branch of 
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mathematics that investigates the code languages and 

methods is called cryptology. Cryptology consists of 

two streams namely cryptography and cryptanalysis. 

Cryptography is a science of coding message furtively 

while cryptanalysis is a science of breaking codes. 

 
 

Our project is concerned with cryptography. 

Cryptography is a science of utilizing mathematics to 

encrypt and decrypt data. Cryptography enables to 

store sensitive information or transmit it across 

insecure networks so that it cannot be read by any one 

except the intended recipient. 

 

Cryptography or Cryptology is derived from Greek 

kryptos ―hidden‖ and the verb grafo ―write‖ or legion 

―to speak‖ is the practice and study of obnubilating 

information. In modern times, Cryptology is 

considered to be a branch of both mathematics and 

computer science, and is afflicted proximately with 

information theory, computer security and engineering. 

Cryptography is utilized in applications present in 

technology advanced in societies; examples include 

the security of the ATM cards, computer pass words 

and electronic commerce which all depend upon 

Cryptography. 

 

HOW DOES CRYPTOGRAPHY WORK 

A cryptographic algorithm, or cipher, is a 

mathematical function utilized in the encryption and 

decryption process. A cryptographic algorithm works 

in cumulating with a key—a word, number, or 

phrase—to encrypt the plaintext. The same plaintext 

encrypts to different cipher text with different keys. 

 

The security of encrypted data is entirely dependent on 

two things: the vigor of the cryptographic algorithm 

and the secrecy of the key. 

A cryptographic algorithm, plus all possible keys and 

all the protocols that make it work comprise a 

cryptosystem. PGP is a cryptosystem. Cryptosystem 

can be divided in to Software and Hardware. 

 
 

THE PURPOSE OF CRYPTOGRAPHY 

In data and telecommunications, cryptography is 

compulsory when communicating over any un-trusted 

medium, which includes just about any network, 

particularly the Internet. 

 

Within the context of any application-to-application 

communication, there are some categorical security 

requisites including: 

Authentication: The process of proving one's identity. 

(The primary forms of host-to-host authentication on 

the Internet today are name-predicated or address-

predicated, both of which are notoriously impotent.) 

 

Privacy/confidentiality: Ascertaining that no one can 

read the message except the intended receiver. 

 

Integrity: Assuring the receiver that the received 

message has not been altered in any way from the 

pristine. 

 

Non-repudiation: A mechanism to prove that the 

sender genuinely sent this message. 

 

Cryptography, then, not only forefends data from 

larceny or alteration, but can withal be utilized for 

utilize authentication. There are, in general, three types 

of cryptographic schemes typically used to accomplish 

these goals: secret key (or symmetric) cryptography, 

public-key (or asymmetric) cryptography, and hash 

functions, each of which is described below. In all 

cases, the initial unencrypted data is referred to as 

plaintext. It is encrypted into cipher text, which will in 
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turn (customarily) be decrypted into utilizable 

plaintext. 

 

SYMMETRIC CRYPTOGRAPHY 

In a cryptosystem that utilizes symmetric 

cryptography, both parties will be utilizing the same 

key for encryption and decryption, as shown in Figure 

1.2. This provides dual functionality. As we verbally 

expressed, symmetric keys are additionally called 

secret keys because this type of encryption relies on 

each utilizer to keep the key a secret and felicitously 

bulwarked. If this key got into an intruder’s hand, that 

intruder would have the ability to decrypt any 

intercepted message encrypted with this key. 

 

Each pair of users who want to exchange data utilizing 

symmetric key encryption must have their own set of 

keys. This denotes if Dan and Iqqi want to 

communicate, both need to obtain a facsimile of the 

same key. If Dan withal wants to communicate 

utilizing symmetric encryption with Norm and Dave, 

he now needs to have three separate keys, one for each 

friend. 

 
Figure 3.2 Using symmetric algorithms, the sender 

and receiver use the same key for encryption and 

decryption functions. 

 

This might not sound like an immensely colossal deal 

until Dan realizes that he may communicate with 

hundreds of people over a period of several months, 

and keeping track and utilizing the correct key that 

corresponds to each concrete receiver can become a 

very daunting task. If Dan were going to communicate 

with 10 other people, then he would require to keep 

track of 45 different keys. If Dan were going to 

communicate with 100 other people, then he would 

have to maintain and keep up with 4,950 symmetric 

keys. Dan is a pretty effulgent guy, but does not 

indispensably want to spend his days probing for the 

right key to be able to communicate with Dave. 

 

The security of the symmetric encryption method is 

plenarily dependent on how well users bulwark the 

key. This should raise red flags to you if you have ever 

had to depend on a whole staff of people to keep a 

secret. If a key is compromised, then all messages 

encrypted with that key can be decrypted and read by 

an intruder. 

 

Examples 

 Data Encryption Standard (DES) 

 Triple DES (3DES) 

 Advanced Encryption Standard (AES) 

 

ASYMMETRIC CRYPTOGRAPHY 

Some things you can tell the public, but some things 

you just want to keep private. In symmetric key 

cryptography, a single secret key is utilized between 

entities, whereas in public key systems, each entity has 

different keys, or asymmetric keys. The two different 

asymmetric keys are mathematically cognate. If a 

message is encrypted by one key, the other key is 

required to decrypt the message. 

 

In a public key system, the dyad of keys is composed 

of one public key and one private key. The public key 

can be kenned to everyone, and the private key must 

only be kenned to the owner. Many times, public keys 

are listed in directories and databases of e-mail 

addresses so they are available to anyone who wants to 

utilize these keys to encrypt or decrypt data when 

communicating with a particular person. Figure 1.3 

illustrates an asymmetric cryptosystem.  
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Figure 3.3 Asymmetric cryptosystem 

 

The public and private keys are mathematically 

cognate, but cannot be derived from each other. This 

designates that if an evildoer gets a replica of Bob’s 

public key, it does not mean he can now utilize some 

mathematical magic and ascertain Bob’s private key. 

 

If Bob encrypts a message with his private key, the 

receiver must have a facsimile of Bob’s public key to 

decrypt it. The receiver can decrypt Bob’s message 

and decide to reply back to Bob in an encrypted form. 

All she requires to do is encrypt her replication with 

Bob’s public key, and then Bob can decrypt the 

message with his private key. It is not possible to 

encrypt and decrypt utilizing the exact same key when 

utilizing an asymmetric key encryption technology. 

 

Bob can encrypt a message with his private key and 

the receiver can then decrypt it with Bob’s public key. 

By decrypting the message with Bob’s public key, the 

receiver can be sure that the message genuinely 

emanated from Bob. A message can only be decrypted 

with a public key if the message was encrypted with 

the corresponding private key. This provides 

authentication, because Bob is the only one who is 

supposed to have his private key. When the receiver 

wants to ascertain Bob is the only one that can read her 

replication, she will encrypt the replication with his 

public key. Only Bob will be able to decrypt the 

message because he is the only one who has the 

obligatory private key. 

 

Now the receiver can withal encrypt her replication 

with her private key in lieu of utilizing Bob’s public 

key. Why would she do that? She wants Bob to ken 

that the message emanated from her and no one else. If 

she encrypted the replication with Bob’s public key, it 

does not provide authenticity because anyone can get a 

hold of Bob’s public key. If she utilizes her private key 

to encrypt the message, then Bob can be sure that the 

message emanated from her and no one else. 

Symmetric keys do not provide authenticity because 

the same key is utilized on both ends. Utilizing one of 

the secret keys does not ascertain that the message 

originated from a categorical entity. 

 

Examples 

 RSA 

 Elliptic Curve Cryptosystem (ECC) 

 Diffie-Hellman 

 El Gamal 

 Digital Signature Standard (DSS) 

 

TYPES OF CRYPTOGRAPHIC ALGORITHMS 

There are several ways of relegating cryptographic 

algorithms. For purposes of this paper, they will be 

categorized predicated on the number of keys that are 

employed for encryption and decryption, and further 

defined by their application and use. The three types of 

algorithms those are discussed in Figure 1.5. 

Secret Key Cryptography (SKC): Utilizes a single key 

for both encryption and decryption 

Public Key Cryptography (PKC): Uses one key for 

encryption and another for decryption 

Hash Functions: Utilizes a mathematical 

transformation to irreversibly "encrypt" formation 

 
Figure 3.5 Three types of cryptographic algorithms 
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RESIDUE ARITHMETIC 

RNS consists of a set of ,L  pair-sapient relatively 

prime integers  A= (m1.m2,……,mL) (called the base) 

and the range of the RNS is computed as   . Any 

integer Z €[0,A-1] has a unique RNS representation 

ZA given by ZA=(Z1,Z2,….ZL) = ((Z)m1, (Z)m2, 

(Z)m3, (Z)m4…….. (Z)mL), where (Z)mi denotes the 

operation Z mod mi. Postulating two integers a, b  in 

RNS format, i.e., aA=(a1,a2,….aL)  and, 

bA=(b1,b2,…bL) then one can perform the operations 

in parallel by 

 
To reconstruct the integer from its residues, two 

methods maybe employed [14]. The first is through the 

CRT according to 

 
where Ai =A/ai and A

1
iis the multiplicative inverse of 

Aionai . The result of ∑ ki=1((xi A1i) mod ai ) Aiis 

equal tox + A, where  < k. 

 

APPLICATIONS 

1. Secrecy in transmission 

2. Secrecy in storage 

3. Integrity in transmission 

4. Integrity in storage 

5. Authentication of identity 

6. Electronic signatures. 

 

CONCLUSION 

The mathematical framework and a flexible, dual-

field, residue arithmetic architecture for Montgomery 

multiplication in and is developed and the necessary 

conditions for the system parameters (number of 

modulus word length) are derived. The proposed 

DRAMM architecture supports all operations of 

Montgomery multiplication in and , residue-to-binary 

and binary-to-residue conversions, MRC for integers 

and polynomials ,dual-field modular exponentiation 

and inversion, in the same hardware. Generic 

complexity and real performance comparisons with 

state-of-the-art works prove the potential of residue 

arithmetic exploitation in Montgomery multiplication. 
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