

 Page 824

Strategy to Organize Stealthy Denial of Service Attack Patterns in

Cloud Computing

L.Shirisha

PG.Scholar

Department of CSE

Anurag Group of Institutions

Hyderabad.

A.Obulesu

Assistant Professor

Department of CSE

Anurag Group of Institutions

Hyderabad.

Dr.G.Vishnu Murthy

Professor & HoD

Department of CSE

Anurag Group of Institutions

Hyderabad.

Abstract:

Over the past decade, many attempts have been

committed to the detection of DDoS attacks in

distributed systems. Security prevention mechanisms

often use approaches based on rate-controlling, time-

window, worst-case threshold, and pattern-matching

methods to distinguish between the nominal system

operation and malicious behaviors. They attempt to

fulfill their activities in a “stealthy” fashion in order

to circumvent the security mechanisms, by

orchestrating and timing attack patterns that hold

definite weaknesses of target systems and the amount

of time that the ongoing attack to the system has been

undetected. Here enlightened strategy is presented to

orchestrate stealthy attack patterns against

applications running in the cloud platform. In

preference to aiming at making the service

unavailable, the proposed strategy focuses at

exploiting the cloud flexibility, forcing the

application to use more resources than needed,

disturbing the cloud customer more on financial

facets than on the service availability.

Index Terms: Cloud computing, sophisticated attacks

strategy, intrusion detection

1.Introduction

Cloud computing can serve enterprises growth the

creation and delivery of IT solutions by producing

them with access to services in a cost-effective and

adjustable manner. Clouds can be classified into three

categories, based on their convenience sectors and the

deployment model. They are: Public Cloud, Private

Cloud and Hybrid Cloud. A public Cloud is made

available in a pay-as-you-go mode to the general

public users irrespective of their original association.

A private Cloud’s usage is cramped to members,

employees, and trusted partners of the organization. A

hybrid Cloud authorizes the use of private and public

Cloud in a seamless manner. Cloud computing

applications span many domains, including business,

technology, government sectors, health care, smart

grids, intelligent transportation networks, life sciences,

automation, data analytics, consumer, disaster

management and social networks. Several models for

the creation, deployment, and deliver of these

applications as Cloud services have emerged. To

compose data management scalable in cloud

computing, reduplication has been a well-known

technique and has fascinated more and more attention

in recent times. Service level agreements (SLA)

descriminalize the costs that the cloud customers have

to remunerate for the provided quality of service

(QoS). A side effect of such a replica is that, it is flat to

Denial of Service (DoS) and Distributed DoS (DDoS),

which aspire at tumbling the service availability and

concert by grueling the resources of the service’s host

system. Such attacks have special effects in the cloud

due to the adopted pay-by-use business model.

Explicitly, in cloud computing also partial service

humiliation due to an attack has direct effect on the

service costs, and not only on the performance and

availability pretended by the customer. The delay of

the cloud service provider to discover the causes of the

service degradation is capable of considered as

security vulnerability.

2. Cloud Resources Provisioning:

Cloud providers proffer services to rent computation

and storage capacity, in a way as transparent as

 Page 825

possible, giving the impression of ‘unlimited resource

availability’. However, such resources are not free.

Therefore, cloud providers allow customers to obtain

and configure suitably the system capacity, as well as

to quickly renegotiate such capacity as their

requirements change, in order that the customers can

pay only for resources that they actually use. Several

cloud providers propose the ‘load balancing’ service

for automatically distributing the incoming application

service requests across many instances, as well as the

‘auto scaling’ service for enabling consumers to

closely follow the demand curve for their applications

(reducing the need to obtain cloud resources in

advance). In order to minimize the customer costs, the

auto scaling protects that the number of the application

instances increases seamlessly during the demand

spikes (to keep the contracted performance), and

decreases automatically during the demand lulls. For

example, by using Amazon EC2 cloud services, the

consumers can place a condition to add new

computational instances when the average CPU

utilization exceeds a fixed threshold. Moreover, they

can configure a cool-down period in order to allow the

application workload to stabilize before the auto

scaling connects or removes the instances. In the

following, we will show how this feature can be

maliciously utilized by a stealthy attack, which may

slowly exhaust the resources provided by the cloud

provider for ensuring the SLA, and upgrade the costs

incurred by the cloud customer.

mOSAIC Framework:

The mOSAIC project focused at offering a simple way

to develop and manage applications in a multi-cloud

environment. It produces a framework composed of

two main components: the cloud agency and the

software platform. The cloud agency behaves as a

provisioning system, brokering resources from a

federation of cloud providers. The mOSAIC user

develops the application on its local machine, then it

uses a local instance of the cloud agency in order to

start-up the process of remote resource acquisition and

to locate the Software Platform and the developed

application. The Platform enables the execution of the

developed applications on the acquired cloud

resources. A Java-based API is provided to develop

software ingredients in the form of Cloudlets. A

mOSAIC application is a collection of Cloud lets,

which are interconnected through communication

resources, such as shared key value stores. The

Cloudlets run on a dedicated operating system,

denominated mOSAIC Operating System (mOS),

which is a small Linux distribution. At runtime, the

Software Platform transparently scales the Cloudlets

instances on the obtained virtual machines (VM) on

the base of the resource consumption (auto scaling).

As an example, when the Platform perceives that a

Cloudlet is overloaded (e.g., it has too messages on the

inter communicating queues), it may select to start a

new Cloudlet instance. The Platform assumes such a

decision on the base of policies defined by the

application developer (through specific mOSAIC

features). Finally, a load balancing mechanism

automatically balances the application service appeals

among the instances.

3. Stealthy attack:

The motivation of the attack against cloud applications

is not to necessarily deny the service, but rather to

impose noteworthy squalor in some facet of the

service, namely attack profit PA, in order to maximize

the cloud resource consumption CA to process

malicious requests. In order to escape the attack

detection, dissimilar attacks that use low-rate traffic

have been existing in the literature. Therefore, several

works have proposed techniques to distinguish low-

rate DDoS attacks, which observe anomalies in the

instability of the incoming traffic through either a

timeout frequency-domain analysis. They assume that,

the chief anomaly can be incurred during a low-rate

attack is that, the incoming service requests fluctuate

in a extreme manner during an attack. The

uncharacteristic vacillation is a combined result of two

different kinds of behaviors a periodic and impulse

trend in the attack pattern, and the fast decline in the

incoming traffic volume. Accordingly, in order to

perform the attack in stealthy fashion with respect to

the proposed detection techniques, an attacker has to

 Page 826

inject low-rate message flows that satisfy the

optimization problem.

DOS attacks against cloud applications:

In this section are represented several attack examples,

which can be leveraged to implement the proposed

SIPDAS attack design against a cloud application. In

particular, we consider DDoS attacks that exploit

application vulnerabilities, including the Oversize

Payload attack that utilizes the high memory

consumption of XML processing; the bigger than the

usual size cryptography that exploits the flexible

usability of the security elements defined by the WS-

Security specification (example: an oversized security

header of a SOAP message can cause the same effects

of an Oversize Payload, as well as a chained encrypted

key can supply to high memory and CPU

consumptions); the Resource Exhaustion attacks use

flows of messages that are correct concerning their

message structure, but that are not properly correlated

to any existing process instance on the quarry server

(i.e., messages that can be discarded by the system, but

at the expense of a huge amount of unnecessary work,

such as the Business Process Execution Language

(BPEL) based document, which must be read and

processed completely, before they may safely

discarded) and attacks that exploit the worst-case

performance of the system, for example by obtaining

the worst case complexity of Hash table data structure,

or by using complex queries that force to spend

plentiful CPU time or disk access time. In this paper,

we use a Coercive Parsing attack as a case study,

which represents one of the most serious threats for the

cloud applications. It exploits the XML verbosity and

the complex parsing process (by using a big number of

namespace declarations, oversized prefix names or

namespace URIs). In particular, the Deeply-Nested

XML is a resource fatigue attack, which exploits the

XML message format by inserting a large number of

nested XML tags in the message body. The objective

is to force the XML parser within the application

server, to exhaust the computational resources by

processing a big number of deeply-nested XML tags.

Stealthy dos characterization and modeling:

This section defines the characteristics that a DDos

attack against an application server running in the

cloud should have to be stealth. Concerning the quality

of service provided to the user, we assume that the

system performance under a DDos attack is more

demeaned, as higher the average time to process the

user service requests compared to the normal

operation. Additionally, the attack is more expensive

for the cloud customer and/or cloud provider, as higher

the cloud resource consumption to process the

malicious appeals on the target system. from the point

of view of the attacker, the main objective is to

maximize the ratio between the amount of ‘damage’

caused by the attack (in terms of service degradation

and cloud resources ingested), and the cost of

mounting such an attack (called ‘budget’).

Therefore, the first requirement to design an efficient

DDos attack pattern is the ability of the attacker to

assess the damage that the attack is imposing to the

system, by spending a specific budget to produce the

malicious additional load. the attack damage is a role

of the ‘attack potency’, which depends on the number

of concurrent attack sources, the request-rate of the

attack flows are processed, and the job-content

associated to the service requests are to be processed.

Moreover, in order to make the attack stealthy, the

attacker has to be able to estimate the maximum attack

potency to be conducted, without that the attack

pattern exhibits a behavior that may be considered

anomalous by the mechanisms used as a protection for

the quarry system in the following sections, starting

from a synthetic representation of the quarry system,

 Page 827

we narrate the conditions the attack pattern has to

satisfy to minimize its visibility as long as possible,

and effectively affect the target system performance in

the cloud environment

Stealthy Attack Objectives:

In this section, we aim at defining the objectives that a

sophisticated attacker would like to achieve, and the

requirements the attack pattern has to satisfy to be

stealth. Recall that, the purpose of the attack against

cloud applications is not to necessarily deny the

service, but rather to inflict significant degradation in

some aspect of the service (e.g., service response

time), namely attack profit PA, orderly to maximize

the cloud resource consumption CA to process

malicious requests. In sequence to elude the attack

detection, different attacks that use low-rate traffic (but

well orchestrated and timed) have been presented in

the literature. Therefore, several works have proposed

techniques to detect low-rate DDoS attacks, which

monitor anomalies in the fluctuation of the incoming

traffic through either a time or frequency-domain

analysis [18], They assume that, the main anomaly can

be incurred during a low-rate attack is that, the

incoming service requests fluctuate in a more extreme

manner during an attack. Consequently, in order to

perform the attack in stealthy fashion concerning the

proposed detection techniques, an attacker has to inject

low-rate message flows φAj = [φj,1, . . . , φj,m], that

satisfy the following optimization problem. Attack

Approach In order to implement SIPDAS-based

attacks, the following components is involved:

 a Master that coordinates the attack;

 π Agents that perform the attack; and

 a Meter that evaluates the attack effects.

The proposition implemented by each Agent to

perform a stealthy service humiliation in the cloud

computing. It has been specialized for an X-DoS

attack. Specifically, the attack is performed by

introducing polymorphic bursts of length T with an

increasing intensity till the attack is either successful

or detected. Each burst is formatted in such a way as to

inflict a certain average level of load CR. In particular,

we assume that CR is proportional to the attack

intensity of the flow ФAj during the period T.

Therefore, denote I0 as the initial intensity of the

attack, and assuming ∆CR = ∆I as the increment of the

attack intensity. For each attack period, fixed the max

number of nested tags (tagThreshold), the routine pick

Random Tags (. . .) randomly yields the number of

nested tags nT for each message. Based on nT, the

routine compute Inter arrival Time uses a specific

algorithm to compute the inter-arrival time for

injecting the next message. Attach approach at the end

of the period T, if the condition ‘attack Successful’ is

false, the attack intensity is increased. If the condition

‘attack Successful’ is true, the attack intensity is

maintained constant till either the attack is detected or

the auto scaling mechanism authorized in the cloud

attaches new cloud resources. The attack is performed

till it is either detected, or the average message rate of

the next burst to be injected is greater than dT. In this

last case, the Agent notifies to the Master that the

maximum average message rate is reached and

continues to inject messages formatted as stated by the

final level of load CR reached.

4. Furtive dos description and modeling:

This section defines the characteristics that a DDoS

attack against an application server running in the

cloud should have to be stealth. quality of service

provided to the user, we assume that the system

performance under a DDoS attack is more demeaned,

as higher the average time to process the user service

requests 3.2 Server Under Attack Model In order to

evaluate the service degradation attributed to the

attack, we define a synthetic representation of the

system under attack. We suppose that the system

consists of a pool of distributed VMs provided by the

cloud provider, on which the application instances run.

5. Conclusions:

In this paper, we suggest a strategy to implement

stealthy attack patterns, exploiting a vulnerability of

the target application, a patient and intelligent attacker

can mobilize sophisticated flows of messages,

 Page 828

indistinguishable from legitimate service requests.

Specifically, the proposed attack pattern, instead of

aiming at making the service unavailable, it targets at

exploiting the cloud flexibility, forcing the services to

scale up and consume more resources than needed,

infects the cloud customer more on financial aspects

than on the service availability. The system minimizes

the application level vulnerabilities. Attack behavioral

changes are automatically detected by the system. In

exacting, the proposed attack pattern, as an alternative

of aiming at making the service unavailable, it aims at

exploiting the cloud flexibility, efforting the services

to scale up and munch through more resources than

needed, distressing the cloud customer more on

financial facets than on the service availability.

In the future expectations, extending the approach to a

huge set of application level vulnerabilities, as well as

defining a sophisticated method able to detect SIPDAS

based attacks in cloud computing environment has to

be focused.

References:

[1] M. Abe, M. Ohkubo, and K. Suzuki, 1-out-of-n

signatures from a variety of keys, in Proc. 8th Int.

Conf. Theory Appl. Cryptol. Inform. Security: Adv.

Cryptol., 2002, pp. 415–432.

[2] R. Anderson, Two remarks on public-key

cryptology, Manuscript, Sep. 2000. (Relevant material

presented by the author in an invited lecture at the

Fourth ACM Conference on Computer and

Communications Security, 1997.)

[3] G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik,

A practical and provably secure coalition-resistant

group signature scheme, in Proc. 20th Annu. Int.

Cryptol. Conf. Adv. Cryptol., 2000, pp. 255–270.

[4] M. H. Au, J. K. Liu, T. H. Yuen, and D. S. Wong,

ID-based ring signature scheme secure in the standard

model, in Proc. 1st Int. Workshop Security Adv.

Inform. Comput. Security, 2006, pp. 1–16.

[5] A. K. Awasthi and S. Lal, Id-based ring signature

and proxy ring signature schemes from bilinear

pairings, CoRR, vol. abs/cs/ 0504097, 2005.

[6] M. Bellare, D. Micciancio, and B. Warinschi,

Foundations of group signatures: Formal definitions,

simplified requirements and a construction based on

general assumptions, in Proc. 22nd Int. Conf. Theory

Appl. Cryptographic Techn., 2003, Vol. 2656, pp.

614–629.

[7] M. Bellare and S. Miner, A forward-secure digital

signature scheme, in Proc. 19th Annu. Int. Cryptol.

Conf., 1999, Vol. 1666, pp. 431–448.

[8] J.-M. Bohli, N. Gruschka, M. Jensen, L. L. Iacono,

and N. Marnau, Security and privacy-enhancing

multicloud architectures, IEEE Trans. Dependable Sec.

Comput., 10(4) pp. 212–224, Jul. \Aug. 2013.

[9] A. Boldyreva, Efficient threshold signature, multi

signature and blind signature schemes based on the

gap Diffie-Hellman group signature scheme, in Proc.

6th Int. Workshop Theory Practice PublicKey

Cryptography: Public Key Cryptography, 2003, Vol.

567, pp. 31–46.

[10] D. Boneh, X. Boyen, and H. Shacham, Short

group signatures, in Proc. Annu.Int. Cryptol. Conf.

Adv. Cryptol., 2004, Vol. 3152, pp. 41–55.

[11] E. Bresson, J. Stern, and M. Szydlo, Threshold

ring signatures and applications to ad-hoc groups, in

Proc. 22nd Annu. Int. Cryptol. Conf. Adv. Cryptol.,

2002, Vol. 2442, pp. 465–480.

[12] J. Camenisch, Efficient and generalized group

signatures, in Proc. Int. Conf. Theory Appl.

Cryptographic Techn., 1997, Vol. 1233, pp. 465–479.

[13] N. Chandran, J. Groth, and A. Sahai, Ring

signatures of sublinear size without random oracles, in

Proc. 34th Int. Colloq. Automata, Lang. Programming,

2007, Vol. 4596, pp. 423–434.

 Page 829

[14] K. Chard, K. Bubendorfer, S. Caton, and O. F.

Rana, Social cloud computing: Avision for socially

motivated resource sharing, EEE Trans.Serv.Comput,

5(4), pp.551–563, Fourth Quarter2012.

[15] Dr. V. Goutham and M. Tejaswini, A Denial of

Service Strategy To Orchestrate Stealthy Attack

Patterns In Cloud Computing, International Journal of

Computer Engineering and Technology, 7(3), 2016,

pp. 179–186.

