

A Peer Reviewed Open Access International Journal

# Determination of Thermal Performance on Combined Airconditioning and Refrigeration Unit

#### Madaraboina Prakash

Ellenki College of Engineering and Technology, JNTU, Hyderabad, Telangana, India.

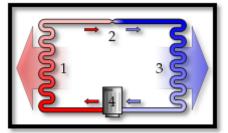
#### ABSTRACT:

In recent years, the escalating cost of energy has drawn much more attention on improving the energy efficiency of super market operations. In a supermarket refrigeration system consume a large amount of energy in maintaining chilled and frozen food. Meanwhile a HVAC (heating, ventilating and air conditioning) system is used to assure thermal comfort for occupants and suitable climatic conditions for refrigerated cases.

In this thesis, the thermal performance of combined air conditioning and refrigeration unit will be analyzed by CFD. 3D model and assembly of the combined air conditioning and refrigeration unit will be done in Pro/Engineer.

CFD and thermal analysis will be on the unit to determine the thermal performance by varying the refrigerants and materials. Analysis will be done in Ansys.

# INTRODUCTION INTRODUCTION TO AIR CONDITIONER


An air conditioner (often referred to as **AC**) is a home appliance, system, or mechanism designed to dehumidify and extract heat from an area. The cooling is done using a simple refrigeration cycle. In construction, a complete system of heating, ventilation and air conditioning is referred to as "HVAC". Its purpose, in a building or an automobile, is to provide comfort during either hot or cold weather.

A simple stylized diagram of the refrigeration cycle: 1) Condensing coil, 2) expansion valve, 3) evaporator coil, 4) compressor. Smt. V.Saritha Ellenki College of Engineering and Technology, JNTU, Hyderabad, Telangana, India.

In the refrigeration cycle, a heat pump transfers heat from a lower-temperature heat source into a highertemperature heat sink. Heat would naturally flow in the opposite direction. This is the most common type of air conditioning. A refrigerator works in much the same way, as it pumps the heat out of the interior and into the room in which it stands.

# AIR CONDITIONING SYSTEM BASICS AND THEORIES

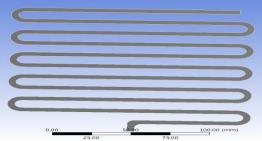
**REFRIGERATION CYCLE** 



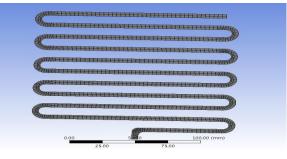
This cycle takes advantage of the way phase changes work, where latent heat is released at a constant temperature during a liquid/gas phase change, and where varying the pressure of a pure substance also varies its condensation/boiling point.

The most common refrigeration cycle uses an electric motor to drive a compressor. In an automobile, the compressor is driven by a belt over a pulley, the belt being driven by the engine's crankshaft (similar to the driving of the pulleys for the alternator, power steering, etc.). Whether in a car or building, both use electric fan motors for air circulation. Since evaporation occurs when heat is absorbed, and condensation occurs when heat is released, air conditioners use a compressor to cause pressure

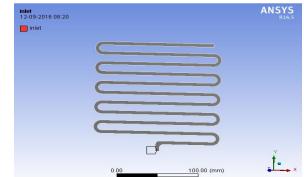



A Peer Reviewed Open Access International Journal

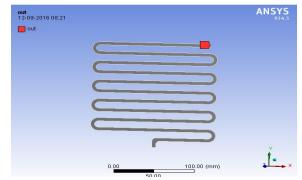
changes between two compartments, and actively condense and pump a refrigerant around. A refrigerant is pumped into the evaporator coil, located in the compartment to be cooled, where the low pressure causes the refrigerant to evaporate into a vapor, taking heat with it. At the opposite side of the cycle is the condenser, which is located outside of the cooled compartment, where the refrigerant vapor is compressed and forced through another heat exchange coil, condensing the refrigerant into a liquid, thus rejecting the heat previously absorbed from the cooled space.


By placing the condenser (where the heat is rejected) inside a compartment, and the evaporator (which absorbs heat) in the ambient environment (such as outside), or merely running a normal air conditioners refrigerant in the opposite direction, the overall effect is the opposite, and the compartment is heated. This is usually called a heat pump, and is capable of heating a home to comfortable temperatures (25 °C; 70 °F), even when the outside air is below the freezing point of water (0 °C; 32 °F).

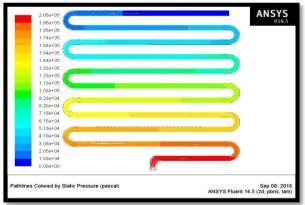
Cylinder un loaders are a method of load control used mainly in commercial air conditioning systems. On a semi-hermetic (or open) compressor, the heads can be fitted with un loaders which remove a portion of the load from the compressor so that it can run better when full cooling is not needed. Un loaders can be electrical or mechanical.


# CFD ANALYSIS OF BI PROPELLENT EVAPORATOR R22 IMPORTED MODEL




#### **MESHED MODEL**



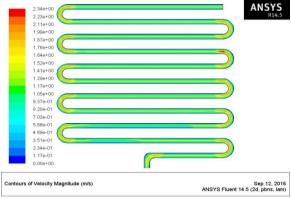

#### INLET



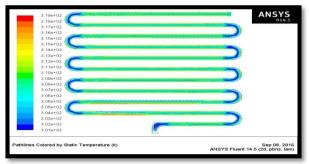
#### OUTLET



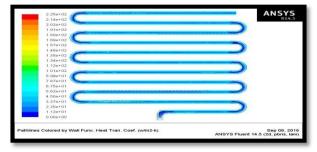
# PRESSURE (PA)



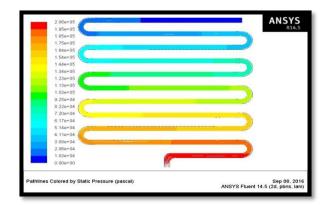

Volume No: 3 (2016), Issue No: 11 (November) www.ijmetmr.com



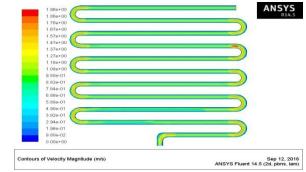

A Peer Reviewed Open Access International Journal


# VELOCITY (M/SEC)

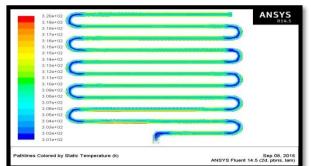



#### **TEMPERATURE (K)**

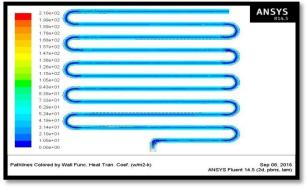



## WALL FUNCTION HEAT TRANSFER COEFFICIENT (W/M2-K)

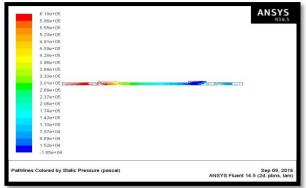



## FLUID - R134A PRESSURE (PA)




# VELOCITY (M/SEC)



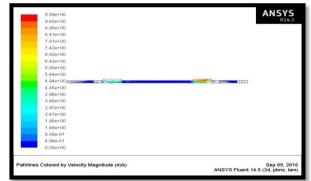

#### TEMPERATURE (K)



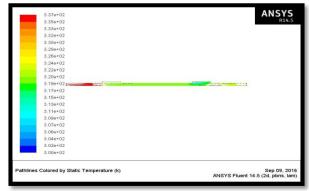
### WALL FUNCTION HEAT TRANSFER COEFFICIENT (W/M2-K)



# LOW PRESSURE COMPRESSOR PRESSURE (PA)



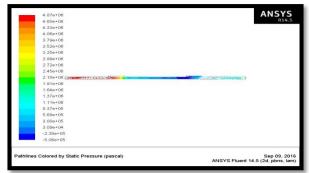

Volume No: 3 (2016), Issue No: 11 (November) www.ijmetmr.com



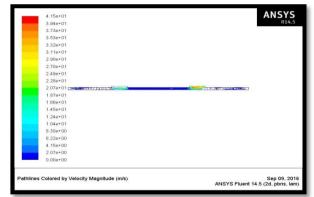

A Peer Reviewed Open Access International Journal

# **VELOCITY (M/SEC)**

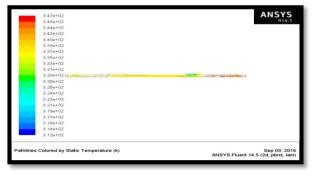



## **TEMPERATURE (K)**

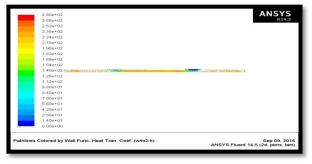



### WALL FUNCTION HEAT TRANSFER COEFFICIENT (W/M2-K)

| thlines Colored by Wall Func. Heat Tran. Coef. (w/m2-k) | Sep 09, 201<br>ANSYS Fluent 14.5 (2d, pbns, lam |
|---------------------------------------------------------|-------------------------------------------------|
| 0.00e+00                                                |                                                 |
| 1.40e+01                                                |                                                 |
| 2.80e+01                                                |                                                 |
| 4.20e+01                                                |                                                 |
| 5.60e+01                                                |                                                 |
| 7.00e+01                                                |                                                 |
| 8.40e+01                                                |                                                 |
| 9.80e+01                                                |                                                 |
| 1.12e+02                                                |                                                 |
| 1.26e+02                                                |                                                 |
| 1.40e+02t                                               |                                                 |
| 1.54e+02                                                |                                                 |
| 1.68e+02                                                |                                                 |
| 1.82e+02                                                |                                                 |
| 1.96e+02                                                |                                                 |
| 2.10e+02                                                |                                                 |
| 2.240+02                                                |                                                 |
| 2.380+02                                                |                                                 |
| 2.520+02                                                |                                                 |
| 2.66e+02                                                | R14.5                                           |
| 2.80e+02                                                | ANSYS                                           |

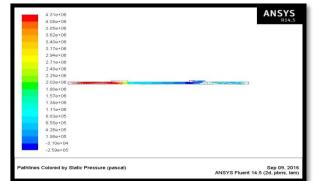

# HIGH PRESSURE COMPRESSOR PRESSURE (PA)




#### **VELOCITY (M/SEC)**



#### **TEMPERATURE (K)**

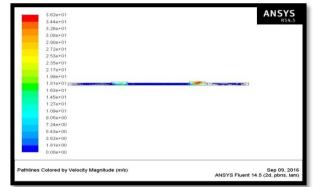



## WALL FUNCTION HEAT TRANSFER COEFFICIENT (W/M2-K)



#### R134A

# INLET BOUNDARY CONDITIONS PRESSURE (PA)



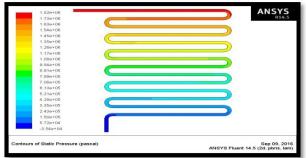

# Volume No: 3 (2016), Issue No: 11 (November) www.ijmetmr.com



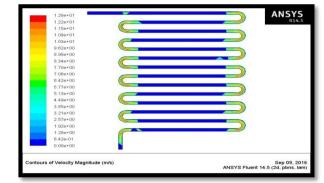
A Peer Reviewed Open Access International Journal

# **VELOCITY (M/SEC)**




#### **TEMPERATURE (K)**

| 3.40e+02                                    | ANSYS                                             |
|---------------------------------------------|---------------------------------------------------|
| 3.36e+02                                    | R14.5                                             |
| 3.33e+02                                    |                                                   |
| 3.30e+02                                    |                                                   |
| 3.26e+02                                    |                                                   |
| 3.23e+02                                    |                                                   |
| 3.20e+02                                    |                                                   |
| 3.16e+02                                    |                                                   |
| 3.13e+02                                    |                                                   |
| 3.10e+02                                    |                                                   |
| 3.06e+02                                    |                                                   |
| 3.03e+02                                    |                                                   |
| 3.00e+02                                    |                                                   |
| 2.96e+02                                    |                                                   |
| 2.93e+02                                    |                                                   |
| 2.90e+02                                    |                                                   |
| 2.86e+02                                    |                                                   |
| 2.83e+02                                    |                                                   |
| 2.80e+02                                    |                                                   |
| 2 76e+02                                    |                                                   |
| 2.73e+02                                    |                                                   |
| Pathlines Colored by Static Temperature (k) | Sep 09, 2016<br>ANSYS Fluent 14.5 (2d, pbns, lam) |


## WALL FUNCTION HEAT TRANSFER COEFFICIENT (W/M2-K)

|                                         | 4.5 |
|-----------------------------------------|-----|
| 22                                      | _   |
| 22                                      |     |
| 22                                      |     |
| 32                                      |     |
| 32                                      |     |
| 32                                      |     |
| 22                                      |     |
| 22                                      |     |
| 2 C************************************ |     |
| 02                                      |     |
| 02                                      |     |
| 01                                      |     |
| 51                                      |     |
| 01                                      |     |
| 01                                      |     |
| 01                                      |     |
| 01                                      |     |
| 01                                      |     |
| 20                                      |     |

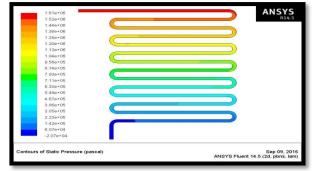
# LP CONDENSER PRESSURE (PA)



## **VELOCITY (M/SEC)**



#### **TEMPERATURE (K)**

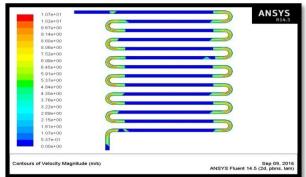

| 3.37e+02                           | ANSYS                            |
|------------------------------------|----------------------------------|
| 3.33e+02                           | R14.5                            |
| 3.280+02                           |                                  |
| 3.23e+02                           |                                  |
| 3.19e+02                           |                                  |
| 3.140+02                           |                                  |
| 3.10e+02                           |                                  |
|                                    |                                  |
| 3.05e+02                           |                                  |
| 3.00e+02                           |                                  |
| 2.96e+02                           |                                  |
| 2.91e+02                           |                                  |
| 2.87e+02                           |                                  |
| 2.82e+02                           |                                  |
| 2.77e+02                           |                                  |
| 2.73e+02                           |                                  |
| 2.68e+02                           |                                  |
| 2.63e+02                           |                                  |
| 2.59e+02                           |                                  |
| 2.540+02                           |                                  |
| 2.50e+02                           |                                  |
| 2.45e+02                           |                                  |
|                                    |                                  |
| Contours of Static Temperature (k) | Sep 09, 201                      |
|                                    | ANSYS Fluent 14.5 (2d, pbns, lan |

# WALL FUNCTION HEAT TRANSFER COEFFICIENT (W/M2-K)

| ANSYS                                         | 1          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.17e+02                   |
|-----------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| R14.5                                         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.06e+02                   |
|                                               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.95e+02                   |
|                                               |            | - Martine -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.84e+02                   |
|                                               |            | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.74++02                   |
|                                               |            | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.63e+02                   |
|                                               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.52e+02                   |
|                                               |            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.41e+02                   |
|                                               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.30e+02                   |
|                                               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.19e+02                   |
|                                               |            | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.08e+02                   |
|                                               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.76e+01                   |
|                                               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.68e+01                   |
|                                               |            | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.59e+01                   |
|                                               |            | and the second s | 6.51e+01                   |
|                                               |            | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.42e+01                   |
|                                               |            | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.34e+01                   |
|                                               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.25e+01                   |
|                                               |            | F .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.17e+01                   |
|                                               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.08e+01                   |
|                                               |            | <b>N</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00e+00                   |
|                                               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |
| Sep 09, 2016<br>S Fluent 14.5 (2d, pbns, lam) | ANSYS Flue | Tran. Coef. (w/m2-k)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ontours of Wall Func. Heat |

# R134A

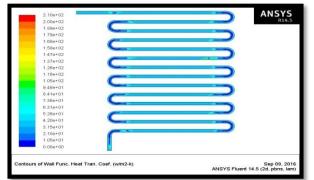
# PRESSURE (PA)



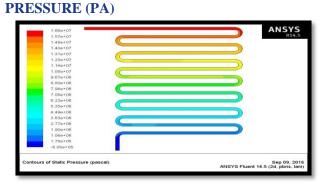

Volume No: 3 (2016), Issue No: 11 (November) www.ijmetmr.com



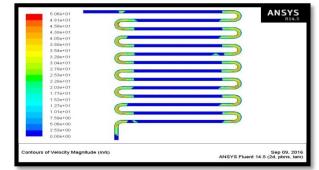
A Peer Reviewed Open Access International Journal


# **VELOCITY (M/SEC)**




#### **TEMPERATURE (K)**

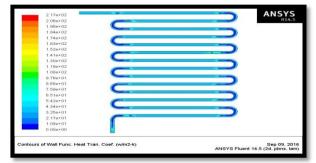
| ANS                                | +02               |
|------------------------------------|-------------------|
|                                    | +02               |
|                                    | +02               |
|                                    | +02               |
|                                    | +02               |
|                                    | +02               |
|                                    | +02               |
|                                    | +02               |
|                                    | +02               |
|                                    | +02               |
|                                    | +02               |
|                                    | +02               |
|                                    | +02               |
|                                    | +02               |
|                                    | +02               |
|                                    | +02               |
|                                    | +02               |
|                                    | +02               |
|                                    | +02               |
|                                    | +02               |
|                                    | +02               |
|                                    |                   |
| Sep 0<br>ANSYS Fluent 14.5 (2d, pb | c Temperature (k) |


# WALL FUNCTION HEAT TRANSFER COEFFICIENT (W/M2-K)



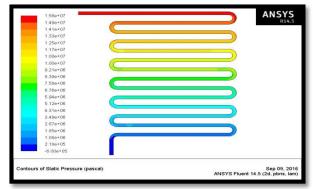
# H.P. CONDENSER R22




# **VELOCITY (M/SEC)**



## **TEMPERATURE (K)**

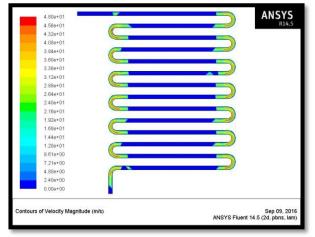

|                 | le+02               |                                                                                                                  | ANSYS                                  |
|-----------------|---------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| 3.4             | le+02               |                                                                                                                  | <br>R14.5                              |
| 3.4             | le+02               |                                                                                                                  |                                        |
| 3.4             | le+02               |                                                                                                                  |                                        |
| 3.3             | e+02                |                                                                                                                  |                                        |
| 3.3             | le+02               |                                                                                                                  |                                        |
| 3.3             | e+02                |                                                                                                                  |                                        |
| 3.2             | le+02               |                                                                                                                  |                                        |
| 3.2             | ie+02               |                                                                                                                  |                                        |
| 3.2             | 10+02               |                                                                                                                  |                                        |
| 3.1             | le+02               |                                                                                                                  |                                        |
| 3.1             | ie+02               |                                                                                                                  |                                        |
| 3.14            | le+02               |                                                                                                                  |                                        |
| 3.1             | 10+02               |                                                                                                                  |                                        |
| 3.0             | le+02               |                                                                                                                  |                                        |
| 3.0             | ie+02               | And the second |                                        |
| 3.0             | le+02               |                                                                                                                  |                                        |
| 2.9             | le+02               |                                                                                                                  |                                        |
| 2.9             | ie+02               |                                                                                                                  |                                        |
| 2.9             | le+02               |                                                                                                                  |                                        |
| 2.9             | le+02               |                                                                                                                  |                                        |
|                 |                     |                                                                                                                  |                                        |
| Contours of Sta | tic Temperature (k) |                                                                                                                  | <br>Sep 09, 201<br>14.5 (2d, pbns, lan |

# WALL FUNCTION HEAT TRANSFER COEFFICIENT (W/M2-K)

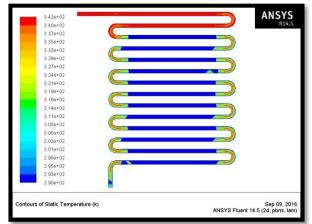


#### R134A

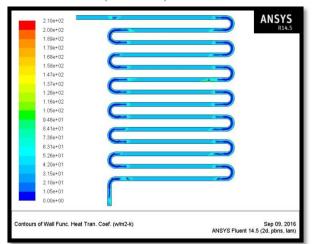
# INLET BOUNDARY CONDITIONS PRESSURE (PA)




Volume No: 3 (2016), Issue No: 11 (November) www.ijmetmr.com




A Peer Reviewed Open Access International Journal


# **VELOCITY (M/SEC)**



#### **TEMPERATURE (K)**



## WALL FUNCTION HEAT TRANSFER COEFFICIENT (W/M2-K)



## **RESULTS AND DISCUSSIONS EVAPORATOR**

| Flu<br>ids    | Pres<br>sure<br>(Pa) | Tempe<br>rature<br>(K) | Vel<br>ocit<br>y<br>(M/<br>Sec) | Wall<br>Funct<br>ion<br>Heat<br>Trans<br>fer<br>Coeff<br>icient<br>(W/M<br>2-K) | Mass<br>Flow<br>Rate<br>(Kg/Sec<br>) | Tota<br>1<br>Heat<br>Tran<br>sfer<br>Rate<br>(W) |
|---------------|----------------------|------------------------|---------------------------------|---------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------|
| R2<br>2       | 2051<br>09.5         | 319.00<br>63           | 2.34<br>3                       | 224.8<br>694                                                                    | -<br>0.00245<br>8                    | 10.1<br>69                                       |
| R1<br>34<br>A | 2055<br>86.7         | 320.31<br>97           | 1.95<br>90                      | 209.5<br>591                                                                    | -<br>0.00010<br>001358               | -<br>5.32<br>6416                                |

# COMPRESSOR LOW PRESSURE COMPRESSOR

| Flui<br>ds | Press<br>ure<br>(Pa) | Tempe<br>rature<br>(K) | Velo<br>city<br>(M/S<br>ec) | Wall<br>Functi<br>on<br>Heat<br>Transf<br>er<br>Coeffi<br>cient<br>(W/M<br>2-K) | Mas<br>s<br>Flow<br>Rate<br>(Kg/<br>Sec) | Total<br>Heat<br>Trans<br>fer<br>Rate<br>(W) |
|------------|----------------------|------------------------|-----------------------------|---------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------|
| R22        | 6181<br>20           | 337.2                  | 9.88<br>96                  | 279.9<br>3                                                                      | -<br>0.27<br>691                         | 1042<br>5.809                                |
| R13<br>4A  | 5624<br>48.2         | 335.97                 | 8.35<br>9242                | 271.2<br>692                                                                    | 0.04<br>99                               | 7898.<br>7874                                |

# Volume No: 3 (2016), Issue No: 11 (November) www.ijmetmr.com



A Peer Reviewed Open Access International Journal

# HIGH PRESSURE COMPRESSOR

| Flui<br>ds    | Pres<br>sure<br>(Pa) | Tempe<br>rature<br>(K) | Velo<br>city<br>(M/S<br>ec) | Wall<br>Functi<br>on<br>Heat<br>Trans<br>fer<br>Coeffi<br>cient<br>(W/M<br>2-K) | Mass<br>Flow<br>Rate<br>(Kg/S<br>ec) | Total<br>Heat<br>Trans<br>fer<br>Rate<br>(W) |
|---------------|----------------------|------------------------|-----------------------------|---------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------|
| R2<br>2       | 4866<br>064          | 346.99                 | 41.4<br>7                   | 279.9<br>091                                                                    | -<br>0.436<br>2                      | 1019<br>77.76                                |
| R1<br>34<br>A | 4310<br>480          | 339.53<br>23           | 36.2<br>1076                | 271.2<br>3                                                                      | -<br>1.172<br>5349                   | 7796<br>5.76                                 |

#### CONDENSER LOW PRESSURE CONDENSER

| Flui<br>ds | Pres<br>sure<br>(Pa) | Tempe<br>rature<br>(K) | Velo<br>city<br>(M⁄<br>Sec) | Wall<br>Functi<br>on<br>Heat<br>Transf<br>er<br>Coeffi<br>cient<br>(W/M<br>2-K) | Mass<br>Flow<br>Rate<br>(Kg/S<br>ec) | Total<br>Heat<br>Trans<br>fer<br>Rate<br>(W) |
|------------|----------------------|------------------------|-----------------------------|---------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------|
| R22        | 1817                 | 337.32                 | 12.8                        | 216.9                                                                           | 0.003                                | 167.4                                        |
|            | 868                  | 9                      | 313                         | 602                                                                             | 6125                                 | 5703                                         |
| R13        | 1606                 | 335.12                 | 10.7                        | 210.2                                                                           | 0.001                                | 72.31                                        |
| 4A         | 323                  |                        | 4                           | 4                                                                               | 159                                  | 25                                           |

| Flui<br>đs    | Press<br>ure<br>(Pa) | Tempe<br>rature<br>(K) | Velo<br>city<br>(M/<br>Sec) | Wall<br>Functi<br>on<br>Heat<br>Trans<br>fer<br>Coeffi<br>cient<br>(W/M<br>2-K) | Mass<br>Flow<br>Rate<br>(Kg/<br>Sec) | Total<br>Heat<br>Trans<br>fer<br>Rate<br>(W) |
|---------------|----------------------|------------------------|-----------------------------|---------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------|
| R2<br>2       | 1.65e<br>+7          | 348.85                 | 50                          | 216.9<br>6                                                                      | -<br>0.00<br>6256                    | -<br>259.4<br>1074                           |
| R1<br>34<br>A | 1.575<br>2e+7        | 342.48                 | 48.0<br>41                  | 210.2<br>4                                                                      | -<br>0.00<br>80                      | 466.7<br>89                                  |

## HIGH PRESSURE CONDENSER

#### CONCLUSION

In recent years, the escalating cost of energy has drawn much more attention on improving the energy efficiency of super market operations. In a supermarket refrigeration system consume a large amount of energy in maintaining chilled and frozen food. Meanwhile a HVAC (heating, ventilating and air conditioning) system is used to assure thermal comfort for occupants and suitable climatic conditions for refrigerated cases.

In this thesis, the thermal performance of combined air conditioning and refrigeration unit will be analyzed by CFD. 3D model and assembly of the combined air conditioning and refrigeration unit done in creo.

By observing above CFD results comparing of two refrigerants R22 and R134a of combined refrigeration unit R134a is getting low temperature comparatively with R22 for various condensers are placed for various applications. While, AC supply point of view we placed condenser at high pressure compressor in this R134a shows less temperature  $(17^{\circ}c)$  is comes out from the condenser, in the same way temperature(- $25^{\circ}C$ ) is observed at condenser which is placed at low pressure condenser which is supplied to refrigerators placed in super markets.



A Peer Reviewed Open Access International Journal

#### **Author Details**

Madaraboina Prakash received the B.TECH degreeinMechanicalEngineering from Jawaharlal Nehru TechnologicalUniversity, Jagtial, Telangana, India, in 2014 year andpursuingM.TECHinThermal Engineering from Ellenki College ofEngineeringandTechnology, JNTU, Hyderabad, Telangana, India.

**Smt.V.Saritha**, M.TECH, Assistant Professor, Ellenki College of Engineering and Technology, JNTU, Hyderabad, Telangana, India.

Volume No: 3 (2016), Issue No: 11 (November) www.ijmetmr.com