

A Peer Reviewed Open Access International Journal

Experimental Investigation to Optimize Process Parameters Using Copper Electrodes in Die Sinking EDM Process Machining P20 Steel

Seepala Siva Kiran Ellenki College of Engineering and Technology, Telangana, India. K.Ravindranath Tagore Ellenki College of Engineering and Technology, Telangana, India.

ABSTRACT:

The sinker EDM machining (Electrical Discharge Machining) process uses an electrically charged electrode that is configured to a specific geometry to burn the geometry of the electrode into a metal component. The sinker EDM process is commonly used in the production of dies and molds. Two metal parts submerged in an insulating liquid are connected to a source of current which is switched on and off automatically depending on the parameters set on the controller. When the current is switched on, an electric tension is created between the two metal parts.

The main aim of this thesis is to investigate the performance characteristics during sinker electrical discharge machining by taking P20 steel as work piece materials. The electrode material is copper. The parameters pulse on time and off time, spark gap and current are considered as input parameters to determine effect of parameters on material removal rate (MRR), tool wear rate and surface roughness. Different electrode shapes round, hexagonal are taken for experimentation. Different experiments are conducted to optimize the input parameters by considering their effect on material removal rate and surface finish.

I. INTRODUCTION: INTRODUCTION TO EDM:

A machining method typically used for hard metals, Electrical Discharge Machining (commonly known as "EDM Machining") makes it possible to work with metals for which traditional machining techniques are ineffective. An important point to remember with EDM Machining is that it will only work with materials that are electrically conductive. With good EDM Machining equipment it is possible to cut small odd-shaped angles, detailed contours or cavities in hardened steel as well as exotic metals like titanium, hastelloy, kovar, inconel, and carbide. The EDM Process is commonly used in the Tool and Die industry for mold-making, however in recent years EDM has become a integral part for making prototype and production parts. This is seen in the aerospace and electronics industries where production quantities remain low.

When the distance between the two electrodes is reduced, the intensity of the electric field in the volume between the electrodes becomes greater than the strength of the dielectric (at least in some point(s)), which breaks, allowing current to flow between the two electrodes. This phenomenon is the same as the breakdown of a capacitor (condenser) (see also breakdown voltage). As a result, material is removed from both the electrodes.

Once the current flow stops (or it is stopped – depending on the type of generator), new liquid dielectric is usually conveyed into the inter-electrode volume enabling the solid particles (debris) to be carried away and the insulating properties of the dielectric to be restored. Adding new liquid dielectric in the inter-electrode volume is commonly referred to as flushing. Also, after a current flow, a difference of potential between the two electrodes is restored to what it was before the breakdown, so that a new liquid dielectric breakdown can occur.

A Peer Reviewed Open Access International Journal

Die-sink EDM:

Two Russian scientists, B. R. Lazarenko and N. I. Lazarenko, were tasked in 1943 to investigate ways of preventing the erosion of tungsten electrical contacts due to sparking. They failed in this task but found that the erosion was more precisely controlled if the electrodes were immersed in a dielectric fluid. This led them to invent an EDM machine used for working difficult to machine materials such as tungsten. The Lazarenkos' machine is known as an R-C-type machine after the RC circuit used to charge the electrodes. Simultaneously, but independently, an American team, Harold Stark, Victor Harding, and Jack Beaver, developed an EDM machine for removing broken drills and taps from aluminium castings.

Initially constructing their machines from feeble electric-etching tools, they were not very successful. But more powerful sparking units, combined with automatic spark repetition and fluid replacement with an electromagnetic interrupter arrangement produced practical machines. Stark, Harding, and Beaver's machines were able to produce 60 sparks per second. Later machines based on the Stark-Harding-Beaver design used vacuum tube circuits that were able to produce thousands of sparks per second, significantly increasing the speed of cutting.

AIM OF THE THESIS:

The main aim of this thesis is to investigate the performance characteristics during sinker electrical discharge machining by taking P20 as work piece material. The electrode material is copper. The parameters spark gap, pulse on time and off time, and current are considered as input parameters to determine effect of parameters on material removal rate (MRR), tool wear and surface roughness. Different electrode shapes round, and hexagonal are taken for experimentation. Different experiments are conducted to optimize the input parameters by considering their effect on material removal rate, surface roughness and tool wear.

Fig – Die Sink EDM Machine

TECHNICAL SPECIFICATION:

curre	Normal Outpu nt LWHV (AMI	ut Maxin P) Speed	nachining (mm?/MIN)	Min. Elec Wear ratio	trode (Under)	Best surface Finish (Ra µm)	Power Consumption (KVA)
30A	30/5		200	0.29	6	0.2	4
45A	45/5		300	0.29	6	0.2	5.5
60A	60/5		400	0.2%		0.2	7
90A	90/5		600	0.2%		0.2	10
20A	120/5		800	0.2%		0.2	13
Nodel	MASO CNC	M750 CNC	M850 CNC	M1060 CNC	M1270 C	NC M1310 CNC	M1470 CNC
and the second se	Address of the	A COMPANY OF A COMPANY	Lines out	Anterna contra	and and a	and the second second	And the second
Model Table size	M430 CNC	M750 CNC 840-520	M860 CNC 1250+750	M1060 CNC 1250+750	M1270 C	NC M1310 CNC	M1470 CNC
Model Table size Worksank(L)	M430 CNC 840+530 1200	M750 CNC 840-520 1380	M860 CNC 1250×750 1570	M1060 CNC 1250+750 1670	M1270 C	NC M1310 CNC 20 1430+1100 2010	M1470 CNC 1850+1000 2010
Model Table size Worktank(L) (W)	M480 CNC 840+539 1200 600	M750 CNC 840-520 1385 790	M560 CNC 1250×750 1575 1100	M1060 CNC 1450-750 1670 1100	M1270 C 1350-82 1870 1255	NC M1310 CNC 20 1430+1100 2010 1700	M1470 CNC 1850+1000 2010 1850
Model Table dae Worktank(t.) (M) (H)	M430 CNC 840+530 1200 600 410	M750 CNC 840-520 1385 790 400	M850 CNC 1250×750 1570 1100 625	M1060 CNC 1250-750 1670 1100 625	M1270 C 1350+82 1870 1970 1970 1970	NC M1310 CNC 35 1430+1100 2010 1700 800	M1400 CNC 1850+1000 2010 1350 625
Model Table size Worktank(L) (M) 049 X avis howel	M430 CNC 840+530 1200 600 410 400	M750 CHC 840-520 1380 790 400 705	M850 CNC 1250×750 1570 1100 425 800	M1060 CNC 1250-758 1670 1100 625 1000	M1270 C 1350+82 1870 1255 625 1200	NC M1310 CNC 2010 2010 1700 100 100	M1400 CNC 1850+1000 2010 1350 625 1400
Model Table size Worktank(L) (PI) 0H X avit travel Y avit travel	M439 CMC 840+530 1200 660 410 400 300	M750 CNC 840+520 1385 790 400 700 500	M850 CNC 1250+756 1575 1106 425 800 600	M1060 CNC 1250-758 1670 1100 625 1000	M1270 C 1350+82 1870 1256 425 1206 700	NC M1310 CNC 25 1430+1100 2010 1700 100 1300 1000	M1470 CNC 1850+1000 2010 1330 623 1400 700
Nodel Table size Worktank(L) (H) (H) X avit travel X avit travel Z Avit travel	M439 CNC 840-530 1200 668 410 400 300 300	M750 CNC 840-520 1385 790 460 705 500 450	M850 CNC 12504750 1570 1570 425 800 600 500	M1060 DNC 1250-758 1670 1100 625 1800 600 500	M1270 C 1350-42 1870 1255 425 1255 700 500	M1330 CNC 25 1430-1160 2010 1700 1000 1000 1000 1000 1000 1000	M1470 CNC 1850+1000 2010 1250 625 1400 700 500
Nodel Table size Worktank(L) (W) 048 X axis travel X axis travel Z Axis travel Table-Quil Distance	M430 CMC 840+530 1300 668 410 433 300 300 300 653	M750 CHC 840-520 1385 790 440 705 500 450 705	M850 CHC 1220+739 1579 1108 425 800 600 425-923	M1060 CNC 1250-758 1670 1100 625 1880 600 500 425-625	M1270 C 1350-62 1870 1250 625 1200 700 500 500	M1330 CNC 25 1430-1100 2010 1700 100 1300 1000 1300 1000 600 0 750-1750	M1400 CNC 1850+1000 2010 1250 625 1400 700 500 550-1058
Nodel Table size Worktankt), (H) (H) X avis travel Y ans travel Y ans travel Table-Quil Distance Biostrode Weight	M430 CNC 840-530 1200 660 410 430 300 300 633 1554g	M750 CNC 840-520 1385 790 440 700 550 450 700 700	M850 CNC 1250+779 1579 1108 425 800 400 500 420-920 400+g	M1060 DNC 1250-738 1870 400 425 1000 400 500 420-920 4004g	M1270 C 1350-62 1870 1259 4255 1208 700 500 500 500 500	K M1310 CNC 2015 2015 1200 100 1000 1000 600 0 755-1330 500kg	M1400CHC 1850+1000 2010 1130 625 1400 700 500 550-1058 4504g
Nodel Table size Werktanig() (M) (H) X anis travel V anis travel Table Quill Distance Maximum Bietrode Weigtz Maximum Fable Liad	M30 CNC 840-530 1300 660 410 400 300 500 633 1554g 42004g	M750 CNC 840-520 1385 796 480 705 500 480 705 180kg 5200kg	MISSI CNC 1230+739 1579 1108 423 800 900 900 420-920 420-920 420-920	M1060 CNC 1250-758 1879 1100 625 1800 600 500 400 0 400 0 400 0 50 400 0 50 400 0 50 50 50 50 50 50 50 50 50 50 50 50 50	M1270 C 1250+6 1870 1250 4255 1200 500 510-101 430%g 8000%g	NC M1350 CNC 25 1430+1100 2510 700 1700 800 1000 1000 600 700-1350 500mg 500mg 8 11000mg	M1400 CMC 185041000 2010 1330 623 1400 700 500 500-1038 4504g 85004g

Fig – Technical Specification of EDM machine

okg 5200kg 5600kg 6600kg 13100kg 8100kg

A Peer Reviewed Open Access International Journal

PROCESS PARAMETERS AND DESIGN:

	ROUND ELECTRODE							
	PUL SE ON TIM E (µs)	PUL SE OFF TIM E (µs)	SPA RK GAP (mm)	ELECTR ODE DIA (mm)	CURRE NT (Amps)			
CA SE 1	10.55	11.45	12.6	12.35	7			
CA SE 2	11.5	12.2	12.7	12.35	10			
	PUL SE ON TIM E (μs)	PUL SE OFF TIM E (μs)	SPA RK GAP (mm)	ELECTR ODE DIA (mm)	CURRE NT (Amps)			
CA SE 1	10.55	11.45	12.6	12.35	7			
CA SE 2	11.5	12.2	12.7	12.35	10			

Fig – Die EDM machine

Fig – Initial workpiece material

Fig – Workpiece after initial machining

A Peer Reviewed Open Access International Journal

Fig – Workpiece after initial machining

Fig – Machine Setup

Fig – Workpiece setup in machine

Fig – Round Electrode Setup

Fig – Round Electrode Setup with fixtures

Fig – Arrangement for Lubricant Oil Flow

A Peer Reviewed Open Access International Journal

Fig – Machine with electrode and work piece

Fig – Machining of work piece using round electrode

Fig – Setting of Hexagonal shaped electrode on the machine

Fig – Hexagonal Electrode

Fig – Machining of work piece using Hexagonal electrode

Fig – Final work piece after machining

A Peer Reviewed Open Access International Journal

EXPERIMENTAL RESULTS: MATERIAL REMOVAL RATE:

By observing the above results, material removal rate is more for hexagonal electrode.

TOOL WEAR RATE:

By observing the above results, tool wear rate is less for round electrode.

SURFACE FINISH RESULTS:

In this project most important output performances in Die Sink EDM such as Surface Roughness (Ra) is considered for optimizing machining parameters. The surface finish value (in μ m) was obtained by measuring the mean absolute deviation, Ra (surface roughness) from the average surface level using a Computer controlled surface roughness tester.

Surface Finish Tester – Model Surtronic 3+, Rank Taylor Hobson Ltd., Made in England which is periodically calibrated using Reference Specimen Type 112/1534. Lab Temperature $20 \pm 20^{\circ}$ C.

Fig – Surface finish Tester

Fig – Technical Specifications of surface finish tester

By observing the above results, surface roughness is less for round electrode.

CONCLUSION:

In this thesis, the performance characteristics during sinker electrical discharge machining by taking P20 Tool Steel as work piece materials are investigated. The electrode material is copper. The parameters spark gap, pulse on time and off time, and current are considered as input parameters to determine effect of parameters on material removal rate (MRR), tool wear and surface roughness values. Different electrode shapes round and hexagonal are taken for experimentation.

A Peer Reviewed Open Access International Journal

By observing the experimental results, the following conclusions can be made:

- Material removal rate is more for hexagonal electrode and increases with increase of pulse on time, pulse off time and current.
- Tool wear rate is less for round electrode and increases with increase of pulse on time, pulse off time and current.
- Surface roughness is less for round electrode and increases with increase of pulse on time, pulse off time and current.

REFERENCES:

- M.A. Ali, M. Samsul, N.I.S. Hussein, M. Rizal, R. Izamshah, M. Hadzley, M.S. Kasim, M.A. Sulaiman and S. Sivarao, The Effect of EDM Die-sinking Parameters on Material Removal Rate of Beryllium Copper Using Full Factorial Method, Middle-East Journal of Scientific Research 16 (1): 44-50, 2013, ISSN 1990-9233.
- 2. Nikhil Kumar, Lalit Kumar, Harichand Tewatia, Rakesh Yadav, Comparative study for MRR on die-sinking EDM using electrode of copper & graphite, International Journal of Advanced Technology & Engineering Research (IJATER), VOLUME 2, ISSUE 2, MAY 2012.
- J Jeevamalar and S Ramabalan, Die sinking EDM process parameters: A Review, Int. J. Mech. Eng. & Rob. Res. 2015, ISSN 2278 – 0149, Vol. 4, No. 1, January 2015.
- Bhavesh A. Patel, D. S. Patel, Haresh A. Patel, Influence of Electrode Material and Process Parameters on Surface Quality and MRR in EDM of AISI H13 using ANN, International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169, Volume: 1 Issue: 12 858 – 869.
- KuldeepOjha, R. K. Garg, K. K. Singh, MRR Improvement in Sinking Electrical Discharge Machining: A Review, Journal of Minerals & Materials Characterization & Engineering, Vol. 9, No.8, pp.709-739, 2010.

- S V Subrahmanyam, M. M. M. Sarcar, Evaluation of Optimal Parameters for machining with Wire cut EDM Using Grey-Taguchi Method, International Journal of Scientific and Research Publications, Volume 3, Issue 3, March 2013, ISSN 2250-3153.
- Atul Kumar, DR.D.K.Singh, Performance Analysis of Wire Electric Discharge Machining (W-EDM), International Journal of Engineering Research & Technology, Vol.1 -Issue 4 (June- 2012), e-ISSN: 2278-0181
- M. Durairaja, D. Sudharsunb, N. Swamynathan, Analysis of Process Parameters in Wire EDM with Stainless Steel Using Single Objective Taguchi Method and Multi Objective Grey Relational Grade, Volume 4, Issue 1 (2016) 69-73 ISSN 2347 – 3258, International Journal of Advance Research and Innovation.
- 9. Ricky Agarwal, Optimization of process parameters of micro wire EDM, Research Gate
- 10. J.T. Huang, Y.S. Liao and Y.H. Chen, A Study to Achieve a Fine Surface Finish in Wire-EDM.

Author's Details:

Seepala Siva Kiran, Received The B.Tech Degree In Mechanical Engineering From Vignana Bharathi Institute Of Technology, Jntu-Ananthapur, Proddatur, Andhra Pradesh, India, In 2013 Year, And Pursuing M.Tech In Advanced Manufacturing Systems From Ellenki College of Engineering and technology, Patelguda, Hyderabad, India.

Prof.K.Ravindranath Tagore, (HOD), Associate Professor, Ellenki College of Engineering & Technology, Patelguda, Hyderabad, India.