

A Peer Reviewed Open Access International Journal

# Determination of Thermal Characteristics of Evaporator with Phase Change Material Chamber In Refrigerator

Thogiti Arunkumar

Ellenki College of Engineering and Technology, JNTU, Hyderabad, Telangana, India.

### **ABSTRACT:**

The refrigerator and cold storages are generally found in most of the countries and they are one of the most energy demanding appliances because of their continuous operation. A phase-change material (PCM) is a substance with a high heat of fusion which, melting and solidifying at a certain temperature, is capable of storing and releasing large amounts of energy. Heat is absorbed or released when the material changes from solid to liquid and vice versa; thus, PCMs are classified as latent heat storage (LHS) units.

In this thesis, the thermal characteristics of evaporator in refrigerator are analyzed and compared for with pcm chamber and without pcm chamber at different refrigerants HFC – 134A, Ethylene glycol and propylene glycol and water. CFD analysis is done on the evaporator to determine the heat transfer coefficients without pcm and with pcm. Thermal analysis is also done by varying two materials for the evaporator Copper and Aluminum.

3D modeling is done in Pro/Engineer and analysis is done in Ansys.

### I. INTRODUCTION

The Refrigeration systems are directly or indirectly responsible for Global Warming problems which refer to the rise in temperature of Earth's atmosphere and ocean. During early 1990, after water heater a frost freezer was the second most expensive and energy consuming home appliance. It was compulsory for appliance makers to include labels which list an Smt. S. Sushma Ellenki College of Engineering and Technology, JNTU, Hyderabad, Telangana, India.

estimate of the annual cost of running the appliance, so consumers could compare energy usage and costs.

Most frozen and chilled foods are sensitive to temperature fluctuations. Thermal Energy storage systems (TES) will use phase change materials (PCM) for storage of heat and cold at shifted time. Phase change material (PCM) melts within a narrow temperature range, and while in transition state absorbs a large amount of heat, thus rise in the refrigerator temperature is minimum. PCM with a suitable melting temperature may be used to provide thermal capacity for maintaining suitable recommended internal temperature during power failure. TES could be the most appropriate way and method to correct the gap between the demand and supply of energy and therefore it has become a very attractive technology.

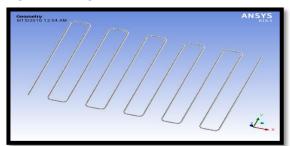
The most alarming environmental disorder namely "Global Warming" refers to the rising temperature of Earth's atmosphere and ocean and its projected continuation. The heat from the Sun is entrapped in the Earth and thus increases the temperature of the atmosphere by Greenhouse Effect. Refrigeration system is directly and invisibly responsible for Global Warming problem. For the typical home of the early 1990s, a frost-free refrigerator or freezer was the second most expensive home appliance to operate besides the water heater. Appliance makers were required to include labels listing an estimate of the annual cost of running each appliance so consumers could compare costs and energy usage.

[1] A refrigerator (colloquially fridge) is a common household appliance that consists of a thermally

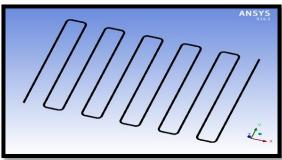


A Peer Reviewed Open Access International Journal

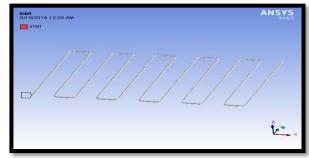
insulated compartment and a heat pump (mechanical, electronic, or chemical) that transfers heat from the inside of the fridge to its external environment so that the inside of the fridge is cooled to a temperature below the ambient temperature of the room.


[2] Domestic refrigerators are among the most energy demanding appliances in a household due to their continuous operation

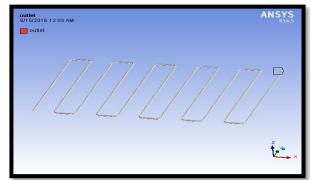
[3] The domestic refrigerator is one found in almost all the homes for storing food, vegetables, fruits, beverages, and much more.


[4] Materials that can store thermal energy reversible over a long time period are often referred to as latent heat storage materials. It also helped in heat transfer via conduction.

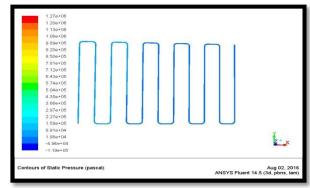



### CFD ANALYSIS OF EVAPORATOR CASE 1- WITH-OUT PCM MATERIAL FLUID: – ETHELYNE GLYCOL IMPORTED MODEL

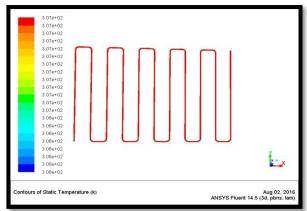



### **MESHED MODEL**




### INLET

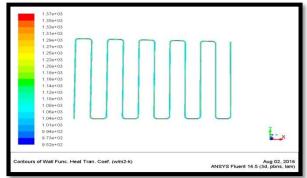



### OUTLET

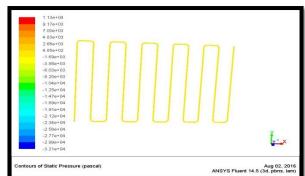


### PRESSURE

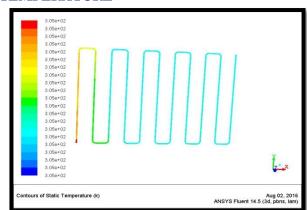



#### **TEMPERATURE**

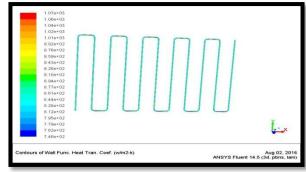




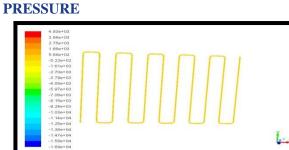

A Peer Reviewed Open Access International Journal


### HEAT TRANSFER COEFFICIENT



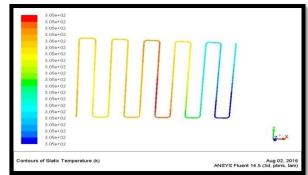

### FLUID - PROPYLENE PRESSURE




### **TEMPERATURE**

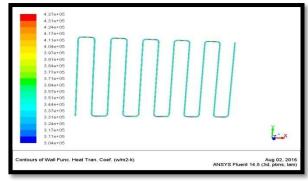


### HEAT TRANSFER COEFFICIENT

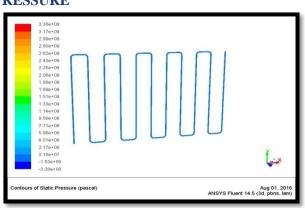



# FLUID - R134A




### TEMPERATURE

rs of Static Pressure (pascal)

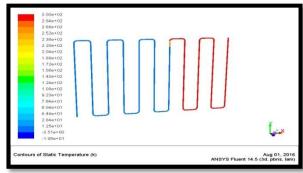



Aug 02, 2011 ANSYS Fluent 14.5 (3d, pbns, lam

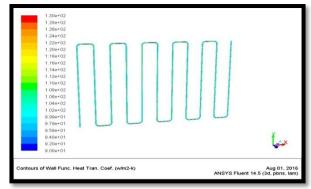
### HEAT TRANSFER COEFFICIENT



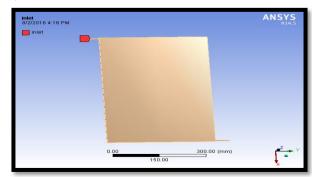
### FLUID - WATER PRESSURE



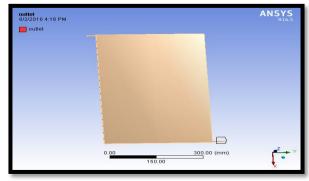

Volume No: 3 (2016), Issue No: 11 (November) www.ijmetmr.com

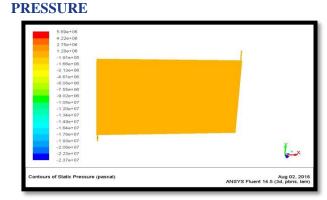



A Peer Reviewed Open Access International Journal

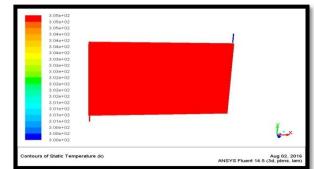

#### TEMPERATURE



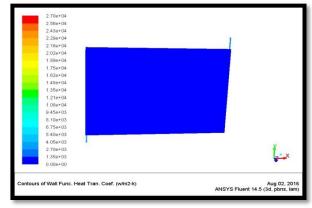

### HEAT TRANSFER COEFFICIENT



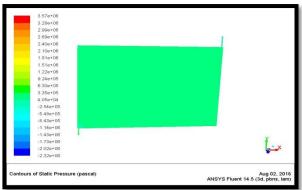

### CASE 2- WITH PCM MATERIAL FLUID - ETHYLENE GLYCOL INLET




### OUTLET





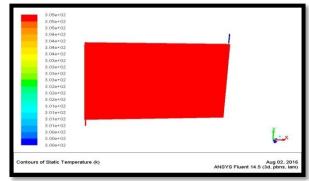


#### TEMPERATURE



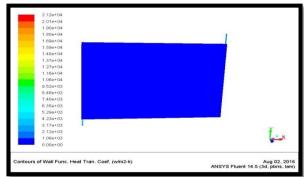
### HEAT TRANSFER COEFFICIENT



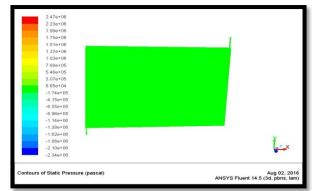
### FLUID - PROPYLENE PRESSURE



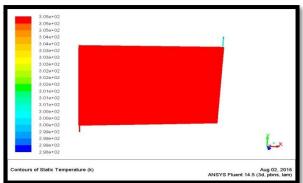

### Volume No: 3 (2016), Issue No: 11 (November) www.ijmetmr.com



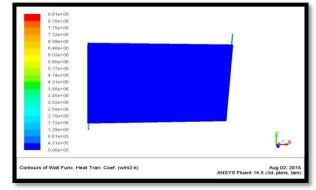

A Peer Reviewed Open Access International Journal


### **TEMPERATURE**



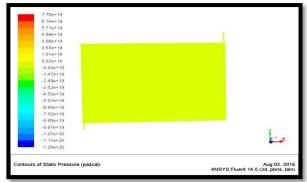

### HEAT TRANSFER COEFFICIENT



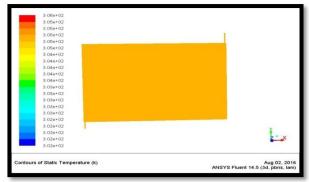

### FLUID - R134A PRESSURE



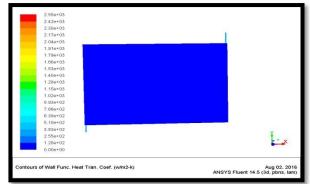
### TEMPERATURE




### HEAT TRANSFER COEFFICIENT




# FLUID - WATER


# PRESSURE



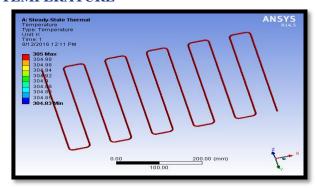
#### TEMPERATURE



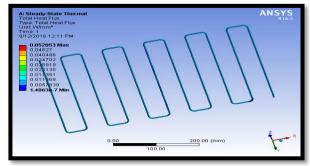
### HEAT TRANSFER COEFFICIENT



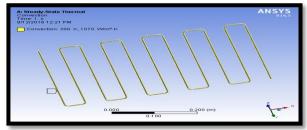
Volume No: 3 (2016), Issue No: 11 (November) www.ijmetmr.com



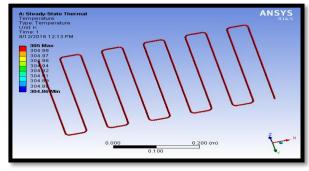

A Peer Reviewed Open Access International Journal


### **RESULTS TABLE**

|                            |                                                         | WITH-<br>OUT<br>PCM    | WITH<br>PCM          |
|----------------------------|---------------------------------------------------------|------------------------|----------------------|
|                            | PRESSURE<br>(Pa)                                        | 1.27E+06               | 5.69E+0<br>6         |
| ETHYL<br>ENE<br>GLYCO<br>L | TEMPERATUR<br>E (K)                                     | 3.07E+02               | 3.05E+0<br>2         |
|                            | HEAT<br>TRANSFER<br>COEFFICIENT<br>(W/m2k)              | 1.37E+03               | 2.7E04               |
|                            | MASS FLOW<br>RATE (Kg/sec)                              | 0.0001336<br>1222      | 0.55072<br>808       |
|                            | TOTAL HEAT<br>TRANSFER<br>RATE (W)                      | -<br>3.0251379         | -<br>13515.3<br>11   |
|                            | PRESSURE<br>(Pa)                                        | 1.13E+04               | 3.57e+0<br>6         |
| PROPEL                     | TEMPERATUR<br>E (K)                                     | 3.05E+02               | 3.05e+0<br>2         |
| YNE                        | HEAT<br>TRANSFER<br>COEFFICIENT<br>(W/m2k)              | 1.07E+03               | 2.12e+0<br>4         |
|                            | MASS FLOW<br>RATE (Kg/sec)                              | -<br>6.4715169<br>e-7  | -<br>0.25768<br>137  |
|                            | TOTAL HEAT<br>TRANSFER<br>RATE (W)                      | -<br>0.0111335<br>48   | -<br>4501.88<br>67   |
| R134a                      | PRESSURE<br>(Pa)                                        | 4.93e+03               | 2.47e+0<br>6         |
|                            | TEMPERATUR<br>E (K)                                     | 3.05e+02               | 3.05e+0<br>2         |
|                            | HEAT<br>TRANSFER<br>COEFFICIENT<br>(W/m2k)              | 4.37e+05               | 8.61e+0<br>6         |
|                            | MASS FLOW<br>RATE (Kg/sec)                              | -<br>2.3265429<br>e-08 | -<br>0.07332<br>9151 |
|                            | TOTAL HEAT<br>TRANSFER<br>RATE (W)                      | -<br>2.2297354<br>e-05 | -<br>432.481<br>93   |
|                            | PRESSURE<br>(Pa)                                        | 3.36e+09               | 7.76e+19             |
| WATER                      | TEMPERATUR<br>E (K)                                     | 3.00e+02               | 3.06e+02             |
|                            | HEAT<br>TRANSFER<br>COEFFICIENT<br>(W/m <sup>2</sup> K) | 1.3e+02                | 2.55e+03             |
|                            | MASS FLOW<br>RATE (Kg/sec)                              | -<br>3.963252<br>3e-05 | -<br>0.060402<br>621 |
|                            | TOTAL HEAT<br>TRANSFER<br>RATE (W)                      | 0.095922<br>515        | -<br>539.7611<br>1   |


### THERMAL ANALYSIS WITHOUT PCM ETHYLENE GLYCOL TEMPERATURE

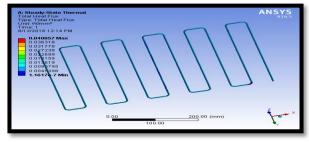



### **HEAT FLUX**



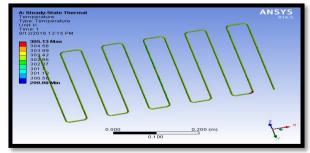
### PROPELENE



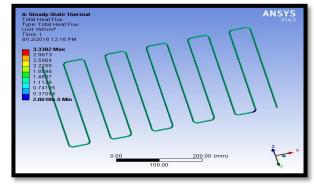

### **TEMPERATURE**



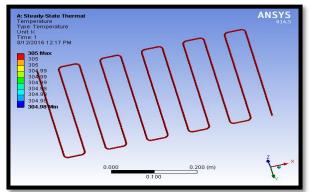



A Peer Reviewed Open Access International Journal

### **HEAT FLUX**

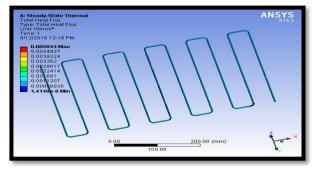



### R134A

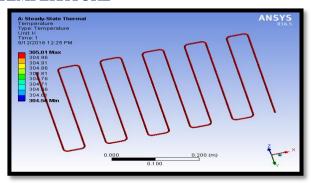

TEMPERATURE



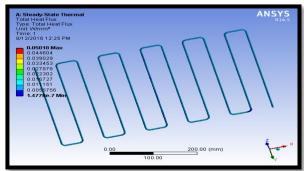
### **HEAT FLUX**



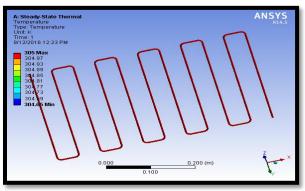

### WATER TEMPERATURE




Volume No: 3 (2016), Issue No: 11 (November) www.ijmetmr.com


#### **HEAT FLUX**

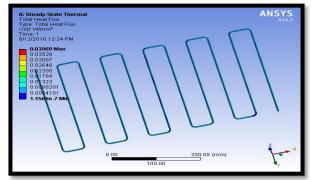



MATERIAL: - ALUMINUM ETHYLENE GLYCOL TEMPERATURE

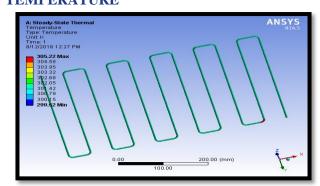


**HEAT FLUX** 

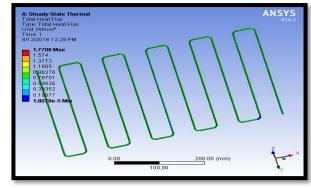



### PROPYLENE TEMPERATURE

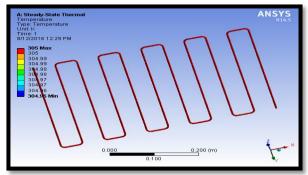





A Peer Reviewed Open Access International Journal

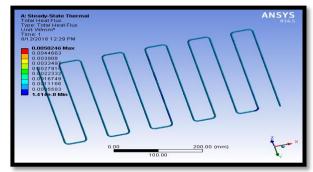

### **HEAT FLUX**



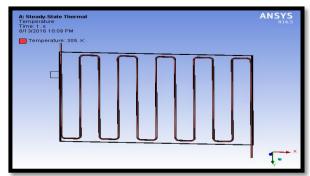

#### R134A TEMPERATURE



### HEAT FLUX



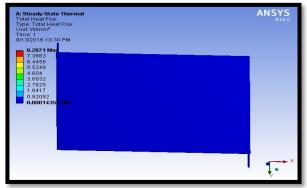

### WATER TEMPERATURE




### Volume No: 3 (2016), Issue No: 11 (November) www.ijmetmr.com

### HEAT FLUX

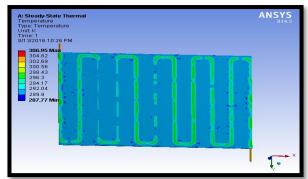



### CASE 2:- WITH PCM MATERIAL - COPPER TEMPERATURE



#### ETHYLENE GLYCOL TEMPERATURE

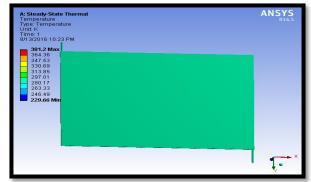
#### ANSYS Type: Temperature Type: Type: Temperature Type: Temperature Type: Temperature Type: Type:


### HEAT FLUX

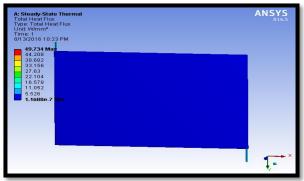




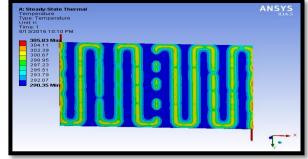

A Peer Reviewed Open Access International Journal


### PROPYLENE TEMPERATURE




### **HEAT FLUX**

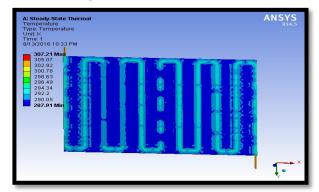



### R134A TEMPERATURE

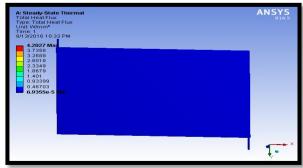


### **HEAT FLUX**




# WATER TEMPERATURE



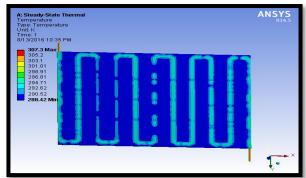

### HEAT FLUX



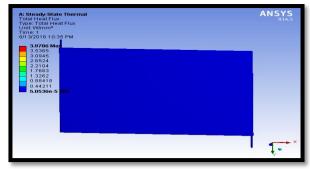
### MATERIAL: - ALUMINUM ETHYLENE GLYCOL TEMPERATURE



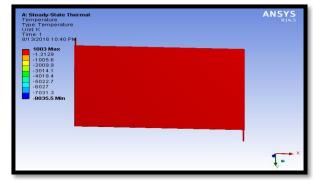
### HEAT FLUX



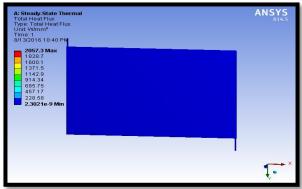

Volume No: 3 (2016), Issue No: 11 (November) www.ijmetmr.com



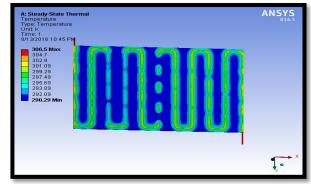

A Peer Reviewed Open Access International Journal


### PROPYLENE TEMPERATURE

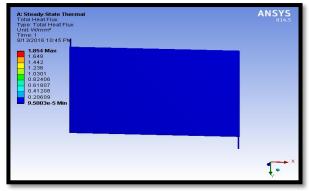



### **HEAT FLUX**




### R134A TEMPERATURE




# HEAT FLUX



# WATER TEMPERATURE



# HEAT FLUX



### RESULTS TABLE WITHOUT P.C.M

| Copper     |                                               |                                                                                                                                                                                                                                                                                                                                                          | Aluminum                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Temp (K)   |                                               | Heat                                                                                                                                                                                                                                                                                                                                                     | Tem                                                                                                                                                                                                                                                                         | p (K)                                                                                                                                                                                                                                                                                                                                                                                                                                             | Heat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Min        | Ma<br>x                                       | flux<br>(W/m<br>m <sup>2</sup> )                                                                                                                                                                                                                                                                                                                         | Min                                                                                                                                                                                                                                                                         | max                                                                                                                                                                                                                                                                                                                                                                                                                                               | flux<br>(W/m<br>m <sup>2</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 304        |                                               | 0.052                                                                                                                                                                                                                                                                                                                                                    | 304                                                                                                                                                                                                                                                                         | 305                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            | 305                                           |                                                                                                                                                                                                                                                                                                                                                          | 56                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|            |                                               |                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 304.       | 305                                           | 0.040                                                                                                                                                                                                                                                                                                                                                    | 304.                                                                                                                                                                                                                                                                        | 305                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0396                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 86         | 505                                           | 857                                                                                                                                                                                                                                                                                                                                                      | 65                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 299.       | 305.                                          | 3.338                                                                                                                                                                                                                                                                                                                                                    | 299.                                                                                                                                                                                                                                                                        | 305.<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.7708                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 98         | 13                                            | 2                                                                                                                                                                                                                                                                                                                                                        | 52                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 304.<br>98 | 305                                           | 0.005<br>043                                                                                                                                                                                                                                                                                                                                             | 304.<br>95                                                                                                                                                                                                                                                                  | 305                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0050<br>246                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            | Min<br>304.<br>83<br>304.<br>86<br>299.<br>98 | Temp (K)           Ma           Ma           304.           304.           304.           304.           304.           304.           304.           304.           304.           304.           304.           304.           304.           304.           305           304.           305.           98           13           304.           305. | Temp (K)         Heat flux (W/m m²)           Min         Ma x         0.052 053           304. 83         305         0.040 857           304. 86         305         857           299. 305. 3.338 98         13         2           304. 805         0.005         0.052 | Temp (K)         Heat         Temp           Ma         flux         Min           Ma         m <sup>2</sup> )         Min           304.         305         0.052         304.           304.         305         0.040         56           304.         305         0.040         304.           86         305         3.338         299.           98         13         2         52           304.         305         0.005         304. | Temp (K)         Heat         Temp (K)           Ma         flux         Min         max           Min $x$ $0.052$ $304.$ $305.$ 304. $305$ $0.052$ $304.$ $305.$ $304.$ $305$ $0.040$ $304.$ $305$ $304.$ $305$ $0.040$ $304.$ $305$ $304.$ $305$ $3.338$ $299.$ $305.$ $299.$ $305.$ $3.338$ $299.$ $305.$ $304.$ $305.$ $3.338$ $299.$ $305.$ $304.$ $305.$ $3.080.$ $304.$ $305.$ $304.$ $305.$ $3.080.$ $304.$ $305.$ $304.$ $305.$ $304.$ $305.$ $304.$ $304.$ $305.$ $304.$ $305.$ |



A Peer Reviewed Open Access International Journal

### WITH P.C.M

|                        | Copper     |            |                                  | Aluminum        |            |                                  |
|------------------------|------------|------------|----------------------------------|-----------------|------------|----------------------------------|
| Fuids                  | Temp (K)   |            | Heat                             | Temp (K)        |            | Heat                             |
|                        | Min        | Ma<br>x    | flux<br>(W/m<br>m <sup>2</sup> ) | Min             | max        | flux<br>(W/m<br>m <sup>2</sup> ) |
| Ethyle<br>ne<br>glycol | 286.<br>88 | 307.<br>05 | 8.2871                           | 287.<br>91      | 307.<br>21 | 4.2027                           |
| Propyl<br>ene          | 288.<br>42 | 306.<br>95 | 7.6247                           | 288.<br>42      | 307.<br>3  | 3.9786                           |
| R134a                  | 229.<br>66 | 381.<br>2  | 49.734                           | -<br>803<br>5.5 | 100<br>3   | 205.73                           |
| water                  | 290.<br>35 | 305.<br>83 | 2.9036                           | 290.<br>29      | 306.<br>5  | 1.854                            |

### CONCLUSION

In this thesis, the thermal characteristics of evaporator in refrigerator are analyzed and compared for with pcm and without pcm at different refrigerants HFC – 134A, Ethylene glycol and propylene glycol and water. CFD analysis is done on the evaporator chamber to determine the heat transfer coefficients without pcm and with pcm. Thermal analysis is also done by varying two materials for the evaporator Copper and Aluminum. 3D modeling is done in Pro/Engineer and analysis is done in Ansys.

By observing CFD analysis results, placing the evaporator in the PCM chamber yields good results since the heat transfer coefficient and heat transfer rates are more than that without PCM chamber. The heat transfer heat transfer coefficient and heat transfer rates are important parameters to be considered in the refrigerator. By comparing the results between refrigerants, heat transfer coefficient is more when R134A is used and heat transfer rate is more when Ethylene Glycol is used.

By observing thermal analysis results, the heat flux values are more for the evaporator with PCM chamber since high heat transfer coefficients. Refrigerant R134A has more heat transfer rate.

### REFRENCES

[1] Rezaur Rahman, Md. Arafat Hossain, ShubhraKanti Das & Adnan Hasan, "Performance Improvement of a Domestic Refrigerator by using PCM (Phase Change Material)." Global Journal of Researches in Engineering Mechanical and Mechanics Engineering. 2013, 13, 17-22.

[2] Eduard Oró Prim, "Thermal energy storage (TES) using phase change materials (PCM) for cold applications", University of Lleida, Spain, 2012.

[3] Md. Imran Hossaen Khan and Hasan M.M. Afroz, "Effect of phase change material on performance of a household refrigerator." Asian Journal of Applied Science. 2013, 6, 56-67.

[4] MD. Mansoor Ahamed, J.Kannakumar, P.Mallikarjuna reddy, "Design and fabrication of cold storage plant using phase change material (PCM)" International Journal of Innovative Research in Science, Engineering and Technolog. 2013, 2, 4277-4286.

[5] C. Marrques, G.Davies, G. Maidment, J.A. Evanis, I. Wood, "The use of phase change materials in domestic refrigerator applications" presented before the Institute of Refrigeration at London Chamber of Commerce and Industry, London, 2013.

[6] Azzouz, K., Leducq, D., Gobin, D., "Enhancing the performance of household refrigerators with latent heat storage: An experimental investigation." International Journal of Refrigeration. 2009, 32, 1634-1644.

#### **Author Details**

**Thogiti Arunkumar** received the B.TECH degree in Mechanical Engineering from Bharat Institute of Engineering and Technology, JNTU, Hyderabad, Telangana, India, in 2014 year and pursuing M.TECH in Thermal Engineering from Ellenki College of Engineering and Technology, JNTU, Hyderabad, Telangana, India.



A Peer Reviewed Open Access International Journal

**Smt. S. Sushma**, M.TECH, Assistant Professor, Ellenki College of Engineering and Technology, JNTU, Hyderabad, Telangana, India.

Volume No: 3 (2016), Issue No: 11 (November) www.ijmetmr.com