
 

 Page 327 
 

Tracking of a High Dynamic Projectile Using Extended Kalman 

Filter 
R.Priyanka 

University College of Engineering, 

Osmania University, 

Hyderabad-500 007, India. 

P.Anusha 

University College of Engineering, 

Osmania University, 

Hyderabad-500 007, India. 

G.Murali Krishna 

Scientist, Directorate of Navigation 

& Embedded Computers, Research 

Centre Imarat (RCI), DRDO, 

Hyderabad-500 069, India. 

 

ABSTRACT: 

A radar tracker is a component of a radar system, or 

an associated command and control system, that 

associates consecutive radar observations of the same 

target into tracks. It is particularly useful when the 

radar system is reporting data from several different 

targets or when it is necessary to combine the data 

from several different radars or other sensors. 

Projectile motion is a form of motion in which an 

object or particle (in either case referred to as 

a projectile) is thrown near the Earth's surface, and it 

moves along a curved path under the action of gravity 

only .The proposed work is to to track the Flying 

object through Radar Measurement thorough Ground 

RADAR using and Extended Kalman filter. The entire 

mathematical model is built and coded using 

MATLAB. The filter initialization and tuning is 

carried out and simulation results are presented. 

Limitations of this work and further scope of the work 

is also presented. 
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Nomenclature: 

Vx – Velocity along x-axis, 

Vxo - Initial velocity along x-axis, 

Vy  - Velocity along y-axis, 

Vyo - Initial velocity along y-axis. 

g -   Acceleration due to gravity. 

t - Time taken. 

X – Horizontal distance travelled. 

Y – Vertical Distance travelled. 

 

 

1. ROLE OF THE RADAR TRACKER: 

A classical rotating air surveillance radar system 

detects target echoes against a background of noise. It 

reports these detections (known as "plots") in polar 

coordinates representing the range and bearing of the 

target. In addition, noise in the radar receiver will 

occasionally exceed the detection threshold of the 

radar's constant false alarm rate detector and be 

incorrectly reported as targets [1]. The role of the radar 

tracker is to monitor consecutive updates from the 

radar system (which typically occur once every few 

seconds, as the antenna rotates) and to determine those 

sequences of plots belonging to the same target, whilst 

rejecting any plots believed to be false alarms. In 

addition, the radar tracker is able to use the sequence 

of plots to estimate the current speed and heading of 

the target. When several targets are present, the radar 

tracker aims to provide one track for each target, with 

the track history often being used to indicate where the 

target has come from. 

 

A radar track will typically contain the following 

information: 

 Position (in two or three dimensions) 

 Heading 

 Speed 

 Unique track number 
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Perhaps the most important step is the updating of 

tracks with new plots. All trackers will implicitly or 

explicitly take account of a number of factors during 

this stage, including: 

 a model for how the radar measurements are 

related to the target coordinates 

 the errors on the radar measurements 

 a model of the target movement 

 errors in the model of the target movement 

 

Using these information, the radar tracker attempts to 

update the track by forming a weighted average of the 

current reported position from the radar (which has 

unknown errors) and the last predicted position of the 

target from the tracker (which also has unknown 

errors). The tracking problem is made particularly 

difficult for targets with unpredictable movements (i.e. 

unknown target movement models), non-Gaussian 

measurement or model errors, non-linear relationships 

between the measured quantities and the desired target 

coordinates, detection in the presence of non-

uniformly distributed clutter, missed detections or false 

alarms. In the real world, a radar tracker typically faces 

a combination of all of these effects; this has led to the 

development of an increasingly sophisticated set of 

algorithms to resolve the problem. Due to the need to 

form radar tracks in real time, usually for several 

hundred targets at once, the deployment of radar 

tracking algorithms has typically been limited by the 

available computational power. 

 

2. PROJECTILE MOTION: 

Projectile motion is a form of motion in which an 

object or particle (in either case referred to as 

a projectile) is thrown near the Earth's surface, and it 

moves along a curved path under the action of gravity 

only. The implication here is that air resistance is 

negligible, or in any case is being neglected in all of 

these equations. The only force of significance that 

acts on the object is gravity, which acts downward to 

cause a downward acceleration. Projectile motion 

formula is given by: 

 

X=Vxt; Vx=Vx0 

y=Vy0t – ½(gt^2),   Vy=Vy0 – gt 

 

3. KALMAN FILTER: 

“Kalman filter” is an iterative mathematical process 

that uses a set of equations and consecutive                

data inputs to quickly estimate the true value, position, 

velocity etc of the object being measured,     when the 

measured values contain unpredicted or random error, 

uncertainty or variation [2].The Kalman filter is a set 

of mathematical equations that provides an efficient 

computational (recursive) means to estimate the state 

of a process, in a way that minimizes the mean of the 

squared error. Kalman filtering is an algorithm that 

uses a series of measurements observed over time, 

containing noise and other inaccuracies, and produces 

estimates of unknown variables that tend to be more 

accurate than those based on a single measurement 

alone. The algorithm works in a two-step process [3]. 

In the prediction step, the Kalman filter produces 

estimates of the current state variables, along with their 

uncertainties. Once the outcome of the next 

measurement (necessarily corrupted with some amount 

of error, including random noise) is observed, these 

estimates are updated.  

 

3.1 Extended Kalman Filter: 

In order to make state estimation on nonlinear systems, 

one of the possible approaches is to linearize the 

system around its current state and force the filter to 

use this linearized model. This is done by Extended 

Kalman Filter (EKF) [4]. 

 

3.2 Unscented Kalman Filter: 

In order to improve this filter, instead of using 

linearization to predict the behavior of the system 

Unscented Transformation can be used. Hence, the 

Kalman Filter with the unscented transformation is 

called Unscented Kalman Filter (UKF). 

 

4. EXTENDED CARTESIAN KALMAN FILTER: 

The paper is presently focusing on EKF based tracking 

of Projectile.  
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To build  the model describing the tracking of High 

dynamic projectile as states projectile location and 

velocity in the downrange or x direction and projectile 

location and velocity in the altitude y direction [4]. 

Thus, the proposed states are given by 

x= 

𝒙𝑻

𝒙 𝑻
𝒚𝑻

𝒚 𝑻

  

Therefore, when the preceding Cartesian states are 

chosen the state-space differential equation describing 

projectile motion becomes 

 

𝒙 𝑻
𝒙𝑻 
𝒚 𝑻
𝒚𝑻 

 = 

0
0

1
0

0 0
0 0

0 0 1 0
0 0 0 0

  

𝒙𝑻

𝒙 𝑻
𝒚𝑻

𝒚 𝑻

 + 

0
0
0

−𝑔

 +

 
 
 
 
 

 

0
𝑢𝑠

0
𝑢𝑠

 

 
 
 
 
 

 

 

Notice that in the preceding equation gravity g is not a 

state that has to be estimated but is assumed to be 

known in advance, we have also added process noise 

𝑢𝑥  to the acceleration portion of the equations as 

protection for efforts that may not be considered by the 

Kalman filter. From the preceding state –space 

equation we can see that systems dynamics matrix is 

given by 

F= 

0
0

1
0

0 0
0 0

0 0 0 1
0 0 0 0

  

 

Because the fundamental matrix for a time-invariant 

system is given by using the Taylor-series 

approximation, which is given by 

 

Ø(t) = I + Ft+
𝐹2𝑡2

2!
+
𝐹3𝑡3

3!
 

Because 

𝐹2= 

0
0

1
0

0 0
0 0

0 0 0 1
0 0 0 0

  

0
0

1
0

0 0
0 0

0 0 0 1
0 0 0 0

 = 

0
0

0
0

0 0
0 0

0 0 0 0
0 0 0 0

  

 

All of the higher-order terms of the Taylor-series 

expansion must be zero, and the fundamental matrix 

becomes 

Ø(t) = I + Ft= 

1
0

0
1

0 0
0 0

0 0 1 0
0 0 0 1

 + 

0
0

1
0

0 0
0 0

0 0 0 1
0 0 0 0

 t 

or, more simply, 

Ø(t)= 

0
0

𝑡
1

0 0
0 0

0 0 1 𝑡
0 0 0 1

  

 

Therefore, the discrete fundamental matrix can be 

found by substituting the sampling time 𝑇𝑆for time t 

and is given by 

Ø𝑘= 

0
0

𝑇𝑆
1

0 0
0 0

0 0 1 𝑇𝑆
0 0 0 1

  

 

Since states have been chosen to be Cartesian, the 

radar measurements r and Ɵ will automatically be 

nonlinear functions of those states. Therefore, the 

linearized measurement equation is 

 
Δθ∗

Δr∗
 = 

∂θ

∂X𝑇

∂θ

∂X𝑇
 

∂θ

∂Y𝑇

∂θ

∂Y𝑇
 

∂r

∂X𝑇

∂r

∂X𝑇
 

∂r

∂Y𝑇

∂r

∂Y𝑇
 

 

 
 
 
 
Δ𝒙𝑻

Δ𝒙 𝑻
Δ𝒚𝑻

Δ𝒚 𝑻 
 
 
 
+ 

𝑣θ

𝑣𝑟
  

 

Where 𝑉0 and 𝑉𝑟  represent the measurement noise on 

angle and range, respectively. Because the angle from 

the radar to the projectile is given by  

θ = tan−1  
yt − yR
xT − xR

  

 

Similarly, the range from radar to the projectile is 

given by 

r= (xT − xR)
2 +  yt − yR 

2 

 

The linearized         measurement matrix for the above 

problem is  

H= 

− yt−yR  

𝑟2
0

 xt−xR  

𝑟2
0

 xt−xR  

𝑟
0

 yt−yR  

𝑟
0
  

 

For this problem it is assumed that we know where the 

radar is so that 𝑥𝑅  and 𝑦𝑅  are known & do not have to 
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be estimated. The states required for the discrete   

linearized measurement    matrix will be based on the 

projected state estimate. The discrete measurement 

noise matrix is given by 

𝑅𝑘 =  
𝛔𝟎

𝟐 0

0 𝛔𝑟
2
  

 

Where 𝛔𝟎
𝟐 and 𝛔𝐫

𝟐are the variances of the angle noise 

and range noise measurements, respectively. Similarly 

the continuous process-noise matrix  

matrix is 

Q(t)= 

0 0 0 0
0 Ø𝑠 0 0

0
0

0
0

0
0

0
Ø𝑠

  

 

WhereØ𝑠  is the spectral density of the white noise 

sources assumed to be on the downrange and altitude 

accelerations acting on the projectile. The discrete 

process-noise matrix can be derived from the 

continuous process –noise matrix according to 

𝑄𝑘 =  Ø τ 
𝑇𝑠

0

𝑄Ø
𝑇(τ)dt 

 

Therefore, substitution of the appropriate matrices into 

the preceding expression yields. Finally, after 

integration we obtain the final expression for the 

discrete process-noise matrix to be 

𝑄𝑘=

 
 
 
 
 
 
 
 
𝑇𝑆
3Ø

𝑠

3

𝑇𝑆
2Ø

𝑠

2
0 0

𝑇𝑆
2Ø

𝑠

2
𝑇𝑆Ø𝑠 0 0

0
0

0
0

𝑇𝑆
3Ø

𝑠

2

𝑇𝑆
2Ø

𝑠

2

𝑇𝑆
2Ø

𝑠

2

𝑇𝑠Ø
𝑠 
 
 
 
 
 
 
 

 

 

We now have defined all of the matrices required to 

solve the Riccati equations. The   next step is to write 

down the equations for the Kalman –filter section. 

First we must be able to propagate the states from the 

present sampling time to the next sampling time. For 

the linear filtering problem, the real world was 

represented by the state –space equation 

 

𝑥 = 𝐹𝑥 + 𝐺𝑢 + 𝑤 

 

Where G is a matrix multiplying a known disturbance 

or control vector u that does not have to be estimated. 

We can show that the discrete linear Kalman-filtering 

equation is given by 

𝑥 𝑘 = Ø𝑘𝑥 𝑘−1 + 𝐺𝑘𝑢𝑘−1 + 𝐾𝑘(𝑧𝑘 − 𝐻Ø𝑘𝑥 𝑘−1

− 𝐻𝐺𝑘𝑢𝑘−1 

Where 𝑮𝑘  is obtained from 

𝐺𝑘 =  Ø(τ
𝑇𝑆

0

)𝐺𝑑τ 

 

If we forget about the gain times the residual portion 

of the filtering equation, we can see that the projected 

state is simply 

𝑥 𝑘 = Ø𝑘𝑥 𝑘 + 𝐺𝑘𝑢𝑘−1 

 

For this problem 

𝐺 = 𝐺𝑢 =  

0
0
0
−𝑔

  

 

Therefore,   the 𝑮𝑘  becomes 

𝐺𝑘 =   

1 τ 0 0
0 1 0 0
0
0

0
0

1
0

τ

1

  

0
0
0
−𝑔

 
𝑇𝑆

0
dτ =

 
 
 
 
 
0
0

𝑔𝑇𝑠
2

2

−𝑔𝑇𝑠 
 
 
 
 

 

 

and our projected state is determined from 

𝑥 𝑘 =  

1 𝑇𝑠 0 0
0 1 0 0
0
0

0
0

1
0

𝑇𝑠
1

 𝑥 𝑘−1 +

 
 
 
 
 
0
0

𝑔𝑇𝑠
2

2
−𝑔𝑇𝑠 

 
 
 
 

 

 

converting the preceding matrix equation for the 

projected states to four scalar equations 

𝑥 𝑇𝑘=𝑥 𝑇𝑘−1 + 𝑇𝑠𝑥  𝑇𝑘−1 

𝑥  𝑇𝑘=𝑥 𝑇𝑘−1 

𝑦 𝑇𝑘=𝑦 𝑇𝑘−1 + 𝑇𝑠𝑦  𝑇𝑘−1-0.5g𝑇𝑠
2 

𝑦  𝑇𝑘=𝑦 𝑇𝑘−1 − 𝑔𝑇𝑠 
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The next portion of the Kalman filter uses gains times 

residuals. Because the measurements are non linear, 

the residuals are simply the measurements minus the 

projected values of the measurements (i.e., we do not 

want to use the linearized measurement matrix) 

[3].Therefore, the projected   value of the angle and 

range from the radar to the projectile must be based 

upon the projected state estimates or 

Ø 𝑘 = 𝑡𝑎𝑛−1  
 𝑦 𝑇𝑘−1 − yR 

𝑥 𝑇𝑘−1 − xR
  

𝑟 𝑘= (𝑥 𝑇𝑘−1 − xR)
2 + (𝑦 𝑇𝑘−1

− yR)
2 

 

Now the extended Kalman-filtering equations can be 

written simply as 

𝑥 𝑇𝑘=𝑥 𝑇𝑘+𝐾11𝑘(θ𝑘
∗ − θ 𝑘 )+𝐾12𝑘(𝑟𝑘

∗ − 𝑟 𝑘) 

𝑥  𝑇𝑘=𝑥  𝑇𝑘+𝐾21𝑘(θ𝑘
∗ − θ 𝑘 )+𝐾22𝑘 (𝑟𝑘

∗ − 𝑟 𝑘) 

𝑦 𝑇𝑘=𝑦 𝑇𝑘+𝐾31𝑘(θ𝑘
∗ − θ 𝑘 )+𝐾32𝑘 (𝑟𝑘

∗ − 𝑟 𝑘) 

𝑦  𝑇𝑘=𝑦  𝑇𝑘+𝐾41𝑘(θ𝑘
∗ − θ 𝑘 )+𝐾42𝑘 (𝑟𝑘

∗ − 𝑟 𝑘) 

 

Where Ø𝑘
∗  and 𝑟𝑘

∗ are the noisy measurements of radar 

angle and range. Again, notice that we are using the 

actual nonlinear measurement equations in the 

extended Kalman filter. 

 

5. SIMULATION RESULTS & ANALYSIS: 

The preceding equations for the Kalman filter and 

Riccati equations were programmed and are shown, 

along with a simulation of the real world. We can see 

that the process-noise matrix is set to zero in this 

example (i.e., Ø𝑠=0). In addition, we have initialized 

the states of the filter close to the true values. The 

filter’s position states are in error by 1000ft/s. The 

initial covariance matrix reflects those errors. Also, 

because we have two independent measurements, the 

Riccati equation requires the inverse of a 2*2 matrix. 

This inverse is done exactly using the matrix inverse 

formula for a 2*2 matrix. The extended Kalman filter 

was run for the nominal conditions described. The 

Estimated trajectory is shown in Figure 1. The radar 

measurement errors are shown in Figure 2.  

The estimated positions and velocities are shown in 

Figure 3. The errors in estimated positions and 

velocities are shown in Figure 4 and are within 

acceptable limits, there by proving Kalman filter being 

one of the powerful mathematical tool in estimation of 

Projectile motion through Radar Measurements. 

 
Fig 1. Path of Projectile in XY-Plane 

 

 
Fig 2. Radar Measurement errors 

 

 
Fig 3. True and Estimated Position & Velocities 
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Fig 4. Errors in Position & Velocities 

 

6. APPLICATIONS OF KALMAN FILTER: 

Kalman filtering technique is used in  

a). Signal processing: In signal processing, the weiner 

filter is a filter used to produce an estimate of a 

desired or target random process by linear time-

invariant filtering of an observed noisy process, 

assuming known stationary signal and noise spectra, 

and additive noise. 

b). Image processing: The median filter is a nonlinear 

digital filtering technique, often used to remove noise 

from an image or signal. Such noise reduction is a 

typical pre-processing step to improve the results of 

later processing. 

c). Sensor fusion: Sensor fusion is a process by which 

data from several different sensors are "fused" to 

compute something more than could be determined by 

any one sensor alone. 

 

The other applications of kalman filter are 

1) In the design and development of GPS receive 

2)  Tracking objects (e.g., missiles) 

3)  Navigation 

4)  Fusing data from radar, laser scanner and stereo-

cameras for depth and velocity measurement 

5) Radar Tracking 

6) Inertial Navigation 

7) Vehicle navigation and control 

8) Guidance of commercial airplanes 
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8. CONCLUSION: 

In this paper, we have presented a real time and 

accurate method for tracking the projectile motion by 

using extended kalman filter. We have determined the 

position, velocity and acceleration of the radar by 

using the kalman filter algorithm. This algorithm is 

very fast and uncomplicated, so it is possible to detect 

a moving object better and it has broad applicability. It 

can control some problems of object tracking such as 

appearance and disappearance of objects, and missing 

of an object. 

 

9. FUTURE SCOPE: 

The path of the projectile may not be as smooth as 

parabola. It can be of any random shape modeled with 

the non-linear dynamic state equation. Hence the 

present work can be extended further by using more 

tracking algorithms and comparing their performance 

accordingly to achieve more accuracy. The work can 

be further extended to track the object in three 

dimensions. 
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