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Abstract: 

The on-chip communication requirements of many 

systems are best served through the deployment of a 

regular chip-wide network. This paper presents the 

design of a low-latency on-chip network router for 

such applications. We remove control overheads 

(routing and arbitration logic) from the critical path in 

order to minimize cycle-time and latency. Simulations 

illustrate that dramatic cycle time improvements are 

possible without compromising router efficiency. 

Furthermore, these reductions permit flits to be routed 

in a single cycle, maximizing the effectiveness of the 

router’s limited buffering resources. 

 

Introduction 

The ability to fully exploit modern fabrication 

technologies is tempered by both physical and logical 

design complexity. The cost of this complexity suggests 

the reuse of design and verification effort wherever 

possible. This is often achieved by composing systems 

from commodity IP or by reusing custom blocks 

repeatedly in the same design. The relatively poor 

scaling of global interconnects and the need to achieve 

architectural performance gains in an energy-efficient 

manner, provide pressure to decentralise computation. 

Together these trends suggest a move towards an 

increasingly communication-centric view of processor 

and system architecture [16, 21, 15, 14]. One proposed 

solution to the problem of chip-wide communication is a 

network of top-level point-to-point communication 

channels [1, 8, 12] (See Figure 1). This highly regular 

wiring strategy aims to reuse a small number of highly 

optimised wiring layout and driver designs. As channel 

layouts are reused to create the network, effort in 

characterising delay, power and verifying signal integrity 

is minimised. The simple behaviour of the network also 

aids in predicting performance and ensuring correctness. 

In contrast, large bus based communication networks 

presenta complex verification task at every level. In 

addition, the limited ability to scale interconnect delays 

makes the presence of long global wires and buses 

increasingly undesirable Similar observations have 

already been made in the case of inter-chip and wider-

area communication. While much of this work is 

applicable, some important differences exist [8]. In 

particular, on-chip designs exploit a far greater number 

of pins and wires, while inter-chip designs are often pin 

limited. In addition, while inter-chip router designs may 

exploit a large number of buffers, on-chip designs must 

aim to minimise buffer count in order to maximise the 

silicon real-estate available for computation. Area 

pressures, together with the need to minimise on-chip 

communication latencies, suggest the implementation of 

relatively simple on-chip routers. 
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This paper describes how router latency may be 

significantly reduced by hiding control overheads. 

Thecreation of a single-cycle architecture also reduces 

latency and maximises the impact of limited buffering 

resources. Simulation results illustrate that while these 

techniques offer dramatic cycle time reductions, they do 

not compromise router efficiency. Initial circuit-level 

simulations suggest a router cycle time of 12-FO4 

delays1 plus clock overhead is possible. Previously 

published delay models have suggested similar router 

designs require three pipeline stages and a clock cycle-

time of 20-FO4 delays. 

 

Background 

A network may be characterised by its topology, routing 

strategy and method of flow-control [5]. For simplicity 

we assume a mesh network (with bidirectional links) 

together with dimension-ordered (XY) routing2. The 

choice of flow control technique is guided by the need to 

minimise buffer requirements and latency in our on-chip 

network. Schemes that reserve buffer space or apply 

flow-control at the packet level, such as store-and-

forward [20] or virtual-cut through [13], are unsuitable 

for these reasons. A wormhole-router provides the 

necessary fine-grained flow control, while the addition 

of virtual-channels [4, 6] aids in boosting performance 

and circumventing message-dependent deadlock. 

Furthermore, Quality-of-Service (QoS) enhancements 

are possible by prioritising the allocation of virtual-

channels and switch bandwidth. The remainder of this 

section provides an overview of the architecture of a 

generic virtual-channel router. 

 

Overview of a Virtual-Channel Router 

 

Figure 2 illustrates the major components of a generic 

virtual-channel router. The router has P input ports and P 

output ports, supporting V virtual-channels (VCs) per 

port. Virtual-channel flow control exploits an array of 

buffers at each input port. By allocating different packets 

to eachof these buffers, flits3 from multiple packets may 

be sent in an interleaved manner over a single physical 

channel. This improves both throughput and latency by 

allowing blocked packets to be bypassed. 

 

1. Routing. The first flit of a new packet arrives at the 

router. The routing field is examined and a set of valid 

output virtual-channels upon which the packet can be 

routed is produced. The number of output VCs produced 

by the routing logic will depend on the routing function. 

Possibilities range from a single output VC to a number 

of different VCs potentially at different physical 

channels (i.e. adaptive routing). The selection of an 

output VC can also be influenced by the class of the 

packet to be routed. Packets from particular classes will 

often be restricted to travelling on a subset of virtual-

channels to avoid message-dependent deadlock. A 

common practise is to provide separate request and reply 

virtual-networks.  

 

2. Virtual-Channel Allocation. An attempt is made to 

allocate an unused VC to the new packet. A request is 

made for one of the virtual-channels returned by the 

routing function. Allocation involves arbitrating between 

all those packets requesting the same output VC. 

 

3. Switch Allocation. Each packet maintains state 

indicating the availability of buffer space at their 

assigned output VC. When flits are waiting to be sent, 

and buffer space is available, an input VC will 

requestaccess to the necessary output channel via the 

router’s crossbar. On each cycle the switch allocation 

logic matches these requests to output ports, generating 

the required crossbar control signals.  

 

4. Crossbar Traversal. Flits that have been granted 

passage on the crossbar are passed to the appropriate 

output channel. 
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Input Buffer and Bypass 

Each new incoming flit is stored in the VC buffer 

designated by its VC identifier. This identifier is 

appended to every flit in the previous router stage. If the 

VC buffer is empty and the flit is able to access the 

crossbar immediately, a bypass path is required to 

expedite its journey. 

 

Routing Logic 

In order for virtual-channel and switch allocation to take 

place the routing function must first be evaluated to 

determine which virtual-channel(s) at which output 

port(s) the packet may request. To ensure that this 

computation does not lie on the router’s critical path, the 

computation may be performed in the previous router in 

preparation for use in the next. The idea that the route 

may be calculated one step ahead of where it is required 

was first employed by the SGI routing chip [10] and is 

known as look-ahead routing. 

 

Virtual-Channel Allocation 

Peh and Dally detail the complexity of both virtual-

channel (VC) allocation and switch-allocation logic in 

[19]. The following two sections provide a brief 

overview of these schemes. The complexity of VC 

allocation is dependent on the range of the routing 

function. In the simplest case, where the routing function 

returns a single VC, the allocation process simply 

consists of a single arbiter for each output VC. As any of 

the input VCs may request any output VC, each arbiter 

must support PV inputs. If the router function returns 

multiple output VCs restricted to a single physical 

channel, an additional arbitration stage is required to 

reduce the number of requests from each input VC to 

one. The winning request at each virtual channel buffer 

then proceeds to the second stage as described above. 

The complexity of such a scheme is illustrated in Figure 

3. The routing function determines the output port and 

VCs that may be requested prior toVC allocation. A VC 

which is free to be allocated is then selected by the first 

stage of arbitration. The result of this first stage of 

arbitration is a request for a single VC at a particular 

output port. This request is subsequently sent to the 

appropriate second stage arbiter. While this scheme does 

not guarantee to allocate all free output VCs to potential 

waiting input VCs in a single cycle, there is no 

performance penalty as only one flit may be sent per 

cycle on an output channel. In the most general case 

where the routing channel may return any of PV VCs, 

the number of inputs to the first stage of arbiters must 

now be increased from V to PV. In this case some 

performance degradation may be expected as the scheme 

makes little effort to perform a good matching of 

requests to free output VCs. 

 
Switch Allocate 

Individual flits arbitrate for access to physical channels 

via the crossbar on each cycle. Arbitration may be 

performed in two stages [19]. The first reflects the 

sharing of a single crossbar port by V input virtual-

channels, this requires a V-input arbiter for each input 

port. The secstage must arbitrate between winning 

requests from each input port (P inputs) for each output 

channel. The scheme is illustrated in Figure 4. The 

request for a particular output port is routed from the VC 

which wins the first stage of arbitration. In order to 
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improve fairness, the state of the V-input arbiter is only 

updated if the request is also successful in the second 

stage of arbitration. We assume this organization 

wherever multiple stages of arbitration are present. This 

switch allocator organization may reduce the number of 

requests for different output ports in the first stage of 

arbitration, resulting in some wasted switch bandwidth. 

 
Speculative Switch Arbitration 

Virtual-channel flow control as discussed performs VC 

allocation and switch allocation sequentially. This 

guarantees that only packets that have successfully 

obtained an output VC from the VC allocator can make 

requests for their desired output channel. Peh and Dally 

[19] describe how this dependency may be relaxed if we 

speculate that a waiting packet will successfully be 

allocated an output VC. In this way both VC and switch 

allocation can be performed in parallel. To avoid a 

negative impact on performance the switch allocator in 

the speculative design must prioritise non-speculative 

requests over speculative ones. This is achieved by 

implementing two switch allocators, one handling 

speculative requests (from packets that arealso 

requesting a VC be to allocated) and another for non-

speculative requests (from packets which have already 

been allocated a VC). Only when no non-speculative 

requests are granted for a particular output port are 

successful speculative requests granted. In the case that a 

speculative request is granted we must ensure that the 

VC has been allocated and it is capable of receiving a 

new flit (has free buffer space) before the flit is actually 

sent. Fortunately, such checks may be performed in 

parallel with crossbar traversal. 

 

Crossbar 

In the architecture illustrated in Figure 2 each input port 

is forced to share a single crossbar port even when 

multiple flits could be sent from different virtual-channel 

buffers. This restriction allows the crossbar size to be 

kept small and independent of the number of virtual-

channels. Dally [6] and Chien [2] suggest that providing 

a single crossbar input for each physical input port will 

have little impact on performance as the data rate out of 

each input port is limited by its input bandwidth. While 

simulation results indicate some advantage in providing 

larger crossbars (see Figure 8) this is often unrealistic as 

crossbar implementations scale very poorly. A more 

effective use of area may simply be to increase the size 

or number of VC buffers. 

 

The Free Virtual Channel Queue 

The first stage of arbitration in the virtual-channel 

allocator ensures each VC makes a single request for a 

output VC. The requests are generated as a product of 

the routing function and a VC status mask, indicating the 

availability of free VCs at a particular output port. An 

alternative is to simply queue free VC identifiers and 

provide a mask with a single bit set (indicating the free 

VC at the head of the queue), thus avoiding the need to 

arbitrate between multiple free VCs. A separate queue is 

provided for each output port and for each virtual-

network (traffic-class), e.g. two queues per output port to 

provide request and reply networks. The scheme 

effectively removes the need for arbitration by 

predetermining the order of grants. 

 

VC Allocation Logic (V:1) Arbiters 

Requests made for the same output VC from the same 

input port aarbitrated by P groups of V-input arbiters at 

each output port. Grant-enable signals are precompiled 

regardless of the state of the VC (whether it is free or 
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not). This is safe as each arbiter is dedicated to a 

particular output VC and requests will only be made if 

the VC is free. In the case where no requests are made, 

all the grant-enable signals for the arbiter may be 

asserted. This environment is safe since at most one new 

flit may be received per cycle at one input port. 

 

VC Allocation Logic (P:1) Arbiters 

These arbiters face the same problem as the second stage 

P-input arbiters in the speculative switch allocator. If no 

request is present on the preceding clock cycle it cannot 

easily be determined from which input port the next flit 

will be received. Again we may proceed by asserting all 

grant-enable signals and aborting granted operations in 

the case that two or more requests are subsequently 

received. Note that the reorganisation of the monolithic 

PV-input arbiters as a tree arbiter simplifies the 

precipitation of grant signals. 

 

Analysis of Dependencies/ Critical Path 

Illustrates the dependencies within our optimized router 

design. Virtual-channel flit FIFOs are assumed to be 

able to receive a flit in one clock cycle ready for use in 

the next. The case where the flit is needed on the same 

cycle is handled by a bypass. The fast allocator is used to 

generate VC and switch grant signals from the 

precompiled grant enables. The presence of precompiled 

grant-enables at the start of the clock cycle means that 

the logic required to generate the crossbar and crossbar 

input multiplexer control signals becomes trivial. Cases 

where the fast allocator produces invalid control signals 

are quickly detected and the associated operations 

aborted (in these cases valid control signals are 

guaranteed to be generated on the next clock cycle). The 

permitted grants and existing requests are then used to 

calculate the request signals guaranteed to be present on 

the next cycle (of course new requests may also be made 

as new flits arrive). The permitted grants are also used to 

update the state of the matrix arbiters. Once the requests 

present on the next cycle have been computed and 

updated VC buffer state information is available, grant 

enables for the next cycle may be computed. One 

concern is the need to update VC buffer state 

information prior to precompiling the grant-enable 

signals for the P:1 non-speculative switch arbiters. One 

possibility is to recomputed grant-enable signals using 

the older state before it is updated. Unfortunately, the 

buffer state of multiple output VCs assigned to VCs at a 

single input port may be updated in a single cycle. This 

prevents us from setting all grant-enable signals safely. 

Although this could be done if we are able to abort 

grants in the case that two or more requests are 

subsequently received. In the simulations that follow we 

assume that this dependency is not on the router’s 

critical path and may be tolerated. In our implementation 

we have adopted a simple on/off channel flow control 

mechanism which simplifies the logic needed to 

maintain the buffer state. Such a scheme would be less 

desirable if the router did not operate in a single cycle. 

Initial results from preliminary extracted layout (180nm 

technology) suggest that the design will operate at our 

target cycle time of 12 FO4 delays plus clock overhead. 

This is approximately twice the tile frequency in our 

planned system. In our test network each flit carries 64-

bits of data and routers are placed 1mm apart. All signal 

transitions (in each output channel and the crossbar) are 

in the same direction during evaluation avoiding worse-

case crosstalk. Typical case communication delays 

between routers are within 2 FO4 delays. Inter-wire 

capacitance values for communication channels were 

calculated using Quick Cap [11]. The precipitation of 

grant-enable signals is essential in meeting our cycle 

time. Our best 5-input matrix-arbiter designs have a 

typical latency of approximately 3 FO4 delays. The 

complete control logic takes the majority of the clock 

cycle in the optimized design, although almost none of 

this is now on the critical path. 
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Simulation Results 

A parameterized network model was constructed using 

HASE (Hierarchical Architectural Simulation 

Environment) [3]. The underlying simulation system is 

multi-threaded and event-driven. Each tile or node 

generates packets with random destinations. Packets 

aregenerated at a constant rate and queued until they are 

able to enter the network. The interval between the 

creation of individual packets is random (geometric 

distribution) to prevent packets being injected into the 

network synchronously.  

 

Network latency is measured from the time the first flit 

is created to the time the last flit in the packet is received 

at its destination, including any time spent buffered at 

the source node. Each node injects 1000 packets into the 

network and performance statistics are gathered after an 

initial warm-up period of 100 packets/node. The network 

is an 8x8 mesh, each router has 5 input and 5 output 

ports. Packets are 5 flits in length. In all simulations we 

assume a single cycle router implementation. 

 

For a range of buffer sizes and virtual-channel 

configurations. An initial inspection of the results shows 

that all but the Parallel-NoSpec model have very similar 

performance characteristics. At closer inspection and 

perhaps surprisingly the Sequential scheme does not 

necessary outperform the parallel schemes. This 

behavior is the result of two effects. Firstly, the 

speculative switch allocator prioritizes packets during 

switch allocation that have held a VC for at least one 

cycle. This can be modelled in the sequential case, 

slightly improving performance. Secondly, in the case of 

the speculative allocator two requests from each input 

port may be considered after the first stage of arbitration.  

 

This potentially increases the chance of finding a more 

complete matching of waiting flits and ready output 

ports. Performance could be potentially improved further 

in the parallel schemes by ensuring speculative requests 

are only made if at least one free VC is available at the 

required output port. 
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Area  

 
Delay  

 

CONCLUSION  

This paper proposed method to improve the performance 

of NoC routers. This is approach to significantly 

reducing the clock cycle of on-chip routers. Simulation 

results shown that the critical path is reduced 

significantly without compromising router efficiency by 

performing these two operations (VC allocation and SA) 

in parallel. Flip-flop is used in this router are 1074 which 

are large in numbers as compare to the other routers 

architecture, but the frequency is maximum so that the 

network latency is reduced, and performance is 

increases. 

 

Future Work: Here we saw that the flip- flops are used 

so much so that area is more utilize. Our future plan for 

this is to find the best solution for buffer architecture, so 

that we reduce the number of flip-flops and also 

improvement in the crossbar switch for fast arbitration. 
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