

 Page 50

Implementation of Virtual Channel in Network on Chip Router

Mohammad Shamshad Alam

Department of Electronics and Communication

Engineering,

Nimra College of Engineering,

Ibrahimpatnam, Vijayawada, A.P-521456, India.

Md Shamshad Begum

Department of Electronics and Communication

Engineering,

Nimra College of Engineering,

Ibrahimpatnam, Vijayawada, A.P-521456, India.

Abstract:

The on-chip communication requirements of many

systems are best served through the deployment of a

regular chip-wide network. This paper presents the

design of a low-latency on-chip network router for

such applications. We remove control overheads

(routing and arbitration logic) from the critical path in

order to minimize cycle-time and latency. Simulations

illustrate that dramatic cycle time improvements are

possible without compromising router efficiency.

Furthermore, these reductions permit flits to be routed

in a single cycle, maximizing the effectiveness of the

router’s limited buffering resources.

Introduction

The ability to fully exploit modern fabrication

technologies is tempered by both physical and logical

design complexity. The cost of this complexity suggests

the reuse of design and verification effort wherever

possible. This is often achieved by composing systems

from commodity IP or by reusing custom blocks

repeatedly in the same design. The relatively poor

scaling of global interconnects and the need to achieve

architectural performance gains in an energy-efficient

manner, provide pressure to decentralise computation.

Together these trends suggest a move towards an

increasingly communication-centric view of processor

and system architecture [16, 21, 15, 14]. One proposed

solution to the problem of chip-wide communication is a

network of top-level point-to-point communication

channels [1, 8, 12] (See Figure 1). This highly regular

wiring strategy aims to reuse a small number of highly

optimised wiring layout and driver designs. As channel

layouts are reused to create the network, effort in

characterising delay, power and verifying signal integrity

is minimised. The simple behaviour of the network also

aids in predicting performance and ensuring correctness.

In contrast, large bus based communication networks

presenta complex verification task at every level. In

addition, the limited ability to scale interconnect delays

makes the presence of long global wires and buses

increasingly undesirable Similar observations have

already been made in the case of inter-chip and wider-

area communication. While much of this work is

applicable, some important differences exist [8]. In

particular, on-chip designs exploit a far greater number

of pins and wires, while inter-chip designs are often pin

limited. In addition, while inter-chip router designs may

exploit a large number of buffers, on-chip designs must

aim to minimise buffer count in order to maximise the

silicon real-estate available for computation. Area

pressures, together with the need to minimise on-chip

communication latencies, suggest the implementation of

relatively simple on-chip routers.

Cite this article as: Mohammad Shamshad Alam & Md Shamshad

Begum, "Implementation of Virtual Channel in Network on Chip

Router", International Journal & Magazine of Engineering,

Technology, Management and Research, Volume 6 Issue 11, 2019,

Page 50-56.

 Page 51

This paper describes how router latency may be

significantly reduced by hiding control overheads.

Thecreation of a single-cycle architecture also reduces

latency and maximises the impact of limited buffering

resources. Simulation results illustrate that while these

techniques offer dramatic cycle time reductions, they do

not compromise router efficiency. Initial circuit-level

simulations suggest a router cycle time of 12-FO4

delays1 plus clock overhead is possible. Previously

published delay models have suggested similar router

designs require three pipeline stages and a clock cycle-

time of 20-FO4 delays.

Background

A network may be characterised by its topology, routing

strategy and method of flow-control [5]. For simplicity

we assume a mesh network (with bidirectional links)

together with dimension-ordered (XY) routing2. The

choice of flow control technique is guided by the need to

minimise buffer requirements and latency in our on-chip

network. Schemes that reserve buffer space or apply

flow-control at the packet level, such as store-and-

forward [20] or virtual-cut through [13], are unsuitable

for these reasons. A wormhole-router provides the

necessary fine-grained flow control, while the addition

of virtual-channels [4, 6] aids in boosting performance

and circumventing message-dependent deadlock.

Furthermore, Quality-of-Service (QoS) enhancements

are possible by prioritising the allocation of virtual-

channels and switch bandwidth. The remainder of this

section provides an overview of the architecture of a

generic virtual-channel router.

Overview of a Virtual-Channel Router

Figure 2 illustrates the major components of a generic

virtual-channel router. The router has P input ports and P

output ports, supporting V virtual-channels (VCs) per

port. Virtual-channel flow control exploits an array of

buffers at each input port. By allocating different packets

to eachof these buffers, flits3 from multiple packets may

be sent in an interleaved manner over a single physical

channel. This improves both throughput and latency by

allowing blocked packets to be bypassed.

1. Routing. The first flit of a new packet arrives at the

router. The routing field is examined and a set of valid

output virtual-channels upon which the packet can be

routed is produced. The number of output VCs produced

by the routing logic will depend on the routing function.

Possibilities range from a single output VC to a number

of different VCs potentially at different physical

channels (i.e. adaptive routing). The selection of an

output VC can also be influenced by the class of the

packet to be routed. Packets from particular classes will

often be restricted to travelling on a subset of virtual-

channels to avoid message-dependent deadlock. A

common practise is to provide separate request and reply

virtual-networks.

2. Virtual-Channel Allocation. An attempt is made to

allocate an unused VC to the new packet. A request is

made for one of the virtual-channels returned by the

routing function. Allocation involves arbitrating between

all those packets requesting the same output VC.

3. Switch Allocation. Each packet maintains state

indicating the availability of buffer space at their

assigned output VC. When flits are waiting to be sent,

and buffer space is available, an input VC will

requestaccess to the necessary output channel via the

router’s crossbar. On each cycle the switch allocation

logic matches these requests to output ports, generating

the required crossbar control signals.

4. Crossbar Traversal. Flits that have been granted

passage on the crossbar are passed to the appropriate

output channel.

 Page 52

Input Buffer and Bypass

Each new incoming flit is stored in the VC buffer

designated by its VC identifier. This identifier is

appended to every flit in the previous router stage. If the

VC buffer is empty and the flit is able to access the

crossbar immediately, a bypass path is required to

expedite its journey.

Routing Logic

In order for virtual-channel and switch allocation to take

place the routing function must first be evaluated to

determine which virtual-channel(s) at which output

port(s) the packet may request. To ensure that this

computation does not lie on the router’s critical path, the

computation may be performed in the previous router in

preparation for use in the next. The idea that the route

may be calculated one step ahead of where it is required

was first employed by the SGI routing chip [10] and is

known as look-ahead routing.

Virtual-Channel Allocation

Peh and Dally detail the complexity of both virtual-

channel (VC) allocation and switch-allocation logic in

[19]. The following two sections provide a brief

overview of these schemes. The complexity of VC

allocation is dependent on the range of the routing

function. In the simplest case, where the routing function

returns a single VC, the allocation process simply

consists of a single arbiter for each output VC. As any of

the input VCs may request any output VC, each arbiter

must support PV inputs. If the router function returns

multiple output VCs restricted to a single physical

channel, an additional arbitration stage is required to

reduce the number of requests from each input VC to

one. The winning request at each virtual channel buffer

then proceeds to the second stage as described above.

The complexity of such a scheme is illustrated in Figure

3. The routing function determines the output port and

VCs that may be requested prior toVC allocation. A VC

which is free to be allocated is then selected by the first

stage of arbitration. The result of this first stage of

arbitration is a request for a single VC at a particular

output port. This request is subsequently sent to the

appropriate second stage arbiter. While this scheme does

not guarantee to allocate all free output VCs to potential

waiting input VCs in a single cycle, there is no

performance penalty as only one flit may be sent per

cycle on an output channel. In the most general case

where the routing channel may return any of PV VCs,

the number of inputs to the first stage of arbiters must

now be increased from V to PV. In this case some

performance degradation may be expected as the scheme

makes little effort to perform a good matching of

requests to free output VCs.

Switch Allocate

Individual flits arbitrate for access to physical channels

via the crossbar on each cycle. Arbitration may be

performed in two stages [19]. The first reflects the

sharing of a single crossbar port by V input virtual-

channels, this requires a V-input arbiter for each input

port. The secstage must arbitrate between winning

requests from each input port (P inputs) for each output

channel. The scheme is illustrated in Figure 4. The

request for a particular output port is routed from the VC

which wins the first stage of arbitration. In order to

 Page 53

improve fairness, the state of the V-input arbiter is only

updated if the request is also successful in the second

stage of arbitration. We assume this organization

wherever multiple stages of arbitration are present. This

switch allocator organization may reduce the number of

requests for different output ports in the first stage of

arbitration, resulting in some wasted switch bandwidth.

Speculative Switch Arbitration

Virtual-channel flow control as discussed performs VC

allocation and switch allocation sequentially. This

guarantees that only packets that have successfully

obtained an output VC from the VC allocator can make

requests for their desired output channel. Peh and Dally

[19] describe how this dependency may be relaxed if we

speculate that a waiting packet will successfully be

allocated an output VC. In this way both VC and switch

allocation can be performed in parallel. To avoid a

negative impact on performance the switch allocator in

the speculative design must prioritise non-speculative

requests over speculative ones. This is achieved by

implementing two switch allocators, one handling

speculative requests (from packets that arealso

requesting a VC be to allocated) and another for non-

speculative requests (from packets which have already

been allocated a VC). Only when no non-speculative

requests are granted for a particular output port are

successful speculative requests granted. In the case that a

speculative request is granted we must ensure that the

VC has been allocated and it is capable of receiving a

new flit (has free buffer space) before the flit is actually

sent. Fortunately, such checks may be performed in

parallel with crossbar traversal.

Crossbar

In the architecture illustrated in Figure 2 each input port

is forced to share a single crossbar port even when

multiple flits could be sent from different virtual-channel

buffers. This restriction allows the crossbar size to be

kept small and independent of the number of virtual-

channels. Dally [6] and Chien [2] suggest that providing

a single crossbar input for each physical input port will

have little impact on performance as the data rate out of

each input port is limited by its input bandwidth. While

simulation results indicate some advantage in providing

larger crossbars (see Figure 8) this is often unrealistic as

crossbar implementations scale very poorly. A more

effective use of area may simply be to increase the size

or number of VC buffers.

The Free Virtual Channel Queue

The first stage of arbitration in the virtual-channel

allocator ensures each VC makes a single request for a

output VC. The requests are generated as a product of

the routing function and a VC status mask, indicating the

availability of free VCs at a particular output port. An

alternative is to simply queue free VC identifiers and

provide a mask with a single bit set (indicating the free

VC at the head of the queue), thus avoiding the need to

arbitrate between multiple free VCs. A separate queue is

provided for each output port and for each virtual-

network (traffic-class), e.g. two queues per output port to

provide request and reply networks. The scheme

effectively removes the need for arbitration by

predetermining the order of grants.

VC Allocation Logic (V:1) Arbiters

Requests made for the same output VC from the same

input port aarbitrated by P groups of V-input arbiters at

each output port. Grant-enable signals are precompiled

regardless of the state of the VC (whether it is free or

 Page 54

not). This is safe as each arbiter is dedicated to a

particular output VC and requests will only be made if

the VC is free. In the case where no requests are made,

all the grant-enable signals for the arbiter may be

asserted. This environment is safe since at most one new

flit may be received per cycle at one input port.

VC Allocation Logic (P:1) Arbiters

These arbiters face the same problem as the second stage

P-input arbiters in the speculative switch allocator. If no

request is present on the preceding clock cycle it cannot

easily be determined from which input port the next flit

will be received. Again we may proceed by asserting all

grant-enable signals and aborting granted operations in

the case that two or more requests are subsequently

received. Note that the reorganisation of the monolithic

PV-input arbiters as a tree arbiter simplifies the

precipitation of grant signals.

Analysis of Dependencies/ Critical Path

Illustrates the dependencies within our optimized router

design. Virtual-channel flit FIFOs are assumed to be

able to receive a flit in one clock cycle ready for use in

the next. The case where the flit is needed on the same

cycle is handled by a bypass. The fast allocator is used to

generate VC and switch grant signals from the

precompiled grant enables. The presence of precompiled

grant-enables at the start of the clock cycle means that

the logic required to generate the crossbar and crossbar

input multiplexer control signals becomes trivial. Cases

where the fast allocator produces invalid control signals

are quickly detected and the associated operations

aborted (in these cases valid control signals are

guaranteed to be generated on the next clock cycle). The

permitted grants and existing requests are then used to

calculate the request signals guaranteed to be present on

the next cycle (of course new requests may also be made

as new flits arrive). The permitted grants are also used to

update the state of the matrix arbiters. Once the requests

present on the next cycle have been computed and

updated VC buffer state information is available, grant

enables for the next cycle may be computed. One

concern is the need to update VC buffer state

information prior to precompiling the grant-enable

signals for the P:1 non-speculative switch arbiters. One

possibility is to recomputed grant-enable signals using

the older state before it is updated. Unfortunately, the

buffer state of multiple output VCs assigned to VCs at a

single input port may be updated in a single cycle. This

prevents us from setting all grant-enable signals safely.

Although this could be done if we are able to abort

grants in the case that two or more requests are

subsequently received. In the simulations that follow we

assume that this dependency is not on the router’s

critical path and may be tolerated. In our implementation

we have adopted a simple on/off channel flow control

mechanism which simplifies the logic needed to

maintain the buffer state. Such a scheme would be less

desirable if the router did not operate in a single cycle.

Initial results from preliminary extracted layout (180nm

technology) suggest that the design will operate at our

target cycle time of 12 FO4 delays plus clock overhead.

This is approximately twice the tile frequency in our

planned system. In our test network each flit carries 64-

bits of data and routers are placed 1mm apart. All signal

transitions (in each output channel and the crossbar) are

in the same direction during evaluation avoiding worse-

case crosstalk. Typical case communication delays

between routers are within 2 FO4 delays. Inter-wire

capacitance values for communication channels were

calculated using Quick Cap [11]. The precipitation of

grant-enable signals is essential in meeting our cycle

time. Our best 5-input matrix-arbiter designs have a

typical latency of approximately 3 FO4 delays. The

complete control logic takes the majority of the clock

cycle in the optimized design, although almost none of

this is now on the critical path.

 Page 55

Simulation Results

A parameterized network model was constructed using

HASE (Hierarchical Architectural Simulation

Environment) [3]. The underlying simulation system is

multi-threaded and event-driven. Each tile or node

generates packets with random destinations. Packets

aregenerated at a constant rate and queued until they are

able to enter the network. The interval between the

creation of individual packets is random (geometric

distribution) to prevent packets being injected into the

network synchronously.

Network latency is measured from the time the first flit

is created to the time the last flit in the packet is received

at its destination, including any time spent buffered at

the source node. Each node injects 1000 packets into the

network and performance statistics are gathered after an

initial warm-up period of 100 packets/node. The network

is an 8x8 mesh, each router has 5 input and 5 output

ports. Packets are 5 flits in length. In all simulations we

assume a single cycle router implementation.

For a range of buffer sizes and virtual-channel

configurations. An initial inspection of the results shows

that all but the Parallel-NoSpec model have very similar

performance characteristics. At closer inspection and

perhaps surprisingly the Sequential scheme does not

necessary outperform the parallel schemes. This

behavior is the result of two effects. Firstly, the

speculative switch allocator prioritizes packets during

switch allocation that have held a VC for at least one

cycle. This can be modelled in the sequential case,

slightly improving performance. Secondly, in the case of

the speculative allocator two requests from each input

port may be considered after the first stage of arbitration.

This potentially increases the chance of finding a more

complete matching of waiting flits and ready output

ports. Performance could be potentially improved further

in the parallel schemes by ensuring speculative requests

are only made if at least one free VC is available at the

required output port.

RTL DIAGRAM

INTERNAL BLOCK DIAGRAM

Simulation results

Power

 Page 56

Area

Delay

CONCLUSION

This paper proposed method to improve the performance

of NoC routers. This is approach to significantly

reducing the clock cycle of on-chip routers. Simulation

results shown that the critical path is reduced

significantly without compromising router efficiency by

performing these two operations (VC allocation and SA)

in parallel. Flip-flop is used in this router are 1074 which

are large in numbers as compare to the other routers

architecture, but the frequency is maximum so that the

network latency is reduced, and performance is

increases.

Future Work: Here we saw that the flip- flops are used

so much so that area is more utilize. Our future plan for

this is to find the best solution for buffer architecture, so

that we reduce the number of flip-flops and also

improvement in the crossbar switch for fast arbitration.

References

[1] Mostafa S. Sayed, A. Shalaby, M. El-SayedRagab,

Victor Goulart, “Congestion Mitigation Using Flexible

Router Architecture for Network-on-Chip”2012 IEEE.

[2] L.Rooban, S.Dhananjeyan“Design of Router

Architecture Based on Wormhole Switching Mode for

NoC” International Journal of Scientific &Engineering

Research Volume 3, Issue 3, March-2012.

[3] Anh T. Tran and Bevan M. Baas NoCTweak: a

Highly Parameterizable Simulator for Early Exploration

of Performance and Energy of Networks On-Chip

Technical Report, VLSI Computation Lab, ECE

Department, and UC Davis July 2012.

[4] U. Saravanakumar, R. Rangarajan and K. Rajasekar

Hardware Implementation of Pipeline Based Router

Design for On-Chip Network intact journal on

communication technology, December 2012, volume:

03, issue: 04.

[5] Ye Lu, John McCanny, SakirSezer “Generic Low

Latency Noc Router Architecture for FPGA Computing

Systems “,,Journal of IEEE , Page no. 82 – 89, 978-1-

4577- 1484-9 , 2011 21st International Conference on

Field Programmable Logic and Application IEEEs.

[6] Son Truong Nguyen Shigeru Oyanagi “The Design

of On-the-fly Virtual Channel Allocation for Low Cost

High Performance On-Chip Routers”2010 IEEE.

[7] Everton A. Carara, Fernando G. Moraes FLOW

ORIENTED ROUTING FOR NOCS 978-1-4244-6683-

2/10/$26.00 ©2010 IEEE.

