
 Volume No: 1(2014), Issue No: 10 (October) ISSN No: 2348-4845

 INTERNATIONAL JOURNAL & MAGAZINE OF ENGINEERING, TECHNOLOGY, MANAGEMENT AND RESEARCH October 2014
 A Monthly Peer Reviewed Open Access International e-Journal www.ijmetmr.com Page 278

Abstract:

Distributed systems are the main architecture for en-
terprise applications. To develop a reliable distribut-
ed system, replication is necessary. The Adapt SIB
repli cation system [27] provides a feasible solution
for a reliable application server system. However, the
system can not scale up since there is always only
one primary server executing client requests. This
thesis presents the LB system which is based on the
Adapt SIB system, but with more functions.

The LB system may have the same number of server
replicas as in the Adapt SIB system, but it can have
more than one primary server, each being able to
execute client requests. Thus, a load-balancing
mechanism is needed to distribute the load equally
among different replicas. In addi tion, reconfigura-
tion in case of failure, and restart must be consid-
ered as well. This thesis presents load-balancing
and reconfiguration solutions for the LB application
server system.

Keywords:

J2EE, Replication System, Communication Systems,
Database.

I. INTRODUCTION:

Traditional enterprise applications were designed
as all-in-one modules. User interface, processing log-
ic, and database access were tightly coupled. Such
systems are hard to design, maintain and modify.
With the rapid development of network ing technol-
ogy, especially with the wide use of the Internet,
the new generation of enterprise applications has
a more feasible solution: multi-tier architecture.A
multi-tier architecture [8] separates an application
into several layers: client layer, business logic layer,
and data layer. The client layer contains user inter-
faces, the business logic layer implements business
rules on the retrieved data, and the data layer
represents the underlying database. Each layer can
be implemented as a self-contained component and
deployed onto a separate machine.

Medi Suma
Student (M.Tech) , CSC,

Gokul Group Of Institutions
Visakhapatnam, India.

K.R.Koteeswa Rao
Asst. Prof, CSC,

Gokul Group Of Institutions
Visakhapatnam, India.

Using a multi-tier architecture, each layer can be de-
signed and maintained separately without affecting
the functionality of the other layers. Another advan-
tage of a multi-tier architecture is that the perfor-
mance at each layer can be fine-tuned separately,
hence providing better performance for the whole
system. In other words, a multi-tier architecture
makes distribution possible.

II. J2EE APPLICATION SERVER:

2.1 Introduction:

J2EE [22] stands for JAVA 2 Platform Enterprise
Edition, which defines a stan dard for distributed
component-based applications. It aims to provide
a maintain able, reliable and scalable platform for
enterprise applications. A J2EE application server is
an example of a middleware server as we mentioned
in Section 1.1. But let us first talk about Enterprise
Java Beans (EJB) [23], which build the programmable
units for J2EE application servers. Basically, there
are two kinds of EJBs: session beans and entity
beans. Session beans are used to implement busi-
ness logic (for example, a program that implements
a moneytransfer or that keeps track of all the goods
a user has selectecd for purchase while she or he is
logged into an online store).

There are two types of session beans: stateful and
stateless beans. A stateful session bean is usually
associated with a user session and keeps the infor-
mation for this particular user during the period the
user is connected to the system. A stateless session
bean is used to perform arbitrary tasks, but will not
keep state information once the task is finished.

2.2 Group Communication Systems:

Group communication systems [24], as implied by
their name, provide communication for all members
of an application group. The provide a number of mes-
saging services to applications, and make reliable dis-
tributed systems possible.

Load Balancing System using J2EE

 Volume No: 1(2014), Issue No: 10 (October) ISSN No: 2348-4845

 INTERNATIONAL JOURNAL & MAGAZINE OF ENGINEERING, TECHNOLOGY, MANAGEMENT AND RESEARCH October 2014
 A Monthly Peer Reviewed Open Access International e-Journal www.ijmetmr.com Page 279

III. THE ADAPT SIB REPLICATION SYSTEM

3.1 Introduction:

In this chapter, we talk about the Adapt SIB replica-
tion system [26, 27]. The Adapt SIB system serves
as the base of the LB system, which will be dis-
cussed later. The main assumption in the Adapt SIB
algorithm is that each client request generates ex-
actly one transaction in the application server. That
is, the execution of a client request r happens in the
context of one individual transaction t. Hence there
is a 1-1 association between transaction and request.

3.2 Correct Replication of J2EE Application
Servers:

There are two things the replication algorithm has
to guarantee in order to achieve fault-tolerance of
a stateful J2EE application server. The first one is
to guarantee the state consistency between the
replicated application server and the backend data-
base. State consistency means that if a transaction
changes both the state of the application server and
the database, the state of the application server
and the state of the database are consistent after the
transaction is committed (both have the state chang-
es associated with the transaction) or aborted (none
of the state changes remains at application server or
database). Without replication and assum ing no
failures, this state consistency is guaranteed by the
transaction mechanism. But with replication, the
state consistency among all the replicas of the ap-
plication server must be guaranteed such that in case
of failure, the backup replica can become the new pri-
mary without losing state consistency.

Figure 3 1: Failure cases

IV. LB SYSTEM DURING NORMAL PROCESS-
ING

4.1 Design concept of the LB system:

The Adapt SIB system has one replication group with
one primary and several backups. In the LB system,
we have several such replication grOups, each with
a primary and several backups. Each primary is
able to handle client requests. Since there is more
than one replication group in the system, we must
have a load- balancing algorithm to dispatch a client
to one of the replication groups, such that each rep-
lication group gets its share of the whole workload
of the LB system.

 But which server in the system will do the load-bal-
ancing work? A first solution is that we have a dedi-
cated server, which works only as a load-balancer,
also called dispatcher. This architecture is quite sim-
ple and easy to implement, but what will happen
if the dispatcher fails? The whole system will be un-
available. Another solution is that we have a load-
balancer group similar to the replication groups.
Each LB server has a load-balancer which is a mem-
ber of this group. But only one of them works
as a primary load-balancer, all the others are only
backup load-balancers. If the primary load-balancer
fails, one of the backups takes over and becomes the
new primary load balancer. Using a group of load-
balancers has the advantage that if the primary fails,
the GCS automatically detects the failure and can
inform the backups.

V. RESULTS:

5.1 Introduction:

To evaluate the performance and the functionality
of the LB system, we have conducted two sets of
experiments. The first set of experiments compares
the perfor mance of the original JBoss, the Adapt SIB
system and the LB system during normal process-
ing (without failure and recovery). The purpose of
these tests is to see how load-balancing can improve
the performance in case that the application server
is the bottleneck of the system. Another set of
experiments is to test the behavior of the LB sys-
tem during failure and recovery. The failure cases
are groupignore (a backup fails), groupupdate (the
primary fails, and a backup takes over as primary),
and grouprnerge (the primary fails and the group
merges with another group). We would like to show
the effect of each of these reconfigurations on the LB
system.

 Volume No: 1(2014), Issue No: 10 (October) ISSN No: 2348-4845

 INTERNATIONAL JOURNAL & MAGAZINE OF ENGINEERING, TECHNOLOGY, MANAGEMENT AND RESEARCH October 2014
 A Monthly Peer Reviewed Open Access International e-Journal www.ijmetmr.com Page 280

The load-balancing algorithm used in all these tests
is Round Robin.

5.2 Hardware and software used in the ex-
periments:

Hardware:We used four Linux computers with the
names cs8, cs9, cslO, csll (each has 3.4GHz Pentium
4 CPU with 1GB RAM). Three of them are used as LB
servers, and one of them is used as a client simulator.
They are all located in the same local network with
a fast Ethernet connection. Software We compared
three different configurations: the original Jfloss
server, the Adapt SIB replication system, and the
LB system. Furthermore, we had a client simulation
program, which simulated the client access to the
server.

No database access

Figure 4—1: No database access

Database access only

Figure 4—2: Database access only

Database access plus SFSB processing

Figure 4—3: Database access plus SFSB processing

5.3 Performance tests during reconfigura-
tion:

We show how the system behaves during reconfigu-
ration (in cluding groupignore, groupnpdate, and
groupmerge). groupignore means the failed server
S only had backup RMs on it.

Groupignore:
Figure 6—4 shows the response time measured at
the server side. At the begin ning, the system has
only four clients, two for each replication group. csl1
fails at time slot 7 and then recovers at time slot 8. Be-
cause there were only backup RMs on server csll, the
crash of csll does not affect any replication group.
Hence, response times do not change during the re-
configuration.

Figure 4—4: groupignore

 Volume No: 1(2014), Issue No: 10 (October) ISSN No: 2348-4845

 INTERNATIONAL JOURNAL & MAGAZINE OF ENGINEERING, TECHNOLOGY, MANAGEMENT AND RESEARCH October 2014
 A Monthly Peer Reviewed Open Access International e-Journal www.ijmetmr.com Page 281

Figure 4—5: groupupdate

Figure 6—5 presents the response time measured
at the server side when server cslO fails and recov-
ers later. At the beginning, the system has only
four clients, two for each group. At time slot 3, server
cslO fails. Because the primary RM of group G2 was
on server cslO, G2 has to find a new primary RM for
its group. Since there are only backup RMs on server
csll, and one of them is a backup RM of G2, the recon-
figuration updates this backup RM to become the
new primary RM of G2. After the reconfiguration,
G2 continues to work as before except now the pri-
mary is on csll Gvoupmerge.

Figure 4-6: groupmerge

Figure 6—6 shows the response time during the re-
configuration measured at the server side. The first
six clients start running in the system at time slot
1, each group has two clients, and they have almost
the same response time. At time slot 4, server csll
fails, which means group G3 has lost its primary RM.
Since both cs9 and csll each has a primary RM, it is
not possible in this case to do a groupupd ate recon-
figuration, but a gronpmerge reconfiguration is
performed.

CONCLUSION:

The current LB system provides load-balancing and
performs reconfiguration automatically after failure
and recovery. It is a feasible solution for the applica-
tion server system.

REFERENCES:

1] Luis Aversa and Azer Bestavros. Load Balancing
a Cluster of Web Servers Using Distributed Packet
Rewriting. In 2000 IEEE International Performance,
Computing and Communication Conference, 2000.

[2] J. Balasubramanian, D. C. Schmidt, L. Dowdy, and
0. Othman. Evaluating the Performance of Middle-
ware Load Balancing Strategies. In Eighth IEEE In-
ternational Enterprise Distributed Object Computing
Conference, 2004.

[3] A. Bartoli, C. Calabrese, M. Prica, E. A. D. Muro,
and A. Montresor. Adaptive Message Packing for
Group Communication Systems. In OTM Workshops
2003:912-925, 2003.

[4] A. Bartoli, V. Maverick, S. Patarin, J. Vuãkovié,
and H. Wu. A Framework for Prototyping J2EE Repli-
cation Algorithms. In mt. Symp. on Distributed Ob-
jects and Applications, 2004.

[5] BEA Systems Inc.BEA WebLogic Server Pro-
gramming WebLogic Enterprise JavaB cans, Release
7.0 edition, September 2002.

[6] Birman, K. P., and R. Van Renesse. Reliable Dis-
tributed Computing with Isis Toolkit. IEEE, 1993.

[7] N. Budhiraja, K. Marzullo, F.B. Schneider, and S.
Toueg. The Primary-Backup Approach. In Distributed
Systems. Second edition. ACM Press, 1993.

[8] G. Coulouris, J. Dollimore, and T. Kindberg. Dis-
tributed Systems Concepts and Design. Addison
Wesley, 2001.

 Volume No: 1(2014), Issue No: 10 (October) ISSN No: 2348-4845

 INTERNATIONAL JOURNAL & MAGAZINE OF ENGINEERING, TECHNOLOGY, MANAGEMENT AND RESEARCH October 2014
 A Monthly Peer Reviewed Open Access International e-Journal www.ijmetmr.com Page 282

[9] D. Dolev and D. Malki. The Transis Approach
to High Availability Cluster Communication. Com-
munications of the ACM, 39(4):64—70, 1996.

[10] Roy Friedman and Daniel Mosse. Load Balancing
Schemes for High-Throughput Distributed Fault-Toler-
ant Servers. In 16th Symposium on Reliable Distrib-
uted Systems (SRDS’97), 1997.

[11] S. Frølund and R. Guerraoui. A Pragmatic Imple-
mentation of e-Transactions.n Proc. of Symp. on Reli-
able Distributed Systems (SRDS), 2000.

[12] S. D. Gribble, Y. Chawathe, E. A. Brewer, and P.
Gauthier. Cluster-Based Scal able Network Services.
In 16th ACM Symposium on Operating System Prin-
ciple, 1999.

 [13] Sacha Labourey and Bill Burke. JBoss Cluster-
ing. The JBoss Group, 2002.

[14] Spread Concepts LLC, Center for Networking, and
Distributed System (CNDS). Spread Toolkit. http://
www.spread.org.

[15] V. Maverick. Object Model for Pluggable J2EE
Replication Strategies. Technical report, Universitá
di Bologna, Bologna, Italy, June 2003.

[16] L.E. Moser, P.M. Melliar-Smith, D.A. Agarwal,
R.K. Budhia, and C.A. Lingley Papadopoulos. Totem:
A Fault-Tolerant Multicast Group Communication Sys
tem. Communications of the ACM, 39(4):54—63,
April 1996.

[17] R. Van Renesse, K.P. Birman, and S. Maffeis.
Horus: A Flexible Group Com munication System.
Communications of the ACM, 39(4):76—83, April
1996.

[18] Andreas Schaefer.JBoss: An In-Depth Look at
the interceptor Stack, 2002. http://www.onjava.com/
pub/a/onjava/2002/07/24/jboss statck.html.

[19] K. Shen, H. Tang, T. Yang, and L. Chu. Integrated
Resource Management for Cluster-based Internet
Services. In Symposium on Operating Systems De-
sign and Implementation, 2002.

[20] Scott Stark and The JBoss Group. JBoss Ad-
ministration and Development Third Edition (3.2.x
Series). The JBoss Group, August 2003.

[21] Scott M Stark and The JBoss Group. JBoss Ap-
plication Server, 2002.

[22] SUN Microsystems Inc. JAVA 2 Platform Enter-
prise Edition Specification, vl.3, October 2000.

[23] SUN Microsystems Inc. EJB 2.0 Specification,
November 2003.

[24] R. Vitenberg, I. Keidar, G. V. Chockler, and D.
Dolev. Group Communication Specification: A Com-
prehensive Study. ACM Computing Surveys, 33(4),
2001

