
 Volume No: 1(2014), Issue No: 10 (October) ISSN No: 2348-4845

 INTERNATIONAL JOURNAL & MAGAZINE OF ENGINEERING, TECHNOLOGY, MANAGEMENT AND RESEARCH October 2014
 A Monthly Peer Reviewed Open Access International e-Journal www.ijmetmr.com Page 283

Client machines can become much more powerful
by connecting to these cloud datacenters, but what
are the options of doing so? Furthermore, integrating
mobile devices with the cloud could prove even more
advantageous. As these devices become smaller and
smaller, consumers are conversely demanding more
functionality and features. Bridging the gap between
high-end servers and mobile devices could solve the
computing problem, though research is needed to
identity the advantages and limitations.

Figure 1.1: CLOUD COMPUTING MANAGEMNET OF-
FERINGS

II SURVEY OF THE STATE OF THE ART:

Software as a service (SaaS): Complete application
systems delivered over the Internet on some form
of “on-demand” billing system. Examples include
Salesforce.com, which provides software for track-
ing sales, accounts, contacts, etc. and WebEx, which
provides online desktop sharing and conference call-
ing.Platform as a service (PaaS): Vendors provide de-
velopment platforms and middleware, allowing de-
velopers to simply code and deploy without directly
interacting with underlying infrastructure. Examples
include Google AppEngine and Microsoft Azure, Infra-
structure as a service (IaaS): Raw infrastructure, such
as servers and storage, is provided directly as an on-
demand service. Examples include Amazon Web Ser-
vices and GoGrid.There are two different ways provid-
ers and users view IaaS. The cloud can either act as a
datacenter, strictly providing the hardware to users,
or it can provide more services, but less user control.
Cloud Infrastructure providers are in the business of
providing you equivalent datacenter functionality in
the cloud using their scale for cost-effective service
delivery. They must also package this functionality to
provide you a high level of control as it’s no longer
your datacenter.

Abstract:

 The Java RMI system is not very reliable; if the server
shuts down, all data and computation occurring on
the server is lost. This is not a hopeless scenario, be-
cause the client could simply resend the data and com-
putation directions to another server. Java RMI will
notify when the server cannot be reached, so if there
was another server ready, the client should be able to
automatically move to that server. The Android app
could improve by switching to a local chess engine if a
network connection is lost or unavailable. The current
android application does not have a local copy of the
chess engine, so game play will not be able to contin-
ue if a connection to the server is dropped. However,
this would not be hard to rectify by adding the chess
engine algorithm to the local code and having the ap-
plication switch to local execution when I connection
error is received.

I. Introduction:

In the early days of computing technology, when
computers took up the space of an entire room, many
’dumb’ terminals, or clients, would be connected to
a main computer. Many clients could utilize the com-
putational power and storage of the mainframe at
the same time. As transistors and CPUs came into
play, shrinking personal computers, it became more
feasible for a user to purchase their own computer.
However, today, mobile devices are becoming smaller
and smaller and we are seeing that there is either a
physical or economic limit to the amount of storage
and processing power that can fit into these devices.
It seems that the original model of client-mainframe
computing may be a good answer for this situation.

However, we can now utilize existing wireless net-
works to connect mobile devices to servers in mas-
sive datacenters, rather than hardwiring all clients to
a server. This idea of connecting to unseen data may
be where the term “cloud” came from, since it seems
that the extra power is coming out of nowhere. Com-
panies are only just beginning to investigate the pos-
sibilities of the cloud and provide cloud services for
business and personal use. There is much potential in
utilizing the resources of the cloud,most of which has
not been researched yet.

Puvvala Supriya
Student (M.Tech) , CSE,

Gokul Institue of Technology and Science,
Visakhapatnam, India.

P.Sandhya
Asst. Prof, CSE,

Gokul Institue of Technology and Science,
Visakhapatnam, India.

Mobile Cloud Computing: Case Studies Using Java

 Volume No: 1(2014), Issue No: 10 (October) ISSN No: 2348-4845

 INTERNATIONAL JOURNAL & MAGAZINE OF ENGINEERING, TECHNOLOGY, MANAGEMENT AND RESEARCH October 2014
 A Monthly Peer Reviewed Open Access International e-Journal www.ijmetmr.com Page 284

“Cloudcenters,” datacenters in the cloud, focus on
making your Cloud Infrastructure look very much like
infrastructure you already have or are already familiar
with, while Infrastructure Web Services ask you to em-
brace a new paradigm. Cloudcenters provide a direct
equivalent to traditionaldatacenters and hence are
usually more desirable for IT staff, systems operators,
and other datacenter savvy folks. Infrastructure Web
Services on the other hand are more analogous to Ser-
vice-Oriented-Architectures (SOA), require significant
programming skills, and are much more comfortable
for software developers. The three most popular con-
sumer cloud providers currently are: Microsoft Azure,
Google AppEngine, and Amazon’s EC2. Microsoft
Azure and Google AppEngine are closer to the defini-
tion of Platform-as-a- Service then Infrastructure-as-a-
Service. In terms of providing IaaS, those two services
are limited.

2.1 Google App Engine:

This is a platform for developing and hosting web ap-
plications in Google-managed data centers. Google-
managed is the key word in that sentence because
Google maintains tight control over this service. Below
is an example of some of the Google’s restrictions:

•Threads cannot be created; one can only modify the
existing thread state.

•Direct network connections are not allowed; URL
connections can be used instead.

•Direct file system writes are not allowed; memo-
ry, memcache, and the datastore are used instead.
(Apps can read files which are uploaded as part of the
apps.)

•Java2D is not allowed.

•Native Code not is allowed; only pure Java libraries
are allowed.

Google even places restrictions of the timing of re-
quests. Each request gets a maximum of 30 seconds
in which it has to complete or the AppEngine will
throw an exception. If you are building a web applica-
tion which requires large number of datastore opera-
tions, you have to figure out how to break requests
into small chunks such that it does complete in 30 sec-
onds. You also have to design a way to detect failures
such that clients can reissue the request if they fail.
Though seemingly very restrictive, Google App Engine
does provide a simple gateway to cloud computing.
Google provides a free software development kit that
allows a user to easily setup a servlet programming
environment.

Inexperienced web programmers can have their own
server running on the internet fairly quickly. Commu-
nication between the client and the app engine uses
HTTP requests. Thus, if required, java objects can be
passed to the server using serialization and xml
documents.	 Its availability and accessibly made
App Engine a great choice as a commercial server
to use with the mobile chess application demonstra-
tion.

III. REMOTE EXECUTION METHODS:

The first choice that needed to be made is how to
implement remote execution. As mentioned previ-
ously, there are two main options: method/function
migration and VM migration of the entire OS. I chose
to work with function migration as the focus of my
research has a more narrow scope dealing with indi-
vidual applications. This holds true for both the re-
mote execution of the NASA Benchmarks and desk-
top chess game using Java RMI as well as the android
chess application using HTTP to connect to Google’s
App Engine.

The next step was deciding how to load the execut-
able code on the server: dynamically at runtime or
statically before the application is run. Dynamic code-
offload allows for more flexibility as far as updating
an application or choosing when to use remote exe-
cution. However, it requires more data to be passed
over the communication channels as entire methods
need to be serialized and transferred.

The programmer must also ensure that any depen-
dencies or required objects are passed along with the
main execution method. Pre-loading code requires
more server administration, especially when updates
are needed; conversely, it requires less data to be
passed between client and server, making it faster
and easier to implement. In either scenario, there
needs to be some sort of framework installed on the
server that is ready to receive the executable code re-
gardless of dynamic or static installation.

IV. SYSTEM IMPLEMENTATION:

As is evident from the previous discussion, there are
many definitions of ‘cloud computing’ and many im-
plementation options. I created three categories of
tests: Java RMI NASA Benchmarks, a Java RMI Chess
game, and an Android App Engine chess game. The
applications used as benchmarks include the NASA
Benchmark tests and a chess game. Both were cho-
sen because they involve computationally-intensive
code execution.

 Volume No: 1(2014), Issue No: 10 (October) ISSN No: 2348-4845

 INTERNATIONAL JOURNAL & MAGAZINE OF ENGINEERING, TECHNOLOGY, MANAGEMENT AND RESEARCH October 2014
 A Monthly Peer Reviewed Open Access International e-Journal www.ijmetmr.com Page 285

Two communication protocols are used to implement
these cloud computing examples: 1) JAVA RMI for its
accessible use of socket programming and 2) HTTP
because of its widespread and ubiquitous use.

Implementations of the Java RMI ASA Benchmarks be-
gin on desktop machines since this is the most familiar
and accessible platform. From there, the application
is ported to mobile devices such as an Apple iPhone
and Google Android mobile device. The NASA iPhone
application is executed remotely using dynamic code
offload from a desktop on the same LAN. The NASA
Benchmarks are also run locally on a desktop machine
and locally on an android device for comparison pur-
poses.

Fig 2 JAVA RMI COMMUNICATION FLOW

4.1 iPhone Implementation Using a Distrib-
uted File System:

I was able to access the iPhone’s Linux-based oper-
ating system using its mobile terminal and install the
latest version of Java. I then enabled SSH protocol on
it and copied the necessary files onto the phone. This
allowed me to run the java files to tell the server to
execute the NASA benchmarks by downloading the
files from a separate computer running a web server.
Figure 3 below shows how this works.

Fig 3 RMI USING A DISTRIBUTED FILE SYSTEM

4.2 Java RMI Chess Game:

I choose to use a chess game as a visual and func-
tional model of IaaS. I use the second implementa-
tion of Java RMI so that chess code can be dynami-
cally downloaded by the server. The challenge of this
implementation was extracting the computationally
int that the server would run that portion while the
client machine runs the diagram above demonstrates
the code.

Fig 4 CHESS GAME EXECUTION

Google Android to App Engine Chess Game:

The goal of this experiment was to enable the Android
device to connect to Engine. A chess game application
would connect to Google’s cloud, which would execu-
tion the chess engine code and return the computer
player’s next move.

fig 5 GOOGLE ANDROID TO APP ENGINE

 Volume No: 1(2014), Issue No: 10 (October) ISSN No: 2348-4845

 INTERNATIONAL JOURNAL & MAGAZINE OF ENGINEERING, TECHNOLOGY, MANAGEMENT AND RESEARCH October 2014
 A Monthly Peer Reviewed Open Access International e-Journal www.ijmetmr.com Page 286

This setup uses HTTP as the communication proto-
col to execute a chess game application on a mobile
Android device, displaying the possibilities of mobile
clo Protocol (HTTP) is a networking protocol for dis-
tributed information systems and A signedBy value
indicates the alias for a the code source location; you
grant the permission to it is possible to allow RMI al-
lowing certain ports through. cloud computing. The
Hypertext Transfer rking is the foundation of data.

V CONCLUSION:

In conclusion, this research work shows that cloud
computing technology will only progress since there
are obvious advantages. These results prove that
cloud computing is very possible and that offloading
computations to a server is a viable, timesaving op-
tion. As long as network speeds are decent, it is ad-
vantageous to offload computationally intensive ap-
plications to a more powerful server. Not only is it
advantageous, but also necessary in some situations,
as the mobile device is unable to even run certain ap-
plications due to memory restrictions.

The demo shows the advantage of offloading applica-
tions to the cloud in the context of providing an Infra-
structure-as-a-Service. By outsourcing computational
intelligence to the backend servers, the simple mobile
device becomes more powerful than its physical con-
straints allow. However, there is no best or simple
implementation of mobile cloud computing. Options
include dynamic vs. static code offload, method vs. OS
migration, and various connections protocols.

Different applications have different resource require-
ments affecting the best possible connection to the
cloud. As seen in the android chess application, chess
can tolerate some lag while photo editing software
cannot. Though a system like MAUI is a great option
for certain applications, my android-app engine chess
game example shows that always offloading code
may be the best choice. Ultimately, it is up to the pro-
grammer to decide what a user can tolerate and which
setup is best for their particular application.

REFERENCES:

[1] Jianbin Wei, Xiaobo Zhou, Cheng-Zhong Xu. Robust
Processing Rate Allocation for Proportional Slow-
down Differentiation on Internet Server. IEEE Com-
puter Society. 2005.

[2] Armsbrust, Michael, Fox, Armando, etc. UC Berke-
ley. Above the Clouds: A Berkeley View of Cloud Com-
puting. Technical Report No. UCB/EECS-2009-28. Feb-
ruary 10, 2009.

[3] Chun Byung-Gon, Maniatis Petros. Intel Berke-
ley Research. Augmented Smartphone Applications
Through Clone Cloud Execution. HotOS 2009.

[4] Rakesh Agrawal, etc. The Claremont Report on
Database Research. SIGMOD Record, September
2008 (Vol. 37, No. 3). Retrieved on May 12, 2009 from:
http://delivery.acm.org.

[5] Cassimir Medford. Computing in a Mobile Cloud.
08 September 2008. Retrieved on May 12, 2009.from:
http://www.redherring.com/Home/24836.

[6] Java Remote Method Invocation (Java RMI). Sun
Microsystems, 2006. Retrieved from: www.sun.java.
com.

[7] Michael A Frumkin, etc. Implementation of the
NAS Parallel Benchmarks in Java. NASA Advanced Su-
percomputing (NAS) Division, 2002. Retrieved from:
http://www.nas.NASA.gov/Resources/Software/npb.
html.

[8] Subhash Saini and David H. Bailey. NAS Parallel
Benchmark (Version 1.0) Results 11-96. Report NAS-
96-18, November 1996. Retrieved from: http://www.
nas.NASA.gov/Resources/Software/npb.html.

[9] Uquhart, James. Finding distinction in ‘infrastruc-
ture as a service’. January 11, 2009. Retrieved on April
30 , 2010 from: http://news.cnet.com/8301-19413_3-
10140278-240.html.

[10] Alexandre di Costanzo, etc. Harnessing Cloud
Technologies for a Virtualized Distributed Computing
Infrastructure. IEEE Computer Society. 2009.

