
 Volume No: 1(2014), Issue No: 10 (October) ISSN No: 2348-4845

 INTERNATIONAL JOURNAL & MAGAZINE OF ENGINEERING, TECHNOLOGY, MANAGEMENT AND RESEARCH October 2014
 A Monthly Peer Reviewed Open Access International e-Journal www.ijmetmr.com Page 272

Abstract:

Security in software plays an important role in todays
society as computer networking is getting more and
more important. Security measures are taken to pro-
tect private information, but bad programming prac-
tices can still cause security vulnerabilities in software
systems. Source code analysis tools can be used to
detect such security vulnerabilities automatically. The
use of these tools helps to improve the quality and se-
curity of software systems and could prevent future
problems.

The class of security vulnerabilities called input valida-
tion vulnerabilities can be detected using static taint
analysis. The design and implementation of such a
tool are the subject of this paper. This tool detects in-
put validation vulnerabilities in source code written in
the Java programming language. This paper also de-
scribes in detail how to deal with complexities related
to the object oriented nature of Java.

The tool first derives a graph structured model from
the source code. This graph structured model cap-
tures data dependency relations between important
program elements. This graph model is then analyzed
using taint analysis to detect potential input valida-
tion vulnerabilities.

Keywords:

SQL Injection, Software Analysis Toolkit (SAT), Cross
site scripting (XSS).

I. INTRODUCTION:

In today’s world where computer networking plays
an important role in everyday life, computer criminals
cause havoc in critical or important network environ-
ments. Com- mon criminal activities include: tapping
network traffic, tampering databases, modify- ing
websites, disabling services and information theft
[26]. These activities can cause bad publicity, data-
loss and privacy problems, which could result in sig-
nificant (financial) damages to companies.

Tulasi Veera Prasad N
Student (M.Tech) ,CSE,

Gokul Institue of Technology and Science,
Visakhapatnam, India.

A.Achutharao
Asst. Prof, CSE,

Gokul Institue of Technology and Science,
Visakhapatnam, India.

Systems that are secure enough to resist such attacks
are therefore essential. Security breaches are often
the result of bad programming practices during de-
velopment.Some of these security vulnerabilities are
easily detected and fixed when the program crashes
or unexpected output is given. Other security vulner-
abilities will never be noticed during normal use. Au-
tomatic source code analyzers can help detect- ing
these security vulnerabilities before deployment of a
software system.

1.1. Style Conventions:

This paper follows a style convention for clarity. The
following style conventions are used:

• Relevant large program parts are displayed as code
fragments, which are listed on its own index page.
The code of a simple class is given in code fragment
1.1. The keywords that belong to the programming
language are bold. The lines are numbered for easy
referencing in from the text.

1.2. Development Environment:

To get an impression of how the security tool is de-
veloped at the office of the Software Improvement
Group (SIG), the development environment is de-
scribed. To confirm to the existing software standard
used by SIG, the development environment influences
the way the tool is developed. The workstation is an
Apple iMac running Mac OS X as Operating System,
which is also connected to the Internet.

Figure 1.1: Flow diagram

Java Security Vulnerabilities Detection With Static
Analysis

 Volume No: 1(2014), Issue No: 10 (October) ISSN No: 2348-4845

 INTERNATIONAL JOURNAL & MAGAZINE OF ENGINEERING, TECHNOLOGY, MANAGEMENT AND RESEARCH October 2014
 A Monthly Peer Reviewed Open Access International e-Journal www.ijmetmr.com Page 273

Figure 1.2: Modules diagram.

Figure 1.3: Graph diagram.

II. JAVA SECURITY VULNERABILITIES:

2.1 SQL Injection:

A popular application of the Java programming lan-
guage is the use of Java servlets to handle web server
requests. The underlying pattern in the architecture
of a potential vulnerable system is depicted below in
figure 3.1 as an example. The architecture consists of
three modules or components, which are interacting
with each other.

The web server component is responsible for handling
requests initiated by the user. When a HTTP request is
received from the user, the web server delegates the
request to the Java servlet. The Java servlet may inter-
act with a SQL database by querying, which depends
on the user input. In short, a system may be vulnerable
to SQL injection attacks, when SQL input by an applica-
tion depends on the user input.

SQL injection [43, 31, 32, 13, 19, 38] occurs when the se-
mantics of a SQL query that is embedded in the source
code is changed due to specially crafted user input. The
bad query can do things not allowed or intended by the
application. The syntax of the embedded may be cor-
rect, but the semantics is changed.

Figure 2.1: Web server Java SQL architecture.

2.2 Cross Site Scripting:

In cross site scripting (XSS) [43, 31, 32, 19, 38] a vulner-
ability exists in a web ap- plication that makes it pos-
sible to trick users of the website to execute arbitrary
code using the website as a relay. The code appears
to be originated from the website that may be a web-
site that is trusted by the users. The trust of the user
in a website with a XSS vulnerability and the website
itself are abused to trick the computer/browser of the
user to execute arbitrary code, which steals private
information from the user. No entry is gained in the
website itself.

The attacker who wants to abuse an XSS vulnerable
website, first crafts a special hyperlink that has hid-
den code embedded. The code is meant to steal infor-
mation from the user. The second problem is to get
the user to click on this link. One way to do it is to
post it on a forum that is known to be regularly vis-
ited by users of the XSS vulner- able website, another
way is to email it directly to the users. If an user has
clicked on the link, the code in the link is relayed and
echoed back to the user by the website. The browser
of the user starts executing the code, which can do
things like stealing cookie information that contains
login information. Stealing cookie information can be
done by letting the code dump this information at a
specially installed drop site.

2.3 Command Injection:

Command Injection [43, 31, 32, 38] tricks the applica-
tion into executing another pro- gram. This can be
used by an outsider to gain entry into a web server
or to execute something with the same privileges as
the application. It can also be used by an user of a
stripped down computer. A stripped down computer
is intentionally restricted in accessibility, so the only
use of the computer is through a particular program
or interface.

 Volume No: 1(2014), Issue No: 10 (October) ISSN No: 2348-4845

 INTERNATIONAL JOURNAL & MAGAZINE OF ENGINEERING, TECHNOLOGY, MANAGEMENT AND RESEARCH October 2014
 A Monthly Peer Reviewed Open Access International e-Journal www.ijmetmr.com Page 274

2.4 Input Validation Vulnerabilities Detec-
tion:

SQL injection, cross site scripting, command injection
and path traversal vulnerabil- ities have fundamental
properties in common. The commonality is that user
input is trusted and not validated before it is used in a
subsystem. A subsystem is an in- dependent system
that is used by the application. This subsystem is ac-
cessed by its interface, which is commonly a collec-
tion of methods. The subsystems of the vulner- able
programs discussed earlier, are the SQL database for
applications vulnerable to SQL injections, the brows-
er for cross site scripting vulnerable websites and the
un- derlying operating system for the last two vulner-
abilities. These vulnerabilities would not exist if user
input is properly checked and sanitized before being
used, eliminating dangerous input. The vulnerability is
exploited when the attacker tricks the subsystem into
doing something not intended by the application.

III. SOFTWARE ANALYSIS TOOLKIT (SAT):

This section describes the Software Analysis Toolkit
(SAT) framework used by the SIG to perform Software
Risk Assessments (SRAs). The SAT is a collection of
software analysis programs used to analyze all kinds
of software systems. Each program does so by look-
ing at the source code of the system, which is better
known as static analysis. Implementing a new analysis
for the SAT requires the use of standard classes and
inter- faces provided by the SAT software framework.
SAT makes it possible to perform the analysis in a
standardized way and it prevents source code dupli-
cation. The standard classes that are described below
form the basis of SAT. To understand the existence of
these classes and why they are standardized, a typical
source code analysis will be described.

Figure 3.1: Simple analysis.

Figure 3.2: Basic architecture SAT.

IV. JAVA SECURITY ANALYSIS:

4.1 The Security Analysis Architecture:

The architecture of the Java Security Analysis is il-
lustrated in figure 8.1. Interface classes and several
other supertypes that belong to the SAT framework
are omitted to avoid cluttering in the figure. The ar-
chitecture includes the classes discussed in earlier
chapters. The heart of the architecture is the Security
Fact Graph, which role is twofold. First, the graph is
constructed while the Java source files are analyzed.
Second, the graph is analyzed to dectect input valida-
tion vulnerabilities.

The Java classes in the Java Security Analysis are divid-
ed into Java packages. Related classes belong to the
same package, often packages contain classes that in-
herit from the same superclass. There are 5 packages
in total.

• typeinformation: This package contains classes that
are used to resolve pro- gram entities like (super)
classes, variables and methods.

• obsvisitors: This package contains subclasses of the
ObservationVisitors class, which are used to traverse
source files. An AST is constructed for every source
file, which is then analyzed by using the TreeWalker
class.

• astvisitors: This package contains subclasses of the
AbstractActionVisitor class, which are used by the
TreeWalker class to traverse the ASTs.

• sfgvisitors: This package contains subclasses of the
AbstractLinkVisitor class, which are used to traverse
the Security Fact Graph.

• javasecurityanalysis: This package contains all other
classes.

4.2 Experimental Results:

A guestbook web application is created to show the
workings of the analysis on a real Java web applica-
tion. The source code of the guestbook can be found
in ap- pendix D. The guestbook has two basic func-
tionalities.

One is adding a new guest- book entry to the database
and the other is retrieving all the entries from the da-
tabase for display. A MySQL [49] database is used to
store guestbook entries. The guest- book contains
several SQL injection vulnerabilities.

 Volume No: 1(2014), Issue No: 10 (October) ISSN No: 2348-4845

 INTERNATIONAL JOURNAL & MAGAZINE OF ENGINEERING, TECHNOLOGY, MANAGEMENT AND RESEARCH October 2014
 A Monthly Peer Reviewed Open Access International e-Journal www.ijmetmr.com Page 275

The untrusted method is speci- fied as javax.servlet.
ServletRequest.getParameter(), which returns the
user supplied parameter. In order to make the secu-
rity vulnerability complete, the criti- cal method java.
sql.Statement.executeQuery() is used, which exe-
cutes a SQL query..

The stripped Security Fact Graph that corresponds
to the guestbook can be found in figure 8.2. All the
nodes of the stripped Security Fact Graph are tainted.
Redundant nodes are removed, without influencing
the outcome of the analysis. The names of the edges
are not displayed. Like expected, several dangerous
paths from an untrusted method to a critical method
are found. In total, there are three paths found. The
paths originate from the getParameter() method call,
which is used to retrieve the user input. The paths end
with the executeQuery() method call on the State-
ment object. The specific tainted paths can be found
in appendix E, which contains the literal output file
content.

The analysis does not recognize methods or algo-
rithms used to validate input, which means that dan-
gerous tainted paths are also found if the input is vali-
dated cor- rectly. This is the reason why tainted paths
found by the Java Security Analysis have to be verified
manually.

Figure 4.1: Security Fact Graph of Guestbook

CONCLUSION:

The Java Security Analysis allows SIG to detect secu-
rity vulnerabilities in software of clients. The list of
services to clients can be extended by a security check
or assessment service, which makes it interesting

for clients who want their Java web application to be
checked for security vulnerabilities. The other contri-
butions are actually side products, which are essen-
tial components of the analysis. The first one is the
extended type inference framework, which now sup-
ports object types. This is in contrast with the former
type inference framework, which can only deal with
integer types. The second is the BCEL wrapper that is
used to resolve library types. This wrapper is proven
to be useful and it can be used to increase accuracy of
the existing analyses used by SIG.

The analysis is strongly data flow oriented, which
means that it can easily be mod- ified for other pur-
poses than detecting security vulnerabilities, for in-
stance, to identify all locations where a certain value is
used. This way, dependencies of classes or mod- ules
on that value can be identified to separate software
architecture modules. This information can be used
to improve program understanding, which is in line
with the SWERL research area.

This project shows a way how type inference can be
used to capture data depen- dency relationships be-
tween variables. These relationships are then used to
perform taint analysis in order to detect input valida-
tion vulnerabilities. It also shows a way to deal with
objects, which can be defined in libraries. In addition
to normal source code analysis, the use of byte code
analysis is described to improve accuracy.

REFERENCES:

[1] The Byte Code Engineering Library (BCEL).http://
jakarta.apache.org/bcel,2006.

[2] Oracle TopLink Developer’s Guide (v10.1.3.1.0). Or-
acle, 2006.

[3] Website Apache Ibatis. http://ibatis.apache.org,
2006.

[4] Website Checkstyle Plugin for Eclipse. http://
eclipse-cs.sourceforge.net, 2006.

[5] Website Graphiz. http://www.graphviz.org, 2006.

[6] Website Jakarta Apache Project. http://jakarta.
apache.org, 2006.

[7] Website JavaServer Faces. http://java.sun.com/ja-
vaee/javaserverfaces, 2006.

[8]Website Software Evolution Research Lab (SWERL).
http://swerl.tudelft.nl, 2006.

 Volume No: 1(2014), Issue No: 10 (October) ISSN No: 2348-4845

 INTERNATIONAL JOURNAL & MAGAZINE OF ENGINEERING, TECHNOLOGY, MANAGEMENT AND RESEARCH October 2014
 A Monthly Peer Reviewed Open Access International e-Journal www.ijmetmr.com Page 276

[9] Website Software Improvement Group (SIG).
http://www.sig.nl, 2006.

[10] Website Spring Framework. http://www.spring-
framework.org, 2006.

[11] Website Clover. http://www.cenqua.com/clover,
2007.

[12] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman.
Compilers: principles, tech- niques, and tools. Addi-
son-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1986.

[13] Chris Anley. Advanced SQL Injection in SQL Server
Applications. NGSSoftware Insight Security Research
(NISR), 2002.

[14] Cyrille Artho and Armin Biere. Applying static
analysis to large-scale, multi- threaded java programs.
aswec, 00:0068, 2001.

[15] Thomas Ball. The concept of dynamic analysis. In
ESEC / SIGSOFT FSE, pages 216–234, 1999.

[16] Scott Stender Brad Arkin and Gary McGraw. Soft-
ware penetration testing. IEEE Security and Privacy,
03(1):84–87, 2005.

[17] Chuck Cavaness. Programming Jakarta Struts.
O’Reilly & Associates, Inc., Sebastopol, CA, USA,
2002.

[18] Brian Chess and Gary McGraw. Static analysis for
security. IEEE Security & Privacy, 2(6):76–79, 2004.

[19] Paul Dullaart. Secure coding. Informatie, 16:10–12,
2005.

[20] Ralph Johnson Erich Gamma, Richard Helm and
John Vlissides. Design patterns: Abstraction and reuse
of object-oriented design. Lecture Notes in Computer
Sci- ence, 707:406–431, 1993.

[21] Jeffrey S. Foster, Manuel Fahndrich, and Alexan-
der Aiken. A theory of type qualifiers. In SIGPLAN
Conference on Programming Language Design and
Im- plementation, pages 192–203, 1999.

[22] Michael Frumkin. Data Flow Pattern Analysis of
Scientific Applications. Intel, 2005.

[23] Daniel Geer and John Harthorne. Penetration
testing: A duet. In ACSAC ’02: Proceedings of the 18th
Annual Computer Security Applications Conference,
page 185, Washington, DC, USA, 2002. IEEE Computer
Society.

[24] David Greenfieldboyce and Jeffrey S. Foster. Type
Qualifiers for Java. University of Maryland, College
Park, 2005.

[25] Vivek Haldar. Verifying Data Flow Optimizations
for Just-In-Time Compilation. Sun Microsystems Labo-
ratories, 2002.

[26] John Douglas Howard. An analysis of security in-
cidents on the Internet 1989-1995. PhD thesis, Pitts-
burgh, PA, USA, 1998.

[27] Andrew Hurst. Analysis of Perl’s Taint Mode.
2004.

[28] Will Iverson. Hibernate: A J2EE(TM) Developer’s
Guide. Addison-Wesley Professional, 2004.

[29] Guy Steele James Gosling, Bill Joy and Gilad Bra-
cha. Java(TM) Language Spec- ification, The (3rd Edi-
tion) (Java Series). Addison-Wesley Professional, July
2005.

[30] Ralph E. Johnson. Components, frameworks,
patterns. In ACM SIGSOFT Sym- posium on Software
Reusability, pages 10–17, 1997.

[31] V. Benjamin Livshits. Finding Security Errors in
Java Applications Using Lightweight Static Analysis.
Computer Systems Laboratory, Stanford University,
2004.

[32] V. Benjamin Livshits and Monica S. Lam. Finding
security errors in Java pro- grams with static analysis.
In Proceedings of the 14th Usenix Security Sympo-
sium, pages 271–286, August 2005.

[33] V. Benjamin Livshits and Monica S. Lam. Finding
security vulnerabilities in java applications with static
analysis, 2005.

[34] Panagiotis Louridas. Version control. IEEE Soft-
ware, 23(1):104–107, 2006.

[35] Steven Myers Markus Jakobsson. Phishing and
Countermeasures : Understand- ing the Increasing
Problem of Electronic Identity Theft. Addison-Wes-
ley Long- man Publishing Co., Inc., Boston, MA, USA,
2006.

[36] Michael Martin, Benjamin Livshits, and Monica S.
Lam. Finding application errors and security flaws us-
ing PQL: a program query language. In OOPSLA ’05:
Proceedings of the 20th annual ACM SIGPLAN confer-
ence on Object oriented programming systems lan-
guages and applications, pages 365–383, 2005.

 Volume No: 1(2014), Issue No: 10 (October) ISSN No: 2348-4845

 INTERNATIONAL JOURNAL & MAGAZINE OF ENGINEERING, TECHNOLOGY, MANAGEMENT AND RESEARCH October 2014
 A Monthly Peer Reviewed Open Access International e-Journal www.ijmetmr.com Page 277

[37] Ravi Mendis. WebObjects Developer’s Guide.
Sams, Indianapolis, IN, USA,2002.

 [38] David LeBlanc Michael Howard and John Viega.
19 Deadly Sins of SoftwareSecurity. McGraw-Hill/Os-
borne, 2005. ISBN 0-07-226085-8.

 [39] Christopher Kruegel Nenad Jovanovic and Engin
Kirda. Pixy: A Static Anal- ysis Tool for Detecting Web
Application Vulnerabilities. Secure Systems Lab, Tech-
nical University of Vienna, 2005.

 [40] James Newsome and Dawn Song. Dynamic taint
analysis for automatic detec- tion, analysis and signa-
ture generation of exploits on commodity software.
In NDSS 05: Proceedings of the 12th Annual Network
and Distributed System Se- curity Symposium, San Di-
ego, California, USA, 2005. Internet Society.

[41] Jens Palsberg and Michael I. Schwartzbach. Ob-
ject-oriented type inference. In Norman Meyrowitz,
editor, Proceedings of the Conference on Object-
Oriented Programming Systems, Languages, and Ap-
plications (OOPSLA), volume 26, New York, NY, 1991.
ACM Press.

 [42] David Scott and Richard Sharp. Abstracting ap-
plication-level web security. In WWW ’02: Proceed-
ings of the 11th international conference on World
Wide Web, pages 396–407, New York, NY, USA, 2002.
ACM Press.

 [43] Mike Shema. HackNotes Web Security Portable
Reference. McGrawHill/Os- borne, 2003. ISBN 0-07-
222784-2.

 [44] Jim D’Anjou Sherry Shavor, John Kellerman Pat
McCarthy, and Scott Fair- brother. The Java Develop-
er’s Guide to Eclipse. Pearson Education, 2003.

 [45] Jeffrey S. Foster Umesh Shankar, Kunal Talwar
and David Wagner. Detecting Format String Vulner-
abilities with Type Qualifiers. University of California
at Berkeley, 2001.

 [46] Larry Wall. Programming Perl. O’Reilly & Associ-
ates, Inc., Sebastopol, CA, USA, 2000.

[47] Brad Calder Weihaw Chuang, Satish Narayana-
samy and Ranjit Jhala. Bounds checking with taint-
based analysis. In HiPEAC 2007, 2007. cations. In Tech-
nical Report SECLAB-05-04, 2005.

[48] J. Whaley and M. S. Lam. Cloning-based context-
sensitive pointer alias analysis using binary decision
diagrams. In Proceedings of the ACM SIGPLAN 2004
conference on Programming Language Design and
Implementation, pages 131–144, 2004.

 [49] Michael Widenius and Davis Axmark. Mysql Ref-
erence Manual. O’Reilly & Associates, Inc., Sebasto-
pol, CA, USA, 2002.

 [50] Wei Xu, Sandeep Bhatkar, and R. Sekar. Practical
dynamic taint analysis for countering input validation
attacks on web appli [51] Wei Xu, Sandeep Bhatkar,
and R. Sekar. Taint-enhanced policy enforcement: A
practical approach to defeat a wide range of attacks.
In 15th USENIX Security Symposium, Vancouver, BC,
Canada, August 2006.

 [52] Christian Hang Chung-Hung Tsai Der-Tsai Lee Yao-
Wen Huang, Fang Yu and Sy-Yen Kuo. Securing web
application code by static analysis and runtime pro-
tection. In WWW ’04: Proceedings of the 13th interna-
tional conference on World Wide Web, pages 40–52,
New York, NY, USA, 2004. ACM Press.

[53] Benjamin Grgoire Yves Bertot and Xavier Leroy.
A structured approach to prov- ing compiler optimiza-
tions based on dataflow analysis. In Types for Proofs
and Programs, Workshop TYPES 2004, volume 3839
of Lecture Notes in Computer Science, pages 66–81.
Springer-Verlag, 2006.

