
 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 2 (2015), Issue No: 10 (October) October 2015
 www.ijmetmr.com Page 89

Abstract:

This paper presents the design and implementation of 32-
bit floating point RNS Multiply and Accumulate (MAC)
unit using Vedic Multiplier. MAC is one of the most im-
portant components in many of DSP applications like
convolution and filtering. RNS (Residue Number System)
gained popularity in implementation of fast arithmetic and
fault tolerant computing applications because of parallel
processing and carry free computations. Floating point
RNS arithmetic units have obvious advantage over fixed
point MAC units which are key units in Digital Signal
Processors. Floating point RNS MAC uses modulo adder
for exponent addition and modulo multiplier for mantissa
multiplication where operations are performed on moduli.
In previous methods, modulo multiplier is implemented
using array multiplier that has more delay. The beauty of
Vedic multiplier is that here partial products generation
and additions are done concurrently reducing delay, which
is the primary motivation behind this work. The design is
coded in Verilog HDL and synthesized using Xilinx ISE
13.1. The results clearly show that Vedic multiplier can
be used to improve the execution speed of Floating point
RNS based MAC when compared to array multiplier and
an application of Floating point RNS MAC, 8 tap FIR
(Finite Impulse Response) filter is implemented.

Key words:

MAC, RNS, Floating point, Moduli, Vedic multiplier, Ar-
ray multiplier.

I. INTRODUCTION:

MAC is the main component in many of the digital signal
processing applications like convolution, filters and FFT.
A basic MAC architecture consists of a multiplier and ac-
cumulator.

D.L.Chaitanya
Associate Professor,
Department of ECE,

Gokaraju Rangaraju Institute of Engineering &
Technology, Hyderabad, India.

A.Chandana
M.Tech,
VLSI,

Gokaraju Rangaraju Institute of Engineering &
Technology, Hyderabad, India.

The products generated by the multiplier are added and
stored in accumulator. The performance of MAC can be
increased by the optimized design of multiplier and adder.
RNS gained popularity because of the parallel process-
ing and carry-free arithmetic. A large bit number can be
represented in form of small bit residues and the residues
can be processed in parallel and thus the performance of
the multiplier or adder can be increased [3]. That is be-
cause there is no need of communicating carry informa-
tion between two residues. So carry free arithmetic can
be performed. A high speed MAC capable for handling
large range numbers with better precision will be required
for many of the DSP applications. There are two types
of arithmetic operation which are fixed and floating point
operations. Fixed point number was inefficient for large
number arithmetic. So floating point arithmetic was in-
vented.

Real numbers can be represented as a floating point num-
ber with two parts, mantissa and exponent. A floating
point number is represented as MxBE where M is mantis-
sa, B is base and E is exponent. The floating point repre-
sentation used here is 32-bit floating point representation
(single precision) where there is 1-bit sign, 8-bit exponent
and 23-bit mantissa. In previous methods, floating point
RNS based MAC was implemented using array multi-
plier which has more delay. To reduce the delay, Vedic
multiplier is used here, which is quite different from the
conventional method of multiplication like add and shift.
“Urdhva Tiryakbhyam” [5] sutra is a general multiplica-
tion formula applicable to all cases of multiplication. It lit-
erally means “Vertically and Crosswise”.The entire paper
is divided into six sections. In first section introduction of
project is given. In second section Vedic multiplier is dis-
cussed. Third section provides the information about the
floating point RNS MAC using Vedic multiplier. Fourth
section explains implementation of FIR filter using MAC.
Fifth section explains the results and sixth section con-
cludes this paper.

Implementation of Single Precision Floating Point RNS MAC
Using Vedic Multiplier

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 2 (2015), Issue No: 10 (October) October 2015
 www.ijmetmr.com Page 90

II. VEDIC MULTIPLIER:

Urdhava Tiryakbhyam (Vertically and Crosswise), is one
of sixteen Vedic sutras and deals with the multiplication
of numbers. The sutra is illustrated in Figure 1 with mul-
tiplication of two numbers and the hardware architecture
is depicted in Figure 3. The digits on both sides of the line
are multiplied and added with the carry from the previ-
ous step. This generates one of the bits of the result and
a carry. This carry is added in the next step and hence the
process goes on. If more than one line are there in one
step, all the results are added to the previous carry. In each
step, the least significant bit acts as the result bit and all
other bits act as carry for the next step [4]. Initially the
carry is taken to be zero.

Figure 1. Multiplication of two decimal numbers by
Urdhava Tiryakbhyam sutra.

From Figure 1, it is observed that all the partial products
are generated in parallel. So the speed of the multiplier is
higher compared to conventional multiplier.

Figure 2. 2-bit Vedic multiplier

Note: 4-bit multiplier is designed using four 2-bt multi-
pliers, 8-bit multiplier is designed using 4-bit and l6-bit
using 8-bit as shown in figure3 below [5].

Figure 3. Block diagram for 16-bit Vedic Multiplier

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 2 (2015), Issue No: 10 (October) October 2015
 www.ijmetmr.com Page 91

III. ARCHITECTURE OF FLOATING
POINT RNS MAC UNIT USING VEDIC
MULTIPLIER:

The modules that are required for implementing a Float-
ing Point RNS MAC are Binary to RNS Converter, Mod-
ulo Adder, Modulo Multiplier (using Vedic multiplier),
RNS to Binary Converter, adder and Accumulator. The
block diagram of Floating point RNS MAC unit is shown
in Figure 4. Floating point multiplication involves multi-
plication of mantissa and addition of exponent. So, Float-
ing point RNS multiplier uses RNS modulo multiplier
for mantissa and RNS modulo adder for exponent. The
block diagram of Floating point RNS multiplier is shown
in Figure 5.

Figure 4. Block diagram of Floating Point RNS MAC
using Vedic Multiplier.

The flow of operations for Floating point RNS MAC unit
is as follows:

1. The Mantissa and biased Exponent is converted to
Residue Number System. In RNS, based on the moduli,
residues are obtained.

2. For multiplication, the Mantissa should be multiplied
and Exponent should be added. For this, Mantissa modulo
multiplier and Exponent modulo adder are used.

3. The results obtained are converted back into Binary
numbers.

4. Using accumulator the products are added and saved.

A. Conversions:

The process of converting binary data into RNS is re-
ferred to as the forward conversion. After the data is being
processed through modulo processing units of RNS, they
must be converted back to their conventional representa-
tions. The process of converting back into the convention-
al representation is referred to as backward conversion.
The forward conversion can be for an arbitrary moduli
set or special moduli set [3]. The special moduli set used
in this paper include {2n-1, 2n, 2n+1} where ‘n’ is decided
based on the number of bits of the input binary number.
Special moduli set is taken to be a low-cost moduli set and
improves the performance of the unit [2]. Since the expo-
nent is of 8-bits, the moduli set required for the exponent
is {7, 8, 9} which enables to represent 0 to 28-1. Similarly,
as the mantissa is of 23-bits, the moduli set considered is
{65535, 65536, 65537} which enables to represent 0 to
223-1. This paper includes a parallel method of forward
conversion of the input binary block [1]. For backward
conversion Chinese Remainder Theorem is used [3]. The
mathematical equations for CRT are as follows. Given
a set of moduli {m1,m2,…,mi} and the residues are
{r1,r2,…,ri} then binary number ‘X’ is given as

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 2 (2015), Issue No: 10 (October) October 2015
 www.ijmetmr.com Page 90

II. VEDIC MULTIPLIER:

Urdhava Tiryakbhyam (Vertically and Crosswise), is one
of sixteen Vedic sutras and deals with the multiplication
of numbers. The sutra is illustrated in Figure 1 with mul-
tiplication of two numbers and the hardware architecture
is depicted in Figure 3. The digits on both sides of the line
are multiplied and added with the carry from the previ-
ous step. This generates one of the bits of the result and
a carry. This carry is added in the next step and hence the
process goes on. If more than one line are there in one
step, all the results are added to the previous carry. In each
step, the least significant bit acts as the result bit and all
other bits act as carry for the next step [4]. Initially the
carry is taken to be zero.

Figure 1. Multiplication of two decimal numbers by
Urdhava Tiryakbhyam sutra.

From Figure 1, it is observed that all the partial products
are generated in parallel. So the speed of the multiplier is
higher compared to conventional multiplier.

Figure 2. 2-bit Vedic multiplier

Note: 4-bit multiplier is designed using four 2-bt multi-
pliers, 8-bit multiplier is designed using 4-bit and l6-bit
using 8-bit as shown in figure3 below [5].

Figure 3. Block diagram for 16-bit Vedic Multiplier

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 2 (2015), Issue No: 10 (October) October 2015
 www.ijmetmr.com Page 91

III. ARCHITECTURE OF FLOATING
POINT RNS MAC UNIT USING VEDIC
MULTIPLIER:

The modules that are required for implementing a Float-
ing Point RNS MAC are Binary to RNS Converter, Mod-
ulo Adder, Modulo Multiplier (using Vedic multiplier),
RNS to Binary Converter, adder and Accumulator. The
block diagram of Floating point RNS MAC unit is shown
in Figure 4. Floating point multiplication involves multi-
plication of mantissa and addition of exponent. So, Float-
ing point RNS multiplier uses RNS modulo multiplier
for mantissa and RNS modulo adder for exponent. The
block diagram of Floating point RNS multiplier is shown
in Figure 5.

Figure 4. Block diagram of Floating Point RNS MAC
using Vedic Multiplier.

The flow of operations for Floating point RNS MAC unit
is as follows:

1. The Mantissa and biased Exponent is converted to
Residue Number System. In RNS, based on the moduli,
residues are obtained.

2. For multiplication, the Mantissa should be multiplied
and Exponent should be added. For this, Mantissa modulo
multiplier and Exponent modulo adder are used.

3. The results obtained are converted back into Binary
numbers.

4. Using accumulator the products are added and saved.

A. Conversions:

The process of converting binary data into RNS is re-
ferred to as the forward conversion. After the data is being
processed through modulo processing units of RNS, they
must be converted back to their conventional representa-
tions. The process of converting back into the convention-
al representation is referred to as backward conversion.
The forward conversion can be for an arbitrary moduli
set or special moduli set [3]. The special moduli set used
in this paper include {2n-1, 2n, 2n+1} where ‘n’ is decided
based on the number of bits of the input binary number.
Special moduli set is taken to be a low-cost moduli set and
improves the performance of the unit [2]. Since the expo-
nent is of 8-bits, the moduli set required for the exponent
is {7, 8, 9} which enables to represent 0 to 28-1. Similarly,
as the mantissa is of 23-bits, the moduli set considered is
{65535, 65536, 65537} which enables to represent 0 to
223-1. This paper includes a parallel method of forward
conversion of the input binary block [1]. For backward
conversion Chinese Remainder Theorem is used [3]. The
mathematical equations for CRT are as follows. Given
a set of moduli {m1,m2,…,mi} and the residues are
{r1,r2,…,ri} then binary number ‘X’ is given as

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 2 (2015), Issue No: 10 (October) October 2015
 www.ijmetmr.com Page 92

B. Floating Point RNS Multiplier:

Floating Point in residue domain includes a RNS multi-
plier for mantissa and RNS modulo adder for exponent.
For large number of bits, the delay and area of residue
array multiplier is more [7]. In order to reduce the delay,
Vedic Multiplier is used instead of array multiplier. The
block diagram of Floating point RNS multiplier is shown
in Figure 5.

Figure 5. Block Diagram of Floating Point RNS Mul-

tiplier

C. Modulo-M adder:

The Modulo-M adder forms the basic arithmetic unit for
any RNS operation or RNS conversion [1]. According to
it, the modulo-m addition is done as follows

Figure 6. Modulo-M adder architecture

The adder structure can be any conventional adder that
can be used like a ripple carry adder (RCA), a carry look
ahead adder or any parallel prefix tree. Kogge-Stone ad-
der [1], a parallel prefix adder is used here.

D. Modulo-M multiplier:

For residue multiplication modulo multiplier is designed
using Vedic multiplier. When 23-bit binary mantissa is
converted into RNS, the residues each of 16-bits are ob-
tained. So 16-bit Vedic multiplier is used.

Figure 7. Modulo-M multiplier using Vedic Multiplier

Suppose A, B and m are each represented in n bits. Then
AB is 2n bits wide, and m = 2n-c, where 1 ≤ c < 2n -1. If we
split AB into an upper half, U, and a lower half, L, then

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 2 (2015), Issue No: 10 (October) October 2015
 www.ijmetmr.com Page 93

Application of this last equation requires another multi-
plication, but, given that ‘c’ will generally be small (c=1
for modulo 65535, 0 for modulo 65536 and -1 for modulo
65537), this operation need not be costly.

E. Floating Point RNS MAC:

Implementation of Floating point RNS MAC unit requires
Floating point RNS multiplier, Adder, and accumulator. It
takes floating point data and performs sequence of mul-
tiplication and addition. The products generated by the
multiplier are added and stored in accumulator. 32 bit
floating point adder is used to add the products generated
by multiplier.

IV. Implementation of floating FIR filter using
Floating point RNS MAC:

Finite Impulse Response (FIR) filters are widely used in
various DSP applications. FIR filter is implemented as a
series of multiply and accumulate operations [6]. Figure
8 shows N- tap FIR filter. The output of FIR filter is de-
scribed by the following equation

y(n)=a0x(n)+a1x(n-1)+…..aN-1x(n-N)

Figure 8. N-tap FIR filter

x(n) and filter coefficients are given as inputs to filter.
Output y(n) is the sum of product of every multiplier.
Here Z-1 represents unit delay, provided by D flip-flops.

V. Results:

Design is coded in Verilog HDL, synthesized using Xilinx
13.1. Simulation results for Floating point RNS multipli-
er are shown in Figure 9, Simulation results for Floating
point RNS MAC, 8-tap FIR filter are shown in Figure 10
and Figure 11 respectively.

Figure 9. Simulation results for Floating point RNS
multiplier.

Figure 10. Simulation results for Floating point RNS
MAC .

Here, p1 represents multiplier output, ‘temp’ is a register
used to store previous MAC output, ‘product_final’ is the
MAC output. Inputs and corresponding outputs of MAC
in hexadecimal notation are shown in Table 1.

Table 1. Input/ output table for MAC:

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 2 (2015), Issue No: 10 (October) October 2015
 www.ijmetmr.com Page 92

B. Floating Point RNS Multiplier:

Floating Point in residue domain includes a RNS multi-
plier for mantissa and RNS modulo adder for exponent.
For large number of bits, the delay and area of residue
array multiplier is more [7]. In order to reduce the delay,
Vedic Multiplier is used instead of array multiplier. The
block diagram of Floating point RNS multiplier is shown
in Figure 5.

Figure 5. Block Diagram of Floating Point RNS Mul-

tiplier

C. Modulo-M adder:

The Modulo-M adder forms the basic arithmetic unit for
any RNS operation or RNS conversion [1]. According to
it, the modulo-m addition is done as follows

Figure 6. Modulo-M adder architecture

The adder structure can be any conventional adder that
can be used like a ripple carry adder (RCA), a carry look
ahead adder or any parallel prefix tree. Kogge-Stone ad-
der [1], a parallel prefix adder is used here.

D. Modulo-M multiplier:

For residue multiplication modulo multiplier is designed
using Vedic multiplier. When 23-bit binary mantissa is
converted into RNS, the residues each of 16-bits are ob-
tained. So 16-bit Vedic multiplier is used.

Figure 7. Modulo-M multiplier using Vedic Multiplier

Suppose A, B and m are each represented in n bits. Then
AB is 2n bits wide, and m = 2n-c, where 1 ≤ c < 2n -1. If we
split AB into an upper half, U, and a lower half, L, then

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 2 (2015), Issue No: 10 (October) October 2015
 www.ijmetmr.com Page 93

Application of this last equation requires another multi-
plication, but, given that ‘c’ will generally be small (c=1
for modulo 65535, 0 for modulo 65536 and -1 for modulo
65537), this operation need not be costly.

E. Floating Point RNS MAC:

Implementation of Floating point RNS MAC unit requires
Floating point RNS multiplier, Adder, and accumulator. It
takes floating point data and performs sequence of mul-
tiplication and addition. The products generated by the
multiplier are added and stored in accumulator. 32 bit
floating point adder is used to add the products generated
by multiplier.

IV. Implementation of floating FIR filter using
Floating point RNS MAC:

Finite Impulse Response (FIR) filters are widely used in
various DSP applications. FIR filter is implemented as a
series of multiply and accumulate operations [6]. Figure
8 shows N- tap FIR filter. The output of FIR filter is de-
scribed by the following equation

y(n)=a0x(n)+a1x(n-1)+…..aN-1x(n-N)

Figure 8. N-tap FIR filter

x(n) and filter coefficients are given as inputs to filter.
Output y(n) is the sum of product of every multiplier.
Here Z-1 represents unit delay, provided by D flip-flops.

V. Results:

Design is coded in Verilog HDL, synthesized using Xilinx
13.1. Simulation results for Floating point RNS multipli-
er are shown in Figure 9, Simulation results for Floating
point RNS MAC, 8-tap FIR filter are shown in Figure 10
and Figure 11 respectively.

Figure 9. Simulation results for Floating point RNS
multiplier.

Figure 10. Simulation results for Floating point RNS
MAC .

Here, p1 represents multiplier output, ‘temp’ is a register
used to store previous MAC output, ‘product_final’ is the
MAC output. Inputs and corresponding outputs of MAC
in hexadecimal notation are shown in Table 1.

Table 1. Input/ output table for MAC:

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 2 (2015), Issue No: 10 (October) October 2015
 www.ijmetmr.com Page 94

Figure 11. Simulation results for 8 tap FIR filter

Delay comparison of Floating point RNS MAC using ar-
ray multiplier and Vedic multiplier is shown in Table 2.
It shows that Vedic multiplier can be used to improve the
execution speed of Floating point RNS based MAC when
compared to array multiplier.

Table 2. Delay comparison of Floating point
RNS MAC using array multiplier and Vedic
multiplier:

VI. Conclusion:

Single precision (32-bit) floating point RNS based MAC
using Vedic multiplier is designed using Verilog HDL
and synthesized using Xilinx ISE 13.1. By using Residue
Number System parallel and carry free arithmetic can be
obtained. Using Urdhva Tiryakbhyam sutra, partial prod-
ucts can be generated in parallel. The speed comparison
of floating point RNS based MAC using array multiplier
and Vedic multiplier is presented. The results clearly show
that Vedic multiplier can be used to improve the execution
speed of Floating point RNS based MAC when compared
to array multiplier. An application of Floating point RNS
based MAC i.e. 8 tap FIR filter is implemented.

References:

[1] Dhanabal, R., et al, “Implementation of floating point
MAC using Residue Number System”, Optimization, Re-
liability, and Information Technology (ICROIT), 2014 In-
ternational Conference on, IEEE, pp. 461-465, Feb 2014.

[2] Ghosh, Aniruddha, Satrughna Singha, and Amitabha
Sinha, “Floating point RNS: a new concept for design-
ing the MAC unit of digital signal processor”, ACM SI-
GARCH Computer Architecture News, vol. 40, no. 2, pp.
39-43, May 2012.

[3] Omondi, Amos, and Benjamin Premkumar, “Residue
number systems: theory and implementation”, Imperial
College Press, 2007.

[4] Poornima, M., et al, “Implementation of multiplier us-
ing Vedic algorithm”, International Journal of Innovative
Technology and Exploring Engineering (IJITEE), vol. 6,
no. 6, pp. 219-223, May 2013.

[5] Rudagi, J. M., Vishwanath Ambli, Vishwanath Mu-
navalli, Ravindra Patil, and Vinaykumar Sajjan, “Design
and implementation of efficient multiplier using Vedic
mathematics”, pp.162-166, 2011.

[6] Borkar, Shraddha S., and Awani S. Khobragade. “Op-
timization of FIR digital filter using low power MAC”
International Journal of Computer Science & Engineering
Technology (IJCSET), vol. 2, no. 4, pp.1150-1154, April
2012.

[7] Singh, Avtar, and Srinivasan, “Digital signal process-
ing implementations: using DSP microprocessors with
examples from TMS320C54xx”, Ch. 2, CI-Engineering,
2004.

