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Abstract: 

FFT and IFFT algorithm plays an important role in 

design of digital signal processing. Thispaper 

describes the design of Decimation in Time-Fast 

Fourier Transform (DIT-FFT). The proposed design 

is implemented with radix-2, based 4 point FFT. 

Whereas digital multipliers are among the most 

critical arithmetic functional units.The overall 

performance of these systems depends on the 

throughput of the multiplier.Here a reliable 

multiplier with adaptive hold logic is used. This 

approach reduces the multiplicative complexity which 

exists in conventional FFT implementation. For the 

number representation of FFT fixed point arithmetic 

has been used. The design is implemented using 

Verilog HDL language. 

 

Keywords:DIT-FFT, Complex multiplication, 

Verilog, Radix-2, Adaptive Hold Logic. 

 

INTRODUCTION 

FFT and IFFT commonly used algorithm for 

processing signals. It can be used for WLAN, image 

process, spectrum measurements, radar and 

multimedia communication services. Now a days, FFT 

processors were using in wireless communication 

systemsthat are having fast execution and low power 

consumption. These are some most important 

constraints of FFT processor. Complex multiplication 

is main arithmetic operation used in FFT/IFFT blocks. 

This is the main issue in processor. It is time 

consuming and it consumes a large chip area and 

power. When large point FFT is to be designed, it 

increases the complexity. To reduce the complexity of 

the multiplication, there are two methods one simple 

method is to real and constant multiplications take the 

place of complex multiplication. The other method is 

non-trivial complex multiplication is wipe out by the 

twiddle factors and fulfils the processing with no 

complex multiplication.In our work FFT algorithm is 

implemented in radix 2. The basic idea of these 

algorithms is to divide the N-point FFT into smaller 

ones until two point FFT is obtained. Hence the 

algorithm is called radix-2 algorithm. Here the 

multiplier used is the reliable multiplier design using 

adaptive hold logic. In this again we use Row/Column 

Bypassing Techniques to reduce the Dynamic power 

and delay for the multiplication process.The paper is 

organized as follows. Section II describes radix 2 DIT 

FFT algorithm, and fixed point number representation, 

Section III describes the complex multiplication 

technique, section IV explains implementation of 4 

point FFT, Section V presents ASIC Synthesis results 

and Layout and the Last section concludes the design. 

 

Discrete Fourier Transform (DFT) 

The Fourier transform is mathematical method of 

changing time representation of signal into frequency 

representation. It transforms one function from time 

domain to frequency domain. The DFT of a input 

sequence x[n] can be computed using the formula 

given: 

 
 

Radix 2 DIT – FFT Algorithm 

The basic module for implementation is butterfly 

module which is shown in the fig 1. 
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Fig. 1 Radix-2 Structure 

 

There are two inputs called a, b and two outputs c, d 

and twiddle factor W. Output is as follows: 

𝐶 =  𝑎 + 𝑏𝑊   (3) 

𝐷 =  𝑎 –  𝑏𝑊   (4) 

 

With these butterfly units we can built whole FFT 

structure. If N is the input for FFT then stages are 

required, each stage requires N/2 butterflies. As we 

can see from above fig that one butterfly unit requires 

1 complex multiplier and 2 adders for executing single 

butterfly. For every DIT-FFT radix – 2 algorithms with 

N input sequence requires N/2 multipliers and N 

adders. 

 

Number representation 

For number representation of both real as well as 

imaginary fixed point scheme is followed so that we 

can reduce the complexity of using floating point 

arithmetic. The twiddle factor used is in complex form 

real and imaginary. To represent this number we are 

multiplying these numbers by scaling factor which is 

where s N. So that twiddle factor is rounded up in 

integer number. For complex multiplication we require 

twiddle factor magnitude and sign bit so s+1 bit are 

required to represent twiddle factor. As the input given 

to the design can also be in floating form then we can 

apply the same scheme of rounding up input in the 

integer. As we are scaling up the input or twiddle 

factor we have to scale down the signals at the output 

and we have to accept some rounding errors. Simple 

way for scaling down is by multiplying or using 

shifting operation. It is as simple as we are multiplying 

one no with something and dividing the same number 

we will get the original number. 

COMPLEX MULTIPLIER  

Here FFT is implemented by using the proposed 

multiplier.An Aging-aware reliable multiplier design 

with adaptive hold logic (AHL) is used for 

multiplication.  This multiplier is based on the 

variable-latency technique and can adjust the AHL 

circuit to achieve reliable operation under the influence 

of NBTI and PBTI effects. To be specific, the 

contributions of this multiplier are summarized as 

follows: 

1) variable-latency multiplier architecture with an 

AHLcircuit [4]. 

2) A reliable multiplier design method that is suitable 

for large multipliers. The experiment is performed in 

4, 16, 32 and 64-bit multiplications. 

3) An FFT was designed by using this multiplier. 

 

Column bypassing and Row Bypassing Multiplier 

The column bypassing multiplier [5] is constructed 

asfollows. First, the modified FA cell will be designed. 

If aj= 0, the FA will be disabled. For an Array 

multiplier, there are only two inputs for each FA in the 

firstrow (i.e., row 0). Therefore, when aj= 0, the two 

input ofFA0,jare disabled, and thus it output carry bit 

will not bechanged. Therefore, all three inputs of 

FA1,jare fixed, whichprohibit its output from 

changing. 

 
Fig.2Column Bypassing Multiplier 

 

Figure 2 shows the 4×4 array structure of the 

proposed column-bypassing multiplier. In the 

bottom of the CSA array,we need to set the carry 
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outputs to be 0. Otherwise, thecorresponding FA’s 

may not produce the correct outputssince their 

inputs are disabled. This is done by adding 

anAND gate at the outputs of the last-row CSA 

adders. 

 

The Row bypassing multiplier [6] reduces the 

switching activity by bypassing the row in which 

the multiplicand bit is zero. That means in the 

multiplier if a bit is zero then that row of adders 

will get disabled. For example, consider the 

multiplication of 1011 x 1010. Here the multiplier 

consists of zero in first and third positions. During 

multiplication the first and third row of adders get 

disabled and previous sum is taken as the present 

sum. In this adding cell the three state gate will 

enabled only when Xj =1 and then the adder will 

get input. If Xj =0 then the previous sum and 

carry only will be taken as the present sum and 

carry. Thus row bypassing can be done by this 

adding cell (AC). 

 

In this way the switching activity can be reduced 

if the multiplicand bit is zero. Thus switching 

activity in row bypassing multiplier is less than 

that of Braun multiplier. 

 
Fig.3 Row bypassing Multiplier 

 

But the only disadvantage of this row bypassing 

multiplier is that it needs extra circuitry than 

Braun multiplier. This limitation can be overcome 

by the column bypass multiplier. 

 

Razor Flip Flop 

The key idea of Razor [7] is to purposely operate 

the circuit at sub-critical voltage and tune the 

operating voltage by monitoring the error rate. 

This eliminates the need for conservative voltage 

margins. In order to detect an error at the circuit 

level, each flip-flop is augmented by a shadow 

flip-flop, which is clocked by a delayed clock. If 

the combinational logic meets the setup time of 

the main flip-flop, then the main and delayed flip-

flops will latch the same value. In this case, the 

error signal remains low. If the setup time of the 

main flip-flop is not met, then the main flip-flop 

will latch a value that is different from the shadow 

flip-flop. 

 
Fig.4 Razer flip-flop 

 

To guarantee that the shadow flip-flop always 

latches the input data correctly, the input voltage 

is constrained such that under the worst-case 

condition, the logic delay does not exceed the 

shadow flip-flop’s setup time. The circuit is 

shown in Figure 4. 
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Adaptive Hold Logic 

The Adaptive Hold Logic (AHL) circuit is the 

main concept in this reliable multiplier. Fig 5 

shows the components in the AHL circuit.The key 

components contained in the AHL circuit includes  

a. Judging Blocks  

b. D Flip-Flop  

c. 2x1 Multiplexer  

d. Aging Indicator  

The Adaptive Hold Logic (AHL) circuit will decide 

whether the input patterns require one or two cycles to 

compute the operation with minimum performance 

degradation after considerable aging effect occurs. 

 

Aging Indicator 

The Aging Indicator indicates that whether the circuit 

has suffered any performance degradation due to aging 

effects. The aging indicator is implemented by using a 

counter that counts the total number of errors per 

certain amount of operations and it reset to zero at the 

end of those operations. The operations may be 

including multiplication or addition. The aging effect 

is not significant in the beginning, so the aging 

indicator produces output as 0. If errors happen 

frequently and exceed a predefined threshold, it means 

the circuit has suffered significant timing degradation 

due to the aging effect, and the aging indicator will 

output signal 1; otherwise, it will output 0 to indicate 

the aging effect is still not significant, and no actions 

are needed. 

 

Judging Blocks 

There are two judging blocks in Adaptive Hold Logic 

(AHL) circuits. The 1st judging block will generate an 

output as 1 if the number of zeros in the input 

sequence is larger than n. If the number of zeros in the 

input sequence is larger than n+1 then the output of the 

2nd judging block is 1.but only one of them will be 

chosen at a time. The value of n is defined by the user 

[2], [3]. In the beginning, the aging indicator produces 

0, so the first judging block is used. After a period of 

time when the aging effect becomes significant, the 

second judging block is chosen. Compared with the 

first judging block, the second judging block allows a 

smaller number of patterns to become one-cycle 

patterns because it requires more zeros in the 

multiplicand (multiplicator). 

 

The operation of Adaptive Hold Logic (AHL) circuit 

are as follows: when an input sequence is given, both 

the judging blocks will decide whether the sequence 

requires one cycle or two cycle to complete their 

operation and pass both results to the multiplexer. 

 
Fig.5 Adaptive Hold Logic 

 

The multiplexer selects one of either result based 

on the output of the Aging Indicator. The result of 

the multiplexer and the output signal to the D flip-

flop is ORed. This output of the OR operation is 

used to determine as the input of the D flip-flop. 

When the input sequence requires one cycle, the 

output of the multiplexer is 1. The! (gating) signal 

will become 1 and the input flip-flops will latch 

new data to perform operation in the next cycle. If 

the output of the multiplexer is 0 which means the 

input sequence requires two cycles to complete its 

operation. The OR gate will output 0 to the D flip-

flop. Thus, to disabled the clock signal of the 

input flip-flops in the next cycle the !(gating) 

signal will become 0. Only one cycle of the input 

flip flop will be disabled because the D flip-flop 

will latch 1 in the next cycle. 
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PROPOSED ARCHITECTURE 

Fig. 6 shows our proposed aging-aware multiplier 

architecture [1], which includes two m-bit inputs 

(m is a positive number), one 2m-bit output, one 

column- or row-bypassing multiplier, 2m 1-bit 

Razor flip-flops, and an AHL circuit. The inputs 

of the row-bypassing multiplier are the symbols in 

the parentheses.  

 
Fig. 6 Proposed Architecture 

 

In the proposed architecture, the column- and 

row-bypassing multipliers can be examined by the 

number of zeros in either the multiplicand or 

multiplicator to predict whether the operation 

requires one cycle or two cycles to complete. 

Hence, the two aging-aware multipliers can be 

implemented using similar architecture, and the 

difference between the two bypassing multipliers 

lies in the input signals of the AHL. According to 

the bypassing selection in the column or row-

bypassing multiplier, the input signal of the AHL 

in the architecture with the column-bypassing 

multiplier is the multiplicand, whereas that of the 

row-bypassing multiplier is the multiplicator. 

Razor flip-flops can be used to detect whether 

timing violations occur before the next input 

pattern arrives. The overall flow of our proposed 

architecture is as follows: when input patterns 

arrive, the column- or row-bypassing multiplier, 

and the AHL circuit execute simultaneously. 

According to the number of zeros in the 

multiplicand (multiplicator), the AHL circuit 

decides if the input patterns require one or two 

cycles. If the input pattern requires two cycles to 

complete, the AHL will output 0 to disable the 

clock signal of the flip-flops. Otherwise, the AHL 

will output 1 for normal operations. When the 

column- or row-bypassing multiplier finishes the 

operation, the result will be passed to the Razor 

flip-flops. The Razor flip-flops check whether 

there is the path delay timing violation. If timing 

violations occur, it means the cycle period is not 

long enough for the current operation to complete 

and that the execution result of the multiplier is 

incorrect. Thus, the Razor flip-flops will output an 

error to inform the system that the current 

operation needs to be reexecuted using two cycles 

to ensure the operation is correct. In this situation, 

the extra reexecution cycles caused by timing 

violation incurs a penalty to overall average 

latency. However, our proposed AHL circuit can 

accurately predict whether the input patterns 

require one or two cycles in most cases. Only a 

few input patterns may cause a timing variation 

when the AHL circuit judges incorrectly. In this 

case, the extra reexecution cycles did not produce 

significant timing degradation.Most tedious part 

in FFT is the complex multiplication. Therefore, 

we need correct solution for executing complex 

multiplications. Complex numbers are divided 

into two parts real and imaginary. Say 𝑎𝑟 + 𝑗𝑏 is 

a complex number which is again multiplied by 

complex number cr +jd. 

𝑎𝑟 +  𝑗𝑏    (5) 

𝑐𝑟 +  𝑗𝑑    (6) 

By multiplying these equations, we will get 

( 𝑎𝑐 −  𝑏𝑑)  +  𝑗 (𝑏𝑐 +  𝑎𝑑)  (7) 
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Another method for complex multiplication is 

shift and add for nontrivial twiddle factor 

multiplication. In radix-2 4 point FFT algorithm, 

the twiddle factor multiplication with 𝑊4
2=-j and 

factors is trivial, multiplication with easily can be 

done by exchanging real to imaginary part and 

vice versa,by changing the sign of real and 

imaginary numbers. 

 

4-POINT RADIX-2 DIT-FFT 

The 4-point decimation-in-time (DIT) FFT 

algorithm computes the final output in two stages 

[8]. The four input time samples are first divided 

(or decimated) into two groups of 2-point DFTs. 

The two 2-point DFTs are then combined into 4-

point DFT. This was the final output X(k). The 

detailed process is shown in Figure 7, where all 

the multiplications and additions are shown. Note 

that the basic two-point DFT butterfly operation 

forms the basis for all computation. The 

computation is done in two stages. After the first 

stage computation is complete, there is no need to 

store any previous results. The first stage outputs 

can be stored in the same registers which 

originally held the time samples x(n). Similarly, 

when the second stage computation is completed, 

the results of the first stage computation can be 

deleted. In this way, in-placecomputation 

proceeds to the final stage. 

 

The Flow graph for DIT- FFT decomposition for 

4 point is shown in the below figure 

 
Fig 7: 4 point FFT Structure 

The simulation output for the FFT is shown below 

 
Fig 8: Simulation result of 4 point FFT 

 

ASIC SYNTHESIS RESULTS AND LAYOUT 

We have designed4 x 4, 16× 16, 32×32 and 64x64 

for Array Multiplier, Fixed Latency Column 

bypassing Multiplier, Fixed Latency Row 

bypassing Multiplier, Variable latency Column 

bypassing Multiplier and Variable Latency 

Column bypassing Multiplier. 

 

A 4 point FFT was also implemented by using 

these multipliers.All the designs are synthesized in 

the Cadence RTL Compiler (RTL) using 180-nm 

CMOS library. The netlist file was extracted from 

RTL Compiler. 

 

Area Comparison 

Fig. 9 compares the normalized area of the AM, 

FLCB,A-VLCB, FLRB, and A-VLRB in 4x4, 16× 

16, 32×32 and 64x64 multipliers. The data are 

normalized to the area of the AM. Inthe 16×16 

multiplier, the area of the A-VLCB and A-VLRB 

is26% and 22.9% higher than FLCB and FLRB. 

In the 32×32multiplier, the area of the A-VLCB 

and A-VLRB is 14.5% and12.8% higher than that 

of the FLCB and FLRB.In the 64 × 64 multiplier, 

the area of the A-VLCB and A-VLRB is 0.08/% 

and 0.06% higher than FLCB and FLRB, 

respectively. This is because when a fixed-latency 

bypassing multiplier ischanged to a variable-

latencybypassing multiplier, additionalcircuits are 
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needed for AHL and Razor flip-flops to ensure 

thecorrect operations of the multiplier after 

degradation. Note thatthe increased area overhead 

ratio of the 64 × 64 A-VLCB andA-VLRB is 

much smaller than that of the 32×32 A-VLCB 

andA-VLRB and is smaller than that of the 16×16 

A-VLCBand A-VLRB. This is becauseAHL and 

Razor flip-flops bothoccupy a smaller area ratio in 

larger multipliers. 

 
Fig 9 Normalized Area Comparison 

 

Power Comparison 

This is because the fixed- latency multiplier uses 

the bypassing techniques to reduce power 

consumption. Compared with the fixed-latency 

multiplier, the variable-latency multiplier has 

higher power due to more complicated circuits. 

However, the variable-latency multiplier still has 

less power than that of the AM because it uses 

both the clocking gating and a bypassing power 

reduction technique. Moreover, the power of the 

16 × 16 A-VLRB is larger than that of the 16 × 16 

A-VLCB. This is because the row-bypassing 

multiplier is more complicated than the column-

bypassing multiplier and because the area 

overhead of the row-bypassing multipliers is 

larger than that of the column-bypassing 

multipliers, which results in more power 

consumption.  

 
Fig 10: Normalized Power Comparison 

 

Layout 

The below figure shows the layout of 64x64 Variable 

Latency Column bypassing Multiplier. The layout was 

generated by using Cadence Encounter Tool. 

 
Fig 11: Layout for 64 x 64 Variable Latency Column 

bypassing Multiplier 

 

CONCLUSION 

In this paper, a 4-point DIT-FFT processor is 

implemented using radix-2. This helps in reducing 

the complex multiplications. This paper also 

describes how to avoid floating point arithmetic 

for implementation of FFT.The complex 
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multiplication is implemented by using a reliable 

multiplier with AHL Circuit. In future, the work 

can be extended to the N bit variable input signals. 

The implemented design can be used as a basic 

block for further computation. The pipelined 

architecture can also be added to FFT for 

providing fast and better performance. The 

proposed processor can be integrated with other 

components which can be used as a stand-alone 

processor for many applications. 
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