

 Page 1178

FFT Design Using Reliable Multiplier with Adaptive Hold Logic

A V V Hanuman Sai Krishna

PG Scholar in VLSI Design,

Department of ECE,

Dhanekula Institute of Engineering & Technology,

Ganguru, Krishna Dist., Andhra Pradesh, India.

A Sivannarayana

Assistant Professor,

Department of ECE,

Dhanekula Institute of Engineering & Technology,

Ganguru, Krishna Dist., Andhra Pradesh, India.

Abstract:

FFT and IFFT algorithm plays an important role in

design of digital signal processing. Thispaper

describes the design of Decimation in Time-Fast

Fourier Transform (DIT-FFT). The proposed design

is implemented with radix-2, based 4 point FFT.

Whereas digital multipliers are among the most

critical arithmetic functional units.The overall

performance of these systems depends on the

throughput of the multiplier.Here a reliable

multiplier with adaptive hold logic is used. This

approach reduces the multiplicative complexity which

exists in conventional FFT implementation. For the

number representation of FFT fixed point arithmetic

has been used. The design is implemented using

Verilog HDL language.

Keywords:DIT-FFT, Complex multiplication,

Verilog, Radix-2, Adaptive Hold Logic.

INTRODUCTION

FFT and IFFT commonly used algorithm for

processing signals. It can be used for WLAN, image

process, spectrum measurements, radar and

multimedia communication services. Now a days, FFT

processors were using in wireless communication

systemsthat are having fast execution and low power

consumption. These are some most important

constraints of FFT processor. Complex multiplication

is main arithmetic operation used in FFT/IFFT blocks.

This is the main issue in processor. It is time

consuming and it consumes a large chip area and

power. When large point FFT is to be designed, it

increases the complexity. To reduce the complexity of

the multiplication, there are two methods one simple

method is to real and constant multiplications take the

place of complex multiplication. The other method is

non-trivial complex multiplication is wipe out by the

twiddle factors and fulfils the processing with no

complex multiplication.In our work FFT algorithm is

implemented in radix 2. The basic idea of these

algorithms is to divide the N-point FFT into smaller

ones until two point FFT is obtained. Hence the

algorithm is called radix-2 algorithm. Here the

multiplier used is the reliable multiplier design using

adaptive hold logic. In this again we use Row/Column

Bypassing Techniques to reduce the Dynamic power

and delay for the multiplication process.The paper is

organized as follows. Section II describes radix 2 DIT

FFT algorithm, and fixed point number representation,

Section III describes the complex multiplication

technique, section IV explains implementation of 4

point FFT, Section V presents ASIC Synthesis results

and Layout and the Last section concludes the design.

Discrete Fourier Transform (DFT)

The Fourier transform is mathematical method of

changing time representation of signal into frequency

representation. It transforms one function from time

domain to frequency domain. The DFT of a input

sequence x[n] can be computed using the formula

given:

Radix 2 DIT – FFT Algorithm

The basic module for implementation is butterfly

module which is shown in the fig 1.

 Page 1179

Fig. 1 Radix-2 Structure

There are two inputs called a, b and two outputs c, d

and twiddle factor W. Output is as follows:

𝐶 = 𝑎 + 𝑏𝑊 (3)

𝐷 = 𝑎 – 𝑏𝑊 (4)

With these butterfly units we can built whole FFT

structure. If N is the input for FFT then stages are

required, each stage requires N/2 butterflies. As we

can see from above fig that one butterfly unit requires

1 complex multiplier and 2 adders for executing single

butterfly. For every DIT-FFT radix – 2 algorithms with

N input sequence requires N/2 multipliers and N

adders.

Number representation

For number representation of both real as well as

imaginary fixed point scheme is followed so that we

can reduce the complexity of using floating point

arithmetic. The twiddle factor used is in complex form

real and imaginary. To represent this number we are

multiplying these numbers by scaling factor which is

where s N. So that twiddle factor is rounded up in

integer number. For complex multiplication we require

twiddle factor magnitude and sign bit so s+1 bit are

required to represent twiddle factor. As the input given

to the design can also be in floating form then we can

apply the same scheme of rounding up input in the

integer. As we are scaling up the input or twiddle

factor we have to scale down the signals at the output

and we have to accept some rounding errors. Simple

way for scaling down is by multiplying or using

shifting operation. It is as simple as we are multiplying

one no with something and dividing the same number

we will get the original number.

COMPLEX MULTIPLIER

Here FFT is implemented by using the proposed

multiplier.An Aging-aware reliable multiplier design

with adaptive hold logic (AHL) is used for

multiplication. This multiplier is based on the

variable-latency technique and can adjust the AHL

circuit to achieve reliable operation under the influence

of NBTI and PBTI effects. To be specific, the

contributions of this multiplier are summarized as

follows:

1) variable-latency multiplier architecture with an

AHLcircuit [4].

2) A reliable multiplier design method that is suitable

for large multipliers. The experiment is performed in

4, 16, 32 and 64-bit multiplications.

3) An FFT was designed by using this multiplier.

Column bypassing and Row Bypassing Multiplier

The column bypassing multiplier [5] is constructed

asfollows. First, the modified FA cell will be designed.

If aj= 0, the FA will be disabled. For an Array

multiplier, there are only two inputs for each FA in the

firstrow (i.e., row 0). Therefore, when aj= 0, the two

input ofFA0,jare disabled, and thus it output carry bit

will not bechanged. Therefore, all three inputs of

FA1,jare fixed, whichprohibit its output from

changing.

Fig.2Column Bypassing Multiplier

Figure 2 shows the 4×4 array structure of the

proposed column-bypassing multiplier. In the

bottom of the CSA array,we need to set the carry

 Page 1180

outputs to be 0. Otherwise, thecorresponding FA’s

may not produce the correct outputssince their

inputs are disabled. This is done by adding

anAND gate at the outputs of the last-row CSA

adders.

The Row bypassing multiplier [6] reduces the

switching activity by bypassing the row in which

the multiplicand bit is zero. That means in the

multiplier if a bit is zero then that row of adders

will get disabled. For example, consider the

multiplication of 1011 x 1010. Here the multiplier

consists of zero in first and third positions. During

multiplication the first and third row of adders get

disabled and previous sum is taken as the present

sum. In this adding cell the three state gate will

enabled only when Xj =1 and then the adder will

get input. If Xj =0 then the previous sum and

carry only will be taken as the present sum and

carry. Thus row bypassing can be done by this

adding cell (AC).

In this way the switching activity can be reduced

if the multiplicand bit is zero. Thus switching

activity in row bypassing multiplier is less than

that of Braun multiplier.

Fig.3 Row bypassing Multiplier

But the only disadvantage of this row bypassing

multiplier is that it needs extra circuitry than

Braun multiplier. This limitation can be overcome

by the column bypass multiplier.

Razor Flip Flop

The key idea of Razor [7] is to purposely operate

the circuit at sub-critical voltage and tune the

operating voltage by monitoring the error rate.

This eliminates the need for conservative voltage

margins. In order to detect an error at the circuit

level, each flip-flop is augmented by a shadow

flip-flop, which is clocked by a delayed clock. If

the combinational logic meets the setup time of

the main flip-flop, then the main and delayed flip-

flops will latch the same value. In this case, the

error signal remains low. If the setup time of the

main flip-flop is not met, then the main flip-flop

will latch a value that is different from the shadow

flip-flop.

Fig.4 Razer flip-flop

To guarantee that the shadow flip-flop always

latches the input data correctly, the input voltage

is constrained such that under the worst-case

condition, the logic delay does not exceed the

shadow flip-flop’s setup time. The circuit is

shown in Figure 4.

 Page 1181

Adaptive Hold Logic

The Adaptive Hold Logic (AHL) circuit is the

main concept in this reliable multiplier. Fig 5

shows the components in the AHL circuit.The key

components contained in the AHL circuit includes

a. Judging Blocks

b. D Flip-Flop

c. 2x1 Multiplexer

d. Aging Indicator

The Adaptive Hold Logic (AHL) circuit will decide

whether the input patterns require one or two cycles to

compute the operation with minimum performance

degradation after considerable aging effect occurs.

Aging Indicator

The Aging Indicator indicates that whether the circuit

has suffered any performance degradation due to aging

effects. The aging indicator is implemented by using a

counter that counts the total number of errors per

certain amount of operations and it reset to zero at the

end of those operations. The operations may be

including multiplication or addition. The aging effect

is not significant in the beginning, so the aging

indicator produces output as 0. If errors happen

frequently and exceed a predefined threshold, it means

the circuit has suffered significant timing degradation

due to the aging effect, and the aging indicator will

output signal 1; otherwise, it will output 0 to indicate

the aging effect is still not significant, and no actions

are needed.

Judging Blocks

There are two judging blocks in Adaptive Hold Logic

(AHL) circuits. The 1st judging block will generate an

output as 1 if the number of zeros in the input

sequence is larger than n. If the number of zeros in the

input sequence is larger than n+1 then the output of the

2nd judging block is 1.but only one of them will be

chosen at a time. The value of n is defined by the user

[2], [3]. In the beginning, the aging indicator produces

0, so the first judging block is used. After a period of

time when the aging effect becomes significant, the

second judging block is chosen. Compared with the

first judging block, the second judging block allows a

smaller number of patterns to become one-cycle

patterns because it requires more zeros in the

multiplicand (multiplicator).

The operation of Adaptive Hold Logic (AHL) circuit

are as follows: when an input sequence is given, both

the judging blocks will decide whether the sequence

requires one cycle or two cycle to complete their

operation and pass both results to the multiplexer.

Fig.5 Adaptive Hold Logic

The multiplexer selects one of either result based

on the output of the Aging Indicator. The result of

the multiplexer and the output signal to the D flip-

flop is ORed. This output of the OR operation is

used to determine as the input of the D flip-flop.

When the input sequence requires one cycle, the

output of the multiplexer is 1. The! (gating) signal

will become 1 and the input flip-flops will latch

new data to perform operation in the next cycle. If

the output of the multiplexer is 0 which means the

input sequence requires two cycles to complete its

operation. The OR gate will output 0 to the D flip-

flop. Thus, to disabled the clock signal of the

input flip-flops in the next cycle the !(gating)

signal will become 0. Only one cycle of the input

flip flop will be disabled because the D flip-flop

will latch 1 in the next cycle.

 Page 1182

PROPOSED ARCHITECTURE

Fig. 6 shows our proposed aging-aware multiplier

architecture [1], which includes two m-bit inputs

(m is a positive number), one 2m-bit output, one

column- or row-bypassing multiplier, 2m 1-bit

Razor flip-flops, and an AHL circuit. The inputs

of the row-bypassing multiplier are the symbols in

the parentheses.

Fig. 6 Proposed Architecture

In the proposed architecture, the column- and

row-bypassing multipliers can be examined by the

number of zeros in either the multiplicand or

multiplicator to predict whether the operation

requires one cycle or two cycles to complete.

Hence, the two aging-aware multipliers can be

implemented using similar architecture, and the

difference between the two bypassing multipliers

lies in the input signals of the AHL. According to

the bypassing selection in the column or row-

bypassing multiplier, the input signal of the AHL

in the architecture with the column-bypassing

multiplier is the multiplicand, whereas that of the

row-bypassing multiplier is the multiplicator.

Razor flip-flops can be used to detect whether

timing violations occur before the next input

pattern arrives. The overall flow of our proposed

architecture is as follows: when input patterns

arrive, the column- or row-bypassing multiplier,

and the AHL circuit execute simultaneously.

According to the number of zeros in the

multiplicand (multiplicator), the AHL circuit

decides if the input patterns require one or two

cycles. If the input pattern requires two cycles to

complete, the AHL will output 0 to disable the

clock signal of the flip-flops. Otherwise, the AHL

will output 1 for normal operations. When the

column- or row-bypassing multiplier finishes the

operation, the result will be passed to the Razor

flip-flops. The Razor flip-flops check whether

there is the path delay timing violation. If timing

violations occur, it means the cycle period is not

long enough for the current operation to complete

and that the execution result of the multiplier is

incorrect. Thus, the Razor flip-flops will output an

error to inform the system that the current

operation needs to be reexecuted using two cycles

to ensure the operation is correct. In this situation,

the extra reexecution cycles caused by timing

violation incurs a penalty to overall average

latency. However, our proposed AHL circuit can

accurately predict whether the input patterns

require one or two cycles in most cases. Only a

few input patterns may cause a timing variation

when the AHL circuit judges incorrectly. In this

case, the extra reexecution cycles did not produce

significant timing degradation.Most tedious part

in FFT is the complex multiplication. Therefore,

we need correct solution for executing complex

multiplications. Complex numbers are divided

into two parts real and imaginary. Say 𝑎𝑟 + 𝑗𝑏 is

a complex number which is again multiplied by

complex number cr +jd.

𝑎𝑟 + 𝑗𝑏 (5)

𝑐𝑟 + 𝑗𝑑 (6)

By multiplying these equations, we will get

(𝑎𝑐 − 𝑏𝑑) + 𝑗 (𝑏𝑐 + 𝑎𝑑) (7)

 Page 1183

Another method for complex multiplication is

shift and add for nontrivial twiddle factor

multiplication. In radix-2 4 point FFT algorithm,

the twiddle factor multiplication with 𝑊4
2=-j and

factors is trivial, multiplication with easily can be

done by exchanging real to imaginary part and

vice versa,by changing the sign of real and

imaginary numbers.

4-POINT RADIX-2 DIT-FFT

The 4-point decimation-in-time (DIT) FFT

algorithm computes the final output in two stages

[8]. The four input time samples are first divided

(or decimated) into two groups of 2-point DFTs.

The two 2-point DFTs are then combined into 4-

point DFT. This was the final output X(k). The

detailed process is shown in Figure 7, where all

the multiplications and additions are shown. Note

that the basic two-point DFT butterfly operation

forms the basis for all computation. The

computation is done in two stages. After the first

stage computation is complete, there is no need to

store any previous results. The first stage outputs

can be stored in the same registers which

originally held the time samples x(n). Similarly,

when the second stage computation is completed,

the results of the first stage computation can be

deleted. In this way, in-placecomputation

proceeds to the final stage.

The Flow graph for DIT- FFT decomposition for

4 point is shown in the below figure

Fig 7: 4 point FFT Structure

The simulation output for the FFT is shown below

Fig 8: Simulation result of 4 point FFT

ASIC SYNTHESIS RESULTS AND LAYOUT

We have designed4 x 4, 16× 16, 32×32 and 64x64

for Array Multiplier, Fixed Latency Column

bypassing Multiplier, Fixed Latency Row

bypassing Multiplier, Variable latency Column

bypassing Multiplier and Variable Latency

Column bypassing Multiplier.

A 4 point FFT was also implemented by using

these multipliers.All the designs are synthesized in

the Cadence RTL Compiler (RTL) using 180-nm

CMOS library. The netlist file was extracted from

RTL Compiler.

Area Comparison

Fig. 9 compares the normalized area of the AM,

FLCB,A-VLCB, FLRB, and A-VLRB in 4x4, 16×

16, 32×32 and 64x64 multipliers. The data are

normalized to the area of the AM. Inthe 16×16

multiplier, the area of the A-VLCB and A-VLRB

is26% and 22.9% higher than FLCB and FLRB.

In the 32×32multiplier, the area of the A-VLCB

and A-VLRB is 14.5% and12.8% higher than that

of the FLCB and FLRB.In the 64 × 64 multiplier,

the area of the A-VLCB and A-VLRB is 0.08/%

and 0.06% higher than FLCB and FLRB,

respectively. This is because when a fixed-latency

bypassing multiplier ischanged to a variable-

latencybypassing multiplier, additionalcircuits are

 Page 1184

needed for AHL and Razor flip-flops to ensure

thecorrect operations of the multiplier after

degradation. Note thatthe increased area overhead

ratio of the 64 × 64 A-VLCB andA-VLRB is

much smaller than that of the 32×32 A-VLCB

andA-VLRB and is smaller than that of the 16×16

A-VLCBand A-VLRB. This is becauseAHL and

Razor flip-flops bothoccupy a smaller area ratio in

larger multipliers.

Fig 9 Normalized Area Comparison

Power Comparison

This is because the fixed- latency multiplier uses

the bypassing techniques to reduce power

consumption. Compared with the fixed-latency

multiplier, the variable-latency multiplier has

higher power due to more complicated circuits.

However, the variable-latency multiplier still has

less power than that of the AM because it uses

both the clocking gating and a bypassing power

reduction technique. Moreover, the power of the

16 × 16 A-VLRB is larger than that of the 16 × 16

A-VLCB. This is because the row-bypassing

multiplier is more complicated than the column-

bypassing multiplier and because the area

overhead of the row-bypassing multipliers is

larger than that of the column-bypassing

multipliers, which results in more power

consumption.

Fig 10: Normalized Power Comparison

Layout

The below figure shows the layout of 64x64 Variable

Latency Column bypassing Multiplier. The layout was

generated by using Cadence Encounter Tool.

Fig 11: Layout for 64 x 64 Variable Latency Column

bypassing Multiplier

CONCLUSION

In this paper, a 4-point DIT-FFT processor is

implemented using radix-2. This helps in reducing

the complex multiplications. This paper also

describes how to avoid floating point arithmetic

for implementation of FFT.The complex

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

4x4 Multiplier 16x16 Multiplier 32x32 Multiplier 64x64 Multiplier

N
o
rm

a
li

ze
d

 A
re

a

AM FLCB FLRB VLCB VLRB
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

4x4 Multiplier 16x16 Multiplier 32x32 Multiplier 64x64 Multiplier

N
o

r
m

a
li

z
e
d

 P
o

w
e
r
 (

u
W

)

AM FLCB VLCB FLRB VLRB

 Page 1185

multiplication is implemented by using a reliable

multiplier with AHL Circuit. In future, the work

can be extended to the N bit variable input signals.

The implemented design can be used as a basic

block for further computation. The pipelined

architecture can also be added to FFT for

providing fast and better performance. The

proposed processor can be integrated with other

components which can be used as a stand-alone

processor for many applications.

REFERENCES

1. Ing-Chao Lin, Yu-Hung Cho , Yi-Ming Yang

“Aging-Aware Reliable Multiplier Design With

Adaptive Hold Logic” in IEEE Transactions on Very

Large Scale Integration (VLSI) SYSTEMS 1063-8210

2014

2. K. Du, P. Varman, and K. Mohanram, “High

performance reliable variable latency carry select

addition,” inProc. DATE, 2012,pp. 1257–1262.

3. A. K. Verma, P. Brisk, and P. Ienne, “Variable

latency speculative addition: A new paradigm for

arithmetic circuit design,” inProc. DATE,2008, pp.

1250–1255.

4. Y.-S. Su, D.-C. Wang, S.-C. Chang, and M. Marek-

Sadowska, “Performance optimization using variable-

latency design style,” IEEETrans. Very Large Scale

Integr. (VLSI) Syst., vol. 19, no. 10,pp. 1874–1883,

Oct. 2011.

5. M.-C. Wen, S.-J. Wang, and Y.-N. Lin, “Low power

parallel multiplier with column bypassing,” in Proc.

IEEE ISCAS, May 2005, pp. 1638–1641.

6. J. Ohban, V. G. Moshnyaga, and K. Inoue,

“Multiplier energy reduction through bypassing of

partial products,” inProc. APCCAS, 2002,pp. 13–17.

7. D. Ernstet al., “Razor: A low-power pipeline based

on circuit-leveltiming speculation,” inProc. 36th

Annu.IEEE/ACM MICRO, Dec. 2003,pp. 7–18.

8. Neha V. Mahajan, Dr. J. S. Chitode “Simple

Computation of DIT FFT” in ijarcsse, Volume 4, Issue

5, May 2014

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Ing-Chao%20Lin.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Yu-Hung%20Cho.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Yi-Ming%20Yang.QT.&newsearch=true

