

 Page 1327

Adaptive Power Reduction in L2 Cache System Using Way-Tag

Information under Write through Policy

B.Prathibha

PG Scholar

Vaagdevi College of Engineering

Warangal.

Jyothirmai Palle

Assistant Professor

Vaagdevi College of Engineering

Warangal.

Abstract:

In this paper we are going to increase the

performance of the processor by a new policy called

write-through and a new cache architecture referred

to as way-tagged. In this way-tagged process we are

having L1 cache and L2 cache and the address at

which the data have to be stored is divided into three

parts tag, index and offset address and the data

which is going to be stored in the L1 & L2 caches are

stored with reference with the tag address and the

copy of the tag address is stored in the way-tag array.

Way-tag array is an array where the way-tag address

of the data is stored. When the processor required the

data to perform the required operations first it check

the L1 cache and if the data is present in the L1

cache it fetches the data otherwise it check the L2

cache for the data and similarly if the data is not

present in L2 cache the processor checks the data in

the main memory .while processor fetching the data

from the main memory it stores the data in the L2 &

L1 cache respectively and stores the way-tag address

in the respectively L1 and L2 way-tag arrays.

Simulation results on the Model-Sims and synthesis

results on Xilinx demonstrate that the proposed

technique achieves power savings over conventional

L2cache on average with small area overhead and no

performance degradation. Furthermore, the idea of

way tagging can be applied to existing low-power

cache design techniques to further improve energy

efficiency.

Index Terms— Cache, power, write-through policy.

1. INTRODUCTION

A general-purpose processor is a finite-state automaton

that executes instructions held in a memory. The state

of the system is defined by the values held in the

memory locations together with the values held in

certain registers within the processor itself (see Fig.1).

Each instruction defines a particular way the total state

should change and it also defines which instruction

should be executed next. If we want to make a

processor go fast, we must first understand what it

spends its time doing. It is a common misconception

that computers spend their time computing, that is,

carrying out arithmetic operations on user data. In

practice they spend very little time 'computing' in this

sense. Although they do a fair amount of arithmetic,

most of this is with addresses in order to locate the

relevant data items and program routines. Then, having

found the user's data, most of the work is in moving it

around rather than processing it in any

transformational sense.

Figure.1: A unified instruction and data cache

 Page 1328

In this paper we are concerned mainly about the Data

movement by keeping the data very near to the

processor by using the L1 & L2 Cache and by

employing Write-through and Write-back polices.

Under the write-back policy, a modified cache block is

copied back to its corresponding lower level cache

only when the block is about to be replaced. While

under the write-through policy, all copies of a cache

block are updated immediately after the cache block is

modified at the current cache, even though the block

might not be evicted. As a result, the write-through

policy maintains identical data copies at all levels of

the cache hierarchy throughout most of their life time

of execution.

It has been reported that single-event multi bit upsets

are getting worse in on-chip memories. Currently, this

problem has been addressed at different levels of the

design abstraction. At the architecture level, an

effective solution is to keep data consistent among

different levels of the memory hierarchy to prevent the

system from collapse due to soft errors. Benefited from

immediate update, cache write-through policy is

inherently tolerant to soft errors because the data at all

related levels of the cache hierarchy are always kept

consistent. Due to this feature, many high-performance

microprocessor designs have adopted the write-

through policy.

Write strategies

Write-through policy:

All write operations are passed to main memory; if the

addressed location is currently held in the cache, the

cache is updated to hold the new value. The processor

must slow down to main memory speed while the

write takes place.

Write-through with buffered write:

Here all write operations are still passed to main

memory and the cache updatedas appropriate, but

instead of slowing the processor down to main

memory speedthe write address and data are stored in a

write buffer which can accept the writeinformation at

high speed. The write buffer then transfers the data to

main memory,at main memory speed, while the

processor continues with its next task.

Copy-back (also known as write-back):

A copy-back cache is not kept coherent with main

memory. Write operations update only the cache, so

cache lines must remember when they have been

modified (usually using a dirty bit on each line or

block). If a dirty cache line is allocated to new data it

must be copied back to memory before the line is

reused.

The write-through cache is the simplest to implement

and has the merit that the memory is kept up to date;

the drawback is that the processor must slow to

memory speeds on every write transfer. The addition

of a write buffer allows the processor to continue until

the write traffic exceeds the external write bandwidth.

The copy-back cache reduces the external write

bandwidth requirement since a location may be written

many times before the final value gets written back to

memory, but the implementation is considerably more

complex and the loss of coherency is hard to manage.

2. CONVENTIONAL TWO LEVEL CACHE

Under the write- through policy, the L2 cache always

maintains the most recent copy of the data. Thus,

whenever a data is updated in the L1 cache, the L2

cache is updated with the same data as well. This

results in an increase in the write accesses to the L2

cache and consequently more energy consumption.

Figure.2: conventional 2-level cache architecture

 Page 1329

Table.1: Different Operations in L1, L2 and Main

memory

For read process initially the processor check the L1

cache memory for the data, if the required data is

present read hit signal is set to yes otherwise No. If

read hit signal in L1 is Yes then no-need to check the

L2 and Main memory. If it is No it has to check L2

cache in that if the required data is found in L2 cache

then the read hit signal is set to YES otherwise No. If

the data found in the L2 Cache no need to go for Main

memory otherwise it has to checks the main memory.

For write process the processor initially checks the

address location in the L1 cache if the address location

is found then it compare the data. If the same data is

present then no need write otherwise it has to update.

Same update operation is carried out in L2 and main

Memory. If the required address is not found in the L1

cache then it has to copy the data in the L1, L2 and

Main Memory.

3. WAY-TAGGED CACHE

Fig.3 shows the system diagram of proposed way-

tagged cache. We introduce several new components:

way-tag arrays, way-tag buffer, way decoder, and way

register, all shown in the dotted line. The way tags of

each cache line in the L2 cache are maintained in the

way-tag arrays, located with the L1 data cache. Note

that write buffers are commonly employed in write-

through caches (and even in many write-back caches)

to improve the performance. With a write buffer, the

data to be written into the L1 cache is also sent to the

write buffer.

Figure.3: Proposed way-tag cache

The operations stored in the write buffer are then sent

to the L2 cache in sequence. This avoids write stalls

when the processor waits for write operations to be

completed in the L2 cache. In the pro- posed

technique, we also need to send the way tags stored in

the way-tag arrays to the L2 cache along with the

operations in the write buffer. Thus, a small way-tag

buffer is introduced to buffer the way tags read from

the way-tag arrays. A way decoder is employed to

decode way tags and generate the enable signals for

the L2 cache, which activate only the desired ways in

the L2 cache. Each way in the L2 cache is encoded

into a way tag. A way register stores way tags and

provides this information to the way-tag arrays.

4. IMPLEMENTATION OF WAY-TAG CACHE

A. Way-Tag Array:

Way-tag array stores the tag information of the data in

different location depending on the starting address

location. Whenever the data is needed by the

processor, the processor check address in the way-tag

and if the tag address is found then the data is fetched

from the corresponding address location. If not then

there is no need in check the memory location.

When a data is loaded from the L2 cache to the L1

cache, the way tag of the data is written into the way-

 Page 1330

tag array. At a later time when updating this data in the

L1 data cache, the corresponding copy in the L2 cache

needs to be updated as well under the write-through

policy. The way tag stored in the way-tag array is read

out and forwarded to the way-tag buffer together with

the data from the L1 data cache.

Figure.4: way-tag array

Table 2: Operations of way-tag array

B. Way-Tag buffer:

Way-Tag buffer is used to mirroring the information

from one place to another place. Way-tag buffer

temporarily stores the way tags read from the way-tag

arrays. Implementation is shown in below fig.5. It has

the same number of entries as the write buffer of the

L2 cache and shares the control signals with it. Each

entry of the way-tag buffer has n+1 bits, where n is the

line size of way-tag arrays. An additional status bit

indicates whether the operation in the current entry is a

write miss on the L1 data cache. When a write miss

occurs, all the ways in the L2 cache need to be

activated as the way information is not available.

Otherwise, only the desired way is activated. The

status bit is updated with the read operations of way-

tag arrays at the same clock cycle.

Figure 5: Way-tag buffer

C.Way-Decoder:

Way decoders are used to select the way and activate

only the desired ways in the L2 cache. Below fig. 6

shows the block diagram of the Way-Decoder. It

operates simultaneously with the decoders of the tag

and data arrays in the L2 cache. For a write miss or a

read miss in the L1cache, we need to assert all way-

enable signals so that all ways in the L2 cache are

activated. Two signals read and write miss, determine

the operation mode of the way decoder. Signal read

will be “1” when a read access is sent to the L2 cache.

Signal write miss will be “1” if the write operation

accessing the L2 cache is caused by a write miss in the

L1 cache.

Figure 6: way decoder

 Page 1331

D. Way Register:

The way register are used to provide way tags for the

way-tag arrays. When the data is carried from main

memory to L2 cache and also form L2 to L1 cache i.e.,

when the data is carried the way-tag address is carried

by way-register.

5. SIMULATION RESULTS

A. simulation results way-tag cache

Figure 7: simulation result of way-tag cache top

module (capture-1)

Figure 8: Simulation result of way tag cache top

module (capture-2)

B. Simulation result of conventional two-level cache

Figure 9: Simulation result of conventional 2-Level

cache top module

6. SYNTHESIS REPORT

A. Synthesis report without way-tag array

Figure10: Conventional 2-level cache synthesis report

B. Synthesis report with way-tag array

Figure11: Synthesis report with way-tag array

 Page 1332

7. FURTHER EXTENSION

We can extend this 2-way tag L2 cache architecture to

4-way tag L2 architecture for more high performance.

The below figure shows the architecture of the 4-way

tag L2Cache.

Figure 12: The Architecture of the 4-way tag L2 Cache

8. CONCLUSION

This project presents a new energy-efficient cache

technique for high-performance microprocessors

employing the write-through policy. The proposed

technique attaches a tag to each way in the L2 cache.

This way tag is sent to the way-tag arrays in the L1

cache when the data is loaded from the L2 cache to the

L1 cache. Utilizing the way tags stored in the way-tag

arrays, the L2 cache can be accessed as a direct-

mapping cache during the subsequent write hits,

thereby reducing cache energy consumption.

Simulation results demonstrate significantly reduction

in cache energy consumption with minimal area

overhead and no performance degradation.

Furthermore, the idea of way tagging can be applied to

many existing low-power cache techniques such as the

phased access cache to further reduce cache energy

consumption.

REFERENCES

1. G. H.Asadi,V. Sridharan, M. B. Tahoori,

Andd.Kaeli, “Balancing Performance And Reliability

In The Memory Hierarchy,” In Proc. Int.

Symp.Perform. Anal. Syst. Softw., 2005, Pp. 269–279.

2. C. Su And A. Despain, “Cache Design Tradeoffs

For Power And Performance Optimization: A Case

Study,” In Proc. Int. Symp. Low Power Electron.

Design, 1997, Pp. 63–68.

3. C. Zhang, F. Vahid, And W. Najjar, “A Highly-

Configurable Cache Architecture For Embedded

Systems,” In Proc. Int. Symp. Comput. Arch., 2003,

Pp. 136–146.

4. B. Brock And M. Exerman, “Cache Latencies Of

The Powerpc Mpc7451,” Freescale Semiconductor,

Austin, Tx, 2006. [Online]. Available:

Cache.Freescale.Com

5. A.Ma, M. Zhang, And K.Asanovi, “Way

Memoization To Reduce Fetch Energy In Instruction

Caches,” In Proc. Isca Workshop Complexity

Effective Design, 2001, Pp. 1–9.

6. T. Ishihara And F. Fallah, “A Way Memoization

Technique For Reducing Power Consumption Of

Caches In Application Specific Integrated Processors,”

In Proc. Design Autom. Test Euro. Conf., 2005, Pp.

358–363.

7. R. Min, W. Jone, And Y. Hu, “Location Cache: A

Low-Power L2 Cache System,” In Proc. Int. Symp.

Low Power Electron. Design, 2004, Pp. 120–125.

8. B. Calder, D. Grunwald, And J Emer, “Predictive

Sequential Associative Cache,” In Proc. 2nd

IeeeSymp. High-Perform.Comput. Arch., 1996, Pp.

244–254.

 Page 1333

9. T. N. Vijaykumar, “Reactive-Associative Caches,”

In Proc. Int. Conf. Parallel Arch. Compiler Tech.,

2011, P. 4961.

10. J. Dai And L. Wang, “Way-Tagged Cache: An

Energy Efficient L2 Cache Architecture Under Write

Through Policy,” In Proc. Int. Symp. Low Power

Electron.Design, 2009, Pp. 159 164.

11. R.Min,W. Jone, And Y. Hu, “Phased Tag Cache:

An Efficient Low Power Cache System,” In Proc. Int.

Symp. Circuits Syst., 2004, Pp. 23–26.

Author Details:

B.Prathibha completed graduation in Talla

Padmavathi College of Engineering in the year 2013

and pursuing M.Tech in Vaagdevi College of

engineering Warangal.

Author 2

Jyothirmai Palle completed graduation and post

graduation in signal processing, currently working as

Assistant Professor in Vaagdevi College of

Engineering Warangal.

