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Abstract: 

Power estimation at an earlier stage is important in 

VLSI circuits, because it has a significant impact on 

the reliability of these circuits. Power estimation is a 

trade -off between precision of estimation and 

estimation time. Simulation based power estimation 

techniques are time consuming. This work reports an 

artificial neural network based method for power 

estimation of ISCAS’89 Benchmark circuits, by 

employing Back Propagation Neural Network 

(BPNN) and Radial Basis Function Neural Network 

(RBFNN). This method can estimate power quickly 

and precisely from Inputs and Outputs (I/O) and gate 

information of the VLSI circuit, without requiring 

detailed structure of the circuit and its 

interconnection. Power estimation results reported in 

the literature for International Symposium on 

Circuits and Systems 1989 (ISCAS’ 89) Benchmark 

circuits are used to the train the neural networks. 

The power estimate results for the tested circuits are 

validated by performing regression analysis. The 

BPNN is trained with various training functions and 

a comparative study on various training algorithms 

for power estimation is made. RBFNN is also trained 

and tested with the same data sets and the results are 

compared with power estimation results of BPNN. 
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1. Introduction 

It is impractical to stimulate a large VLSI circuit 

exhaustively with all possible representative input 

vectors, to measure power. Hence power is measured 

for a specific set of random vectors, and is termed as 

average power consumption. Power dissipation 

depends on the operating environment of the circuit, 

namely the input vectors  being fed in. Methods to 

estimate average power can be classified into two 

major categories namely simulative and non-

simulative. Simulation based category includes Monte 

Carlo approach proposed by Burch et al (1993). In this 

approach, the circuits are simulated for different input 

combinations and the average power is calculated as 

an average of the simulated values. Exhaustive 

simulation is done to get accurate results because it 

takes care of spatial and temporal correlations within 

the circuit. However, it is time consuming. Further, 

this technique is most preferable for combinational 

circuits but not for sequential circuits. Monte Carlo 

technique decouples the combinational portion of the 

sequential circuit from the flip-flops and analyze them 

separately which leads to inaccuracies in power 

estimation. 

 

Non simulative based approaches are classified as 

probabilistic and statistical approaches. Under 

Probabilistic category, an algorithm to propagate the 

transition density values from the inputs throughout 

the circuit was proposed by Najm (1993). This method 

overcomes the pattern dependency problem by using 

the probabilities to describe the set of all possible logic 

signals. In-order to achieve good accuracy, one must 

model the correlations among these logic signals 
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which can be expensive. Hence this technique usually 

trades off accuracy for speed. An improved Monte 

Carlo method was proposed by Saxena et al (1997) 

which considered the correlations in time and space 

between the inputs, internal nodes and state nodes. 

This method saves time compared to only simulation 

method. 

 

Under statistical category, a Distribution Independent 

Power Estimator (DIPE) technique for estimating 

average power in sequential circuits was proposed by 

Yuan et al (1998).    In this method the circuit is 

simulated for a random set of input vectors and the 

power value obtained during simulation are observed. 

The simulation for switching  activity  is  terminated  

using  a  stopping  criterion  based  on  central    limit  

theorem. Under statistical category, a stratified random 

sampling approach to estimate power was proposed by 

Ding et al (1998). The statistical methods mentioned 

above are confidence interval based and hence require 

more iteration to converge. Least square estimation of 

average power proposed by Murugavel et al (2002) 

minimizes the mean square error value during each 

iteration and is more time saving when compared to 

Monte Carlo approach. The least square technique 

minimized the mean square error during each iteration 

by using two statistical algorithms namely Sequential 

Least Square (SLS) and   Recursive   Least Square 

(RLS). 

 

Bayesian  Networks  to  estimate  the  switching  

activity  in  VLSI  circuits proposed by Bhanja and 

Ranganathan (2003) encapsulates all the dependencies 

both in internal nodes and inputs within a reasonable 

time and accuracies. Genetic Algorithm based method 

for peak power estimation proposed by Yi-Ling Liu et 

al (2009), derives a small set of input patterns 

associated with peak power. However correlation 

between Peak Switching Frequency (PSF) and Peak 

Power value are not reported. PSF is used to represent 

the peak power consumption in VLSI circuits. All the 

above methods require the detailed structure of the 

VLSI circuit and partial simulation results. This 

accounts for a significant amount of time, which is in 

proportion with the scale of integration of the circuit. 

 

Neural Network based power estimation method for 

ISCAS’89 Benchmark circuits proposed by Ligang 

Hou et al (2006) uses Back Propagation (BP) 

algorithm with network training function named 

Levenberg-Marquardt (trainlm). The regression 

analysis for the best case reported has Slope 0.915, Y-

intercept of -0.00963 and Regression value of 0.994. 

The slope value and the regression value in this 

method deviates from the ideal power estimator by 

8.5% and 0.6% respectively. 

 

2. Proposed method for power estimation 

text The proposed Neural Network method for power 

estimation consists of two phases. In the first phase the  

training of the network is carried out and in the second 

phase the testing of the network is done. The steps in 

training phase and testing phase are discussed below. 

 

Training Phase 

Step 1: Input vectors extracted from ISCAS’89 

Benchmark circuits are used to train the neural 

network. 

 

Step 2: Each parameter in the input vectors and their 

corresponding target vectors are normalized. The 

normalization range is between -1 to +1, when the 

activation function chosen for neurons in the second 

hidden layer, third hidden layer and output layer of the 

proposed BPNN are Tan-sig. The normalization range 

is between 0 to 1, when the activation function chosen 

for neurons in the second hidden layer, third hidden 

layer and output layer of the proposed BPNN are Log-

sig. For RBFNN the normalization is done between -1 

and +1. 

 

Step 3: Normalized input  vectors and their 

corresponding normalized  target  vectors are used to 

train the    neural network. 
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Testing Phase 

Step 1: Input vectors left out in the training process 

are used for testing. 

 

Step 2: The various parameters in the input test 

vectors are also normalized in the same manner as that 

of normalization employed during training. 

 

Step 3: Network will generate normalized outputs 

vectors for these normalized test input vectors. 

 

Step 4: Normalized output vectors are converted back 

to their original value by applying the reverse 

normalization process. 

 

Step 5 : The output vectors obtained for  these  test  

inputs  are  compared  with  the  expected  outputs  and 

validation of the estimated results is performed using 

Regression analysis The database used  for  training  

the  neural networks is obtained from ISCAS’89 

Benchmark circuits. 20 Benchmark circuits from 

ISCAS’89 are used to train the BPNN and RBFNN. 

The input vectors for the different circuits contain 

information regarding the number of inputs, outputs, D 

flip-flops, inverters, gates, AND gates, NAND gates, 

OR gates and NOR gates. 

 

Table 1 lists the training data set used for BPNN and 

RBFNN. In Table 5.1, IN represents the number of 

inputs, OUT represents the number of outputs, DFF 

represents the number of D flip-flops and INV 

represents the number of inverters. The output vector 

is the Monte Carlo power values reported by Saxena et 

al (1997) for the various ISCAS’89 Benchmark 

circuits. The neural networks are tested for various 

ISCAS’89 Benchmark circuits reported in Table 2. 

 

 

 

 

 

 

 

Table.1 Training Data Set for Neural Networks 

 
 

Table .2 Test Data for Neural Networks 

 
 

3. Neural Network Design and Simulation 

The Neural Network architectures namely BPNN and 

RBFNN have been designed and implemented in 

Matlab for power estimation. 

 

3.1 BPNN Design and Simulation 

A four layer BPNN with three hidden layers and one 

output layer is designed. Activation functions namely,  

Pure Linear is applied to the first hidden layer and 

Tan-sig or Log-sig is applied to the rest of the hidden 

layers and output layer. BPNN is trained using eleven 

different training algorithms. Error goal of the BPNN 
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is fixed at 10-8. The network was trained for the 

following variations in inputs and layer sizes. 

 Number of input chosen as either 8 or 9. 

 Number of neurons in the Ist hidden layer 

varied between 7 and 10. 

 Number of neurons in the IInd  hidden layer 

varied between 12 and 16. 

 Number of neurons in the IIIrd  hidden layer 

varied between 14 and 17. 

 

Tables 3 and 4 list the Regression results for training 

functions with variable learning rate and momentum 

constant Traingdm and Traingdx. Learning rate is 

varied in the range 0.3 to 0.8. The momentum constant 

is varied between 

0.1 and 1. 

 

Table.3  Regression Results for Traingdm and 

Traingdx with Tan-Sigmoidal Activation Function 

 
 

Table 3 indicates the regression results when the 

activation function for neurons in second hidden layer, 

third hidden layer and output layer of the proposed 

BPNN are Tan-sig. Table 4 indicates the regression 

results when the activation function for neurons in 

second hidden layer, third hidden layer and output 

layer of the proposed BPNN are Log-sig. . The 

highlighted rows in Tables 3and 4 indicate the best 

possible regression values obtained for Traingdx 

training function. 

 

Table.4 Regression Results for Traingdm and 

Traingdx with Log-Sigmoidal Activation Function 

 
 

From Tables 3 and 4, it is observed that most of the 

readings for momentum based algorithms have actual 

slope values that deviate from the ideal value of slope 

by a significant amount when nine inputs are 

considered for training. Hence we can conclude that 

momentum based algorithms work well when the 

training process has only 8 inputs.  The parameter 

‘GATE COUNT’ does not influence the training 

process in a better way to achieve power estimation. 

 

3.2   RBFNN Design and Simulation 

The error goal is chosen as 5x10-11. The spread value 

is varied between 0 and 1. The number of inputs is  

chosen as either 8 or 9. The epochs were varied and 

the regression results are observed. Table 5 shows the 

regression results for RBFNN. 
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Table.5 Regression Results for RBFNN 

 
 

It is observed that the Regression results obtained for 

RBFNN are much closer to values of an ideal   

estimator. 

 

RBFNN with a spread value of 0.495 with 60 epochs 

and 9 inputs is the best estimator for power estimation. 

Table 6 lists the comparison of proposed work with 

Neural Network based architectures for power 

estimation existing in literature. 

 

Table 6 Comparison of the Regression Analysis of 

various Training Functions with Trainlm Existing in 

the Literature 

 
 

4. Conclusion 

For attaining good power estimation the ideal values of 

R, M and B are 1, 1 and 0 respectively. The learning 

rate, momentum constant, layer size and training 

functions of the BPNN are varied. Traingdx 

outperforms Traingdm under training functions with 

momentum constant. RBFNN works well for 9 inputs. 

RBFNN with 9 inputs, 60 epochs and spread value of 

0.495 yields regression results which are very close to 

ideal values. Traingdx training function outperforms 

trainlm proposed in the literature in terms of better 

regression values. 
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