

 Page 1308

Self Adaptive Security Configurations in Dynamic Decision

Networks

G.Kishore

M.Tech (CSE),

Department of CSE,

AITS, Tirupati.

D.Murali, (Ph.D)

Associate Professor & HoD

Department of CSE,

AITS Tirupati.

ABSTRACT

Cloud security is one of most important issues that

have attracted a lot of research and development

effort in past few years. Particularly, attackers can

explore vulnerabilities of a cloud system and

compromise virtual machines to deploy further large-

scale Distributed Denial-of-Service (DDoS). DDoS

attacks usually involve early stage actions such as

multi-step exploitation, low frequency vulnerability

scanning, and compromising identified vulnerable

virtual machines as zombies, and finally DDoS

attacks through the compromised zombies. Within the

cloud system, especially the Infrastructure-as-a-

Service (IaaS) clouds, the detection of zombie

exploration attacks is extremely difficult. This is

because cloud users may install vulnerable

applications on their virtual machines. To prevent

vulnerable virtual machines from being compromised

in the cloud, we propose a multi-phase distributed

vulnerability detection, measurement, and

countermeasure selection mechanism called Self

Adaptive Security, which is built on attack graph

based analytical models and reconfigurable virtual

network-based countermeasures. The proposed

framework leverages Open Flow network

programming APIs to build a monitor and control

plane over distributed programmable virtual switches

in order to significantly improve attack detection and

mitigate attack consequences. The system and

security evaluations demonstrate the efficiency and

effectiveness of the proposed solution.

Index terms- DDoS, IaaS, APIs

I INTRODUCTION

The protection of computer based resources that

include hardware, software, data, procedures and

people against unauthorized use or natural Disaster is

known as System Security, System Security can be

divided into four related issues: Security, Integrity,

Privacy, and Confidentiality.

SYSTEM SECURITY: Refers to the technical

innovations and procedures applied to the hardware

and operation systems to protect against deliberate or

accidental damage from a defined threat. Data Security

is the protection of data from loss, disclosure,

modification and destruction. System Integrity Refers

to the power functioning of hardware and programs,

appropriate physical security and safety against

external threats such as eavesdropping and

wiretapping. Privacy Defines the rights of the user or

organizations to determine what information they are

willing to share with or accept from others and how

the organization can be protected against unwelcome,

unfair or excessive dissemination of information about

it. Confidentiality is a special status given to sensitive

information in a database to minimize the possible

 Page 1309

invasion of privacy. It is an attribute of information

that characterizes its need for protection.

II EXISTING SYSTEM

Cloud users can install vulnerable software on their

VMs, which essentially contributes to loopholes in

cloud security. The challenge is to establish an

effective vulnerability/attack detection and response

system for accurately identifying attacks and

minimizing the impact of security breach to cloud

users. In a cloud system where the infrastructure is

shared by potentially millions of users, abuse and

nefarious use of the shared infrastructure benefits

attackers to exploit vulnerabilities of the cloud and use

its resource to deploy attacks in more efficient ways.

Such attacks are more effective in the cloud

environment since cloud users usually share

computing resources, e.g., being connected through the

same switch, sharing with the same data storage and

file systems, even with potential attackers. The similar

setup for VMs in the cloud, e.g., virtualization

techniques, VM OS, installed vulnerable software,

networking, etc., attracts attackers to compromise

multiple VMs.

Disadvantages:

1. No detection and prevention framework in a virtual

networking environment.

 2. Not accuracy in the attack detection from attackers.

III PROPOSED SYSTEM

In this article, we propose SELF ADAPTIVE

SECURITY to establish a defense-in-depth intrusion

detection framework. For better attack detection, SELF

ADAPTIVE SECURITY incorporates attack graph

analytical procedures into the intrusion detection

processes. We must note that the design of SELF

ADAPTIVE SECURITY does not intend to improve

any of the existing intrusion detection algorithms;

indeed, SELF ADAPTIVE SECURITY employs a

reconfigurable virtual networking approach to detect

and counter the attempts to compromise VMs, thus

preventing zombie VMs.

Figure 1: Architecture with one cloud server cluster

1. Implementation

Implementation is the stage of the project when the

theoretical design is turned out into a working system.

Thus it can be considered to be the most critical stage

in achieving a successful new system and in giving the

user, confidence that the new system will work and be

effective. The implementation stage involves careful

planning, investigation of the existing system and it’s

constraints on implementation, designing of methods

to achieve changeover and evaluation of changeover

methods.

2. User Module:

In this module, Users are having authentication and

security to access the detail which is presented in the

ontology system. Before accessing or searching the

details user should have the account in that otherwise

they should register first.

3. Countermeasure Selection:

Countermeasure Selection To illustrate how SELF

ADAPTIVE SECURITY works, let us consider for

example, an alert is generated for node 16 (vAlert =

16) when the system detects LICQ Buffer overflow.

After the alert is generated, the cumulative probability

of node 16 becomes 1 because that attacker has already

compromised that node. This triggers a change in

cumulative probabilities of child nodes of node 16.

Now the next step is to select the countermeasures

from the pool of countermeasures CM.

4. Attack Analyzer:

 Page 1310

The major functions of SELF ADAPTIVE

SECURITY system are performed by attack analyzer,

which includes procedures such as attack graph

construction and update, alert correlation and

countermeasure selection. The process of constructing

and utilizing the cenario Attack Graph (SAG) consists

of three phases: information gathering, attack graph

construction, and potential exploit path analysis. With

this information, attack can be modeled using SAG.

Each node in the attack graph represents an exploit by

the attacker. Each path from an initial node to a goal

node represents a successful attack.

5. False Alarms:

A cloud system with hundreds of nodes will have huge

amount of alerts raised by Snort. Not all of these alerts

can be relied upon, and an effective mechanism is

needed to verify if such alerts need to be addressed.

Since Snort can be programmed to generate alerts with

CVE id, one approach that our work provides is to

match if the alert is actually related to some

vulnerability being exploited. If so, the existence of

that vulnerability in SAG means that the alert is more

likely to be a real attack. Thus, the false positive rate

will be the joint probability of the correlated alerts,

which will not increase the false positive rate

compared to each individual false positive rate.

Moreover, we cannot keep aside the case of zero day

attack where the vulnerability is discovered by the

attacker but is not detected by vulnerability scanner. In

such case, the alert being real will be regarded as false,

given that there does not exist corresponding node in

SAG. Thus, current research does not address how to

reduce the false negative rate. It is important to note

that vulnerability scanner should be able to detect most

recent vulnerabilities and sync with the latest

vulnerability database to reduce the chance of Zero-

day attacks.

IV OPERATIONAL FEASIBILITY

Operational feasibility is a measure of how well a

proposed system solves the problems, and takes

advantage of the opportunities identified during scope

definition and how it satisfies the requirements

identified in the requirements analysis phase of system

development. Schedule feasibility A project will fail if

it takes too long to be completed before it is useful.

Typically this means estimating how long the system

will take to develop, and if it can be completed in a

given time period using some methods like payback

period. Schedule feasibility is a measure of how

reasonable the project timetable is. Given our technical

expertise, are the project deadlines reasonable? Some

projects are initiated with specific deadlines. You need

to determine whether the deadlines are mandatory or

desirable.

1. Technical Feasibility:

Technology and system feasibility. The assessment is

based on an outline design of system requirements in

terms of Input, Processes, Output, Fields, Programs,

and Procedures. This can be quantified in terms of

volumes of data, trends, frequency of updating, etc. in

order to estimate whether the new system will perform

adequately or not. Technological feasibility is carried

out to determine whether the company has the

capability, in terms of software, hardware, personnel

and expertise, to handle the completion of the project.

When writing a feasibility report the following should

be taken to consideration:

 A brief description of the business

 The part of the business being examined

 The human and economic factor

 The possible solutions to the problems

At this level, the concern is whether the proposal is

both technically and legally feasible (assuming

moderate cost).

2. Feasibility Study:

Feasibility studies aim to objectively and rationally

uncover the strengths and weaknesses of the existing

business or proposed venture, opportunities and threats

as presented by the environment, the

resources required to carry through, and ultimately the

prospects for success. In its simplest term, the two

 Page 1311

criteria to judge feasibility are cost required and

value to be attained. As such, a well-designed

feasibility study should provide a historical

background of the business or project, description of

the product or service, accounting statements, details

of the operations and management, marketing

research and policies, financial data, legal

requirements and tax obligations. Generally,

feasibility studies precede technical development

and project implementation.

3. Economical Feasibility:

Economic analysis is the most frequently used method

for evaluating the effectiveness of a new system. More

commonly known as cost/benefits analysis, the

procedure is to determine the benefits and savings that

are expected from a candidate system and compare

them with costs. If benefits outweigh costs, then the

decision is made to design and implement the system.

An entrepreneur must accurately weigh the cost versus

benefits before taking an action. Cost-based study: It is

important to identify cost and benefit factors, which

can be categorized as follows: 1. Development costs;

and 2. Operating costs. This is an analysis of the costs

to be incurred in the system and the benefits derivable

out of the system. Time-based study: This is an

analysis of the time required to achieve a return on

investments. The future value of a project is also a

factor.

V SYSTEM DESIGN

It is an UML diagramming application written in Java

and released under the open source Eclipse public

license. By virtue of being a java application, it is

available on any platform supported by Java. Argo

UML does not yet completely implement the UML

standard.

1. Unified Modeling Language Diagrams:The

unified modeling language allows the software

engineer to express an analysis model using the

modeling notation that is governed by a set of syntactic

semantic and pragmatic rules. A UML system is

represented using five different views that describe the

system from distinctly different perspective. Each view

is defined by a set of diagram, which is as follows.

2. User Model View: This view represents the system

from the user’s perspective. The analysis

representation describes a usage scenario from the end-

users perspective.

3. Structural model view: In this model the data and

functionality are arrived from inside the system. This

model view models the static structures

4. Behavioral Model View: It represents the dynamic

of behavioral as parts of the system, depicting the

interactions of collection between various structural

elements described in the user model and structural

model view.

5. Implementation Model View: In this the structural

and behavioral as parts of the system are represented

as they are to be built.

6. Environmental Model View: In this the structural

and behavioral aspects of the environment in which the

system is to be implemented are represented.

UML is specifically constructed through two different

domains they are

1. UML Analysis modeling, this focuses on the

user model and structural model views of the

system.

2. UML design modeling, which focuses on the

behavioral modeling, implementation

modeling and environmental model views.

In UML has 14 types of diagrams divided into two

categories. Seven diagram types represent structural

information, and the other seven represent general

types of behavior, including four that represent

different aspects of interactions. UML is a notation

that resulted from the unification of Object Modeling

Technique and Object Oriented Software Technology

.UML has been designed for broad range of

application.

 Page 1312

VI CLASS DIAGRAM

1. Identification of analysis classes: A class is a set of

objects that share a common structure and common

behavior (the same attributes, operations, relationships

and semantics). A class is an abstraction of real-world

items. There are 4 approaches for identifying classes:

1. Noun phrase approach

2. Common class pattern approach.

3. Use case Driven Sequence or Collaboration

approach.

4. Classes , Responsibilities and collaborators

Approach

Figure 2: UML design modeling

2. Noun Phrase Approach: The guidelines for

identifying the classes:

a. Look for nouns and noun phrases in the use cases.

b. Some classes are implicit or taken from general

knowledge.

c. All classes must make sense in the application

domain; Avoid computer implementation classes –

defer them to the design stage.

d. Carefully choose and define the class names.

After identifying the classes we have to eliminate the

following types of classes:

 Redundant classes

 Adjective classes

3. Common class pattern approach: The following

are the patterns for finding the candidate classes:

a. Concept class.

b. Events class.

c. Organization class

d. Peoples class

e. Places class

f. Tangible things and devices class.

4. Use case driven approach: We have to draw the

sequence diagram or collaboration diagram. If there is

need for some classes to represent some functionality

then add new classes which perform those

functionalities.

5. CRC approach: The process consists of the

following steps:

a. Identify classes’ responsibilities and identify the

classes

b. Assign the responsibilities

c. Identify the collaborators.

6. Super-sub class relationships: Super-sub class

hierarchy is a relationship between classes where one

class is the parent class of another class (derived

class).This is based on inheritance.

7. Guidelines for identifying the super-sub

relationship, a generalization are:

i. Top-down: Look for noun phrases composed of

various adjectives in a class name. Avoid excessive

refinement. Specialize only when the sub classes have

significant behavior.

ii. Bottom-up: Look for classes with similar

attributes or methods. Group them by moving the

common attributes and methods to an abstract class.

You may have to alter the definitions a bit.

iii. Reusability: Move the attributes and methods as

high as possible in the hierarchy.

iv. Multiple inheritances: Avoid excessive use of

multiple inheritances. One way of getting benefits of

multiple inheritances is to inherit from the most

appropriate class and add an object of another class as

an attribute.

 Page 1313

v. Aggregation or a-part-of relationship: It

represents the situation where a class consists of

several component classes. A class that is composed of

other classes doesn’t behave like its parts. It behaves

very difficultly. The major properties of this

relationship are transitivity and anti symmetry.

There are three types of aggregation relationships.

They are:

1. Assembly: It is constructed from its parts and an

assembly-part situation physically exists.

2. Container: A physical whole encompasses but is

not constructed from physical parts.

3. Collection member: A conceptual whole

encompasses parts that may be physical or conceptual.

The container and collection are represented by hollow

diamonds but composition is represented by solid

diamond.

VII CONCLUSION

In this paper, we have a tendency to bestowed SELF

ADAPTIVE SECURITY, that is projected to find and

mitigate cooperative attacks within the cloud virtual

networking surroundings. SELF ADAPTIVE

SECURITY utilizes the attack graph model to conduct

attack detection and prediction. The projected

resolution investigates the way to use the

programmability of software package switches based

mostly solutions to boost the detection accuracy and

defeat victim exploitation phases of cooperative

attacks. The system performance analysis

demonstrates the feasibleness of SELF ADAPTIVE

SECURITY and shows that the projected resolution

will significantly cut back the chance of the cloud

system from being exploited and abused by internal

and external attackers.

REFERENCES

[1] H. Ziv, D. J. Richardson, and R. KlŽsch, “The

uncertainty principle in software engineering,” 19th

International Conference on Software

Engineering,ICSE’97, boston, Massachusetts, USA.

[2] N. Fenton, W. Marsh, M. Neil, P. Cates, S. Forey,

and M. Tailor, “Making resource decisions for

software projects,” in Proceedings of the 26th

International Conference on Software Engineering, ser.

ICSE ’04. Washington, DC, USA: IEEE Computer

Society, 2004, pp. 397–406.[Online].Available:

http://dl.acm.org/citation.cfm?id=998675.999444

[3] B. H. Cheng, R. de Lemos, H. Giese, P. Inverardi,

and J. Magee, “Software engineering for self-adaptive

systems: A research roadmap,” in Software

Engineering for Self-Adaptive Systems, B. H. Cheng,

R. de Lemos, H. Giese, P. Inverardi, and J. Magee,

Eds. Springer- Verlag, 2009, vol. 5525, pp. 1–26.

[4] J. Whittle, P. Sawyer, N. Bencomo, B. Cheng, and

J.-M. Bruel, “Relax: a language to address uncertainty

in self-adaptive systems requirement,” Requirements

Engineering, vol. 15, pp. 177–196, 2010.

[5] D. Garlan, “Software engineering in an uncertain

world,” in Proceedings of the FSE/SDP workshop on

Future of software engineering research, ser. FoSER

’10. New York, NY, USA: ACM, 2010, pp. 125–128.

[Online]. Available:

http://doi.acm.org/10.1145/1882362.1882389

[6] N. Esfahani and S. Malek, “Uncertainty in self-

adaptive software systems,” in Software Engineering

for Self-Adaptive Systems 2 (SEfSAS 2). Springer-

Verlag, 2012.

[7] L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos,

Non-Functional Requirements in Software

Engineering. Springer, 1999, vol. 5.

[8] H. J. Goldsby, P. Sawyer, N. Bencomo, D. Hughes,

and B. H. Cheng, “Goal-based modeling of

dynamically adaptive system requirements,” in IEEE

Int. Conference on the Engineering of Computer Based

Systems (ECBS), 2008.

http://dl.acm.org/citation.cfm?id=998675.999444

 Page 1314

[9] K. Welsh, P. Sawyer, and N. Bencomo, “Towards

requirements aware systems: Run-time resolution of

design-time assumptions,” in ASE, 2011, pp. 560–563.

[10] A. Filieri, C. Ghezzi, and G. Tamburrelli, “A

formal approach to adaptive software: continuous

assurance of non-functional requirements,” Formal

Asp. Comput., vol. 24, no. 2, pp. 163–186, 2012.

[11] S. J. Russell and P. Norvig, Artificial intelligence:

A modern approach, 2nd ed., ser. Prentice Hall series

in artificial intelligence. Prentice Hall, 2003.

[12] J. Bilmes and J. Bilmes, “On virtual evidence and

soft evidence in bayesian networks,” 2004.

[13] J. Pearl, Probabilistic reasoning in intelligent

systems: networks of plausible inference. San

Francisco, CA, USA: Morgan Kaufmann Publishers

Inc., 1988.

[14] R. Howard and J. Matheson., “Influence

diagrams,” in Readings on the Principles and Readings

on the Principles and Applications of Decision

Analysis II. Menlo Park CA:: Strategic Decisions

Group, 1984.

[15] K. Welsh and P. Sawyer, “Understanding the

scope of uncertainty in dynamically adaptive systems,”

in REFSQ, 2010.

